|
|
/* Copyright (c) 2004, 2019, Oracle and/or its affiliates. All rights reserved.
|
|
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
|
it under the terms of the GNU General Public License, version 2.0,
|
|
|
as published by the Free Software Foundation.
|
|
|
|
|
|
This program is also distributed with certain software (including
|
|
|
but not limited to OpenSSL) that is licensed under separate terms,
|
|
|
as designated in a particular file or component or in included license
|
|
|
documentation. The authors of MySQL hereby grant you an additional
|
|
|
permission to link the program and your derivative works with the
|
|
|
separately licensed software that they have included with MySQL.
|
|
|
|
|
|
Without limiting anything contained in the foregoing, this file,
|
|
|
which is part of C Driver for MySQL (Connector/C), is also subject to the
|
|
|
Universal FOSS Exception, version 1.0, a copy of which can be found at
|
|
|
http://oss.oracle.com/licenses/universal-foss-exception.
|
|
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
GNU General Public License, version 2.0, for more details.
|
|
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
|
along with this program; if not, write to the Free Software
|
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
|
|
|
|
|
|
/*
|
|
|
=======================================================================
|
|
|
NOTE: this library implements SQL standard "exact numeric" type
|
|
|
and is not at all generic, but rather intentinally crippled to
|
|
|
follow the standard :)
|
|
|
=======================================================================
|
|
|
Quoting the standard
|
|
|
(SQL:2003, Part 2 Foundations, aka ISO/IEC 9075-2:2003)
|
|
|
|
|
|
4.4.2 Characteristics of numbers, page 27:
|
|
|
|
|
|
An exact numeric type has a precision P and a scale S. P is a positive
|
|
|
integer that determines the number of significant digits in a
|
|
|
particular radix R, where R is either 2 or 10. S is a non-negative
|
|
|
integer. Every value of an exact numeric type of scale S is of the
|
|
|
form n*10^{-S}, where n is an integer such that -R^P <= n <= R^P.
|
|
|
|
|
|
[...]
|
|
|
|
|
|
If an assignment of some number would result in a loss of its most
|
|
|
significant digit, an exception condition is raised. If least
|
|
|
significant digits are lost, implementation-defined rounding or
|
|
|
truncating occurs, with no exception condition being raised.
|
|
|
|
|
|
[...]
|
|
|
|
|
|
Whenever an exact or approximate numeric value is assigned to an exact
|
|
|
numeric value site, an approximation of its value that preserves
|
|
|
leading significant digits after rounding or truncating is represented
|
|
|
in the declared type of the target. The value is converted to have the
|
|
|
precision and scale of the target. The choice of whether to truncate
|
|
|
or round is implementation-defined.
|
|
|
|
|
|
[...]
|
|
|
|
|
|
All numeric values between the smallest and the largest value,
|
|
|
inclusive, in a given exact numeric type have an approximation
|
|
|
obtained by rounding or truncation for that type; it is
|
|
|
implementation-defined which other numeric values have such
|
|
|
approximations.
|
|
|
|
|
|
5.3 <literal>, page 143
|
|
|
|
|
|
<exact numeric literal> ::=
|
|
|
<unsigned integer> [ <period> [ <unsigned integer> ] ]
|
|
|
| <period> <unsigned integer>
|
|
|
|
|
|
6.1 <data type>, page 165:
|
|
|
|
|
|
19) The <scale> of an <exact numeric type> shall not be greater than
|
|
|
the <precision> of the <exact numeric type>.
|
|
|
|
|
|
20) For the <exact numeric type>s DECIMAL and NUMERIC:
|
|
|
|
|
|
a) The maximum value of <precision> is implementation-defined.
|
|
|
<precision> shall not be greater than this value.
|
|
|
b) The maximum value of <scale> is implementation-defined. <scale>
|
|
|
shall not be greater than this maximum value.
|
|
|
|
|
|
21) NUMERIC specifies the data type exact numeric, with the decimal
|
|
|
precision and scale specified by the <precision> and <scale>.
|
|
|
|
|
|
22) DECIMAL specifies the data type exact numeric, with the decimal
|
|
|
scale specified by the <scale> and the implementation-defined
|
|
|
decimal precision equal to or greater than the value of the
|
|
|
specified <precision>.
|
|
|
|
|
|
6.26 <numeric value expression>, page 241:
|
|
|
|
|
|
1) If the declared type of both operands of a dyadic arithmetic
|
|
|
operator is exact numeric, then the declared type of the result is
|
|
|
an implementation-defined exact numeric type, with precision and
|
|
|
scale determined as follows:
|
|
|
|
|
|
a) Let S1 and S2 be the scale of the first and second operands
|
|
|
respectively.
|
|
|
b) The precision of the result of addition and subtraction is
|
|
|
implementation-defined, and the scale is the maximum of S1 and S2.
|
|
|
c) The precision of the result of multiplication is
|
|
|
implementation-defined, and the scale is S1 + S2.
|
|
|
d) The precision and scale of the result of division are
|
|
|
implementation-defined.
|
|
|
*/
|
|
|
|
|
|
#include "decimal.h"
|
|
|
|
|
|
#include <limits.h>
|
|
|
#include <math.h>
|
|
|
#include <string.h>
|
|
|
#include <algorithm>
|
|
|
|
|
|
#include "m_ctype.h"
|
|
|
#include "m_string.h"
|
|
|
#include "my_byteorder.h"
|
|
|
#include "my_compiler.h"
|
|
|
#include "my_dbug.h"
|
|
|
#include "my_sys.h" /* for my_alloca */
|
|
|
#include "myisampack.h"
|
|
|
|
|
|
/*
|
|
|
Internally decimal numbers are stored base 10^9 (see DIG_BASE below)
|
|
|
So one variable of type decimal_digit_t is limited:
|
|
|
|
|
|
0 < decimal_digit <= DIG_MAX < DIG_BASE
|
|
|
|
|
|
in the decimal_t:
|
|
|
|
|
|
intg is the number of *decimal* digits (NOT number of decimal_digit_t's !)
|
|
|
before the point
|
|
|
frac - number of decimal digits after the point
|
|
|
buf is an array of decimal_digit_t's
|
|
|
len is the length of buf (length of allocated space) in decimal_digit_t's,
|
|
|
not in bytes
|
|
|
*/
|
|
|
typedef decimal_digit_t dec1;
|
|
|
typedef longlong dec2;
|
|
|
|
|
|
#define DIG_PER_DEC1 9
|
|
|
#define DIG_MASK 100000000
|
|
|
#define DIG_BASE 1000000000
|
|
|
#define DIG_MAX (DIG_BASE - 1)
|
|
|
#define ROUND_UP(X) (((X) + DIG_PER_DEC1 - 1) / DIG_PER_DEC1)
|
|
|
static const dec1 powers10[DIG_PER_DEC1 + 1] = {
|
|
|
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000};
|
|
|
static const int dig2bytes[DIG_PER_DEC1 + 1] = {0, 1, 1, 2, 2, 3, 3, 4, 4, 4};
|
|
|
static const dec1 frac_max[DIG_PER_DEC1 - 1] = {900000000, 990000000, 999000000,
|
|
|
999900000, 999990000, 999999000,
|
|
|
999999900, 999999990};
|
|
|
|
|
|
static inline dec1 div_by_pow10(dec1 x, int p) {
|
|
|
/*
|
|
|
GCC can optimize division by a constant to a multiplication and some
|
|
|
shifts, which is faster than dividing by a variable, even taking into
|
|
|
account the extra cost of the switch. It is also (empirically on a Skylake)
|
|
|
faster than storing the magic multiplier constants in a table and doing it
|
|
|
ourselves. However, since the code is much bigger, we only use this in
|
|
|
a few select places.
|
|
|
|
|
|
Note the use of unsigned, which is faster for this specific operation.
|
|
|
*/
|
|
|
DBUG_ASSERT(x >= 0);
|
|
|
switch (p) {
|
|
|
case 0:
|
|
|
return static_cast<uint32_t>(x) / 1;
|
|
|
case 1:
|
|
|
return static_cast<uint32_t>(x) / 10;
|
|
|
case 2:
|
|
|
return static_cast<uint32_t>(x) / 100;
|
|
|
case 3:
|
|
|
return static_cast<uint32_t>(x) / 1000;
|
|
|
case 4:
|
|
|
return static_cast<uint32_t>(x) / 10000;
|
|
|
case 5:
|
|
|
return static_cast<uint32_t>(x) / 100000;
|
|
|
case 6:
|
|
|
return static_cast<uint32_t>(x) / 1000000;
|
|
|
case 7:
|
|
|
return static_cast<uint32_t>(x) / 10000000;
|
|
|
case 8:
|
|
|
return static_cast<uint32_t>(x) / 100000000;
|
|
|
default:
|
|
|
DBUG_ASSERT(false);
|
|
|
return x / powers10[p];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
static inline dec1 mod_by_pow10(dec1 x, int p) {
|
|
|
// See div_by_pow10 for rationale.
|
|
|
DBUG_ASSERT(x >= 0);
|
|
|
switch (p) {
|
|
|
case 1:
|
|
|
return static_cast<uint32_t>(x) % 10;
|
|
|
case 2:
|
|
|
return static_cast<uint32_t>(x) % 100;
|
|
|
case 3:
|
|
|
return static_cast<uint32_t>(x) % 1000;
|
|
|
case 4:
|
|
|
return static_cast<uint32_t>(x) % 10000;
|
|
|
case 5:
|
|
|
return static_cast<uint32_t>(x) % 100000;
|
|
|
case 6:
|
|
|
return static_cast<uint32_t>(x) % 1000000;
|
|
|
case 7:
|
|
|
return static_cast<uint32_t>(x) % 10000000;
|
|
|
case 8:
|
|
|
return static_cast<uint32_t>(x) % 100000000;
|
|
|
default:
|
|
|
DBUG_ASSERT(false);
|
|
|
return x % powers10[p];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
#define sanity(d) DBUG_ASSERT((d)->len > 0)
|
|
|
|
|
|
#define FIX_INTG_FRAC_ERROR(len, intg1, frac1, error) \
|
|
|
do { \
|
|
|
if (unlikely(intg1 + frac1 > (len))) { \
|
|
|
if (unlikely(intg1 > (len))) { \
|
|
|
intg1 = (len); \
|
|
|
frac1 = 0; \
|
|
|
error = E_DEC_OVERFLOW; \
|
|
|
} else { \
|
|
|
frac1 = (len)-intg1; \
|
|
|
error = E_DEC_TRUNCATED; \
|
|
|
} \
|
|
|
} else \
|
|
|
error = E_DEC_OK; \
|
|
|
} while (0)
|
|
|
|
|
|
#define ADD(to, from1, from2, carry) /* assume carry <= 1 */ \
|
|
|
do { \
|
|
|
dec1 a = (from1) + (from2) + (carry); \
|
|
|
DBUG_ASSERT((carry) <= 1); \
|
|
|
if (((carry) = a >= DIG_BASE)) /* no division here! */ \
|
|
|
a -= DIG_BASE; \
|
|
|
(to) = a; \
|
|
|
} while (0)
|
|
|
|
|
|
#define ADD2(to, from1, from2, carry) \
|
|
|
do { \
|
|
|
dec2 a = ((dec2)(from1)) + (from2) + (carry); \
|
|
|
if (((carry) = a >= DIG_BASE)) a -= DIG_BASE; \
|
|
|
if (unlikely(a >= DIG_BASE)) { \
|
|
|
a -= DIG_BASE; \
|
|
|
carry++; \
|
|
|
} \
|
|
|
(to) = (dec1)a; \
|
|
|
} while (0)
|
|
|
|
|
|
#define SUB(to, from1, from2, carry) /* to=from1-from2 */ \
|
|
|
do { \
|
|
|
dec1 a = (from1) - (from2) - (carry); \
|
|
|
if (((carry) = a < 0)) a += DIG_BASE; \
|
|
|
(to) = a; \
|
|
|
} while (0)
|
|
|
|
|
|
#define SUB2(to, from1, from2, carry) /* to=from1-from2 */ \
|
|
|
do { \
|
|
|
dec1 a = (from1) - (from2) - (carry); \
|
|
|
if (((carry) = a < 0)) a += DIG_BASE; \
|
|
|
if (unlikely(a < 0)) { \
|
|
|
a += DIG_BASE; \
|
|
|
carry++; \
|
|
|
} \
|
|
|
(to) = a; \
|
|
|
} while (0)
|
|
|
|
|
|
ALWAYS_INLINE static int decimal_bin_size_inline(int precision, int scale);
|
|
|
|
|
|
/*
|
|
|
This is a direct loop unrolling of code that used to look like this:
|
|
|
for (; *buf_beg < powers10[i--]; start++) ;
|
|
|
|
|
|
@param i start index
|
|
|
@param val value to compare against list of powers of 10
|
|
|
|
|
|
@retval Number of leading zeroes that can be removed from fraction.
|
|
|
|
|
|
@note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
|
|
|
Nice bonus: unrolled code is significantly faster.
|
|
|
*/
|
|
|
static inline int count_leading_zeroes(int i, dec1 val) {
|
|
|
int ret = 0;
|
|
|
switch (i) {
|
|
|
/* @note Intentional fallthrough in all case labels */
|
|
|
case 9:
|
|
|
if (val >= 1000000000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 8:
|
|
|
if (val >= 100000000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 7:
|
|
|
if (val >= 10000000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 6:
|
|
|
if (val >= 1000000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 5:
|
|
|
if (val >= 100000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 4:
|
|
|
if (val >= 10000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 3:
|
|
|
if (val >= 1000) break;
|
|
|
++ret; // Fall through.
|
|
|
case 2:
|
|
|
if (val >= 100) break;
|
|
|
++ret; // Fall through.
|
|
|
case 1:
|
|
|
if (val >= 10) break;
|
|
|
++ret; // Fall through.
|
|
|
case 0:
|
|
|
if (val >= 1) break;
|
|
|
++ret; // Fall through.
|
|
|
default: {
|
|
|
DBUG_ASSERT(false);
|
|
|
}
|
|
|
}
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
This is a direct loop unrolling of code that used to look like this:
|
|
|
for (; *buf_end % powers10[i++] == 0; stop--) ;
|
|
|
|
|
|
@param i start index
|
|
|
@param val value to compare against list of powers of 10
|
|
|
|
|
|
@retval Number of trailing zeroes that can be removed from fraction.
|
|
|
|
|
|
@note Why unroll? To get rid of lots of compiler warnings [-Warray-bounds]
|
|
|
Nice bonus: unrolled code is significantly faster.
|
|
|
*/
|
|
|
static inline int count_trailing_zeroes(int i, dec1 val) {
|
|
|
DBUG_ASSERT(val >= 0);
|
|
|
uint32_t uval = val;
|
|
|
|
|
|
int ret = 0;
|
|
|
switch (i) {
|
|
|
/* @note Intentional fallthrough in all case labels */
|
|
|
case 0:
|
|
|
if ((uval % 1) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 1:
|
|
|
if ((uval % 10) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 2:
|
|
|
if ((uval % 100) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 3:
|
|
|
if ((uval % 1000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 4:
|
|
|
if ((uval % 10000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 5:
|
|
|
if ((uval % 100000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 6:
|
|
|
if ((uval % 1000000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 7:
|
|
|
if ((uval % 10000000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 8:
|
|
|
if ((uval % 100000000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
case 9:
|
|
|
if ((uval % 1000000000) != 0) break;
|
|
|
++ret; // Fall through.
|
|
|
default: {
|
|
|
DBUG_ASSERT(false);
|
|
|
}
|
|
|
}
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Get maximum value for given precision and scale
|
|
|
|
|
|
SYNOPSIS
|
|
|
max_decimal()
|
|
|
precision/scale - see decimal_bin_size() below
|
|
|
to - decimal where where the result will be stored
|
|
|
to->buf and to->len must be set.
|
|
|
*/
|
|
|
|
|
|
void max_decimal(int precision, int frac, decimal_t *to) {
|
|
|
int intpart;
|
|
|
dec1 *buf = to->buf;
|
|
|
DBUG_ASSERT(precision && precision >= frac);
|
|
|
|
|
|
to->sign = 0;
|
|
|
if ((intpart = to->intg = (precision - frac))) {
|
|
|
int firstdigits = intpart % DIG_PER_DEC1;
|
|
|
if (firstdigits) *buf++ = powers10[firstdigits] - 1; /* get 9 99 999 ... */
|
|
|
for (intpart /= DIG_PER_DEC1; intpart; intpart--) *buf++ = DIG_MAX;
|
|
|
}
|
|
|
|
|
|
if ((to->frac = frac)) {
|
|
|
int lastdigits = frac % DIG_PER_DEC1;
|
|
|
for (frac /= DIG_PER_DEC1; frac; frac--) *buf++ = DIG_MAX;
|
|
|
if (lastdigits) *buf = frac_max[lastdigits - 1];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
static inline dec1 *remove_leading_zeroes(const decimal_t *from,
|
|
|
int *intg_result) {
|
|
|
int intg = from->intg, i;
|
|
|
dec1 *buf0 = from->buf;
|
|
|
i = ((intg - 1) % DIG_PER_DEC1) + 1;
|
|
|
while (intg > 0 && *buf0 == 0) {
|
|
|
intg -= i;
|
|
|
i = DIG_PER_DEC1;
|
|
|
buf0++;
|
|
|
}
|
|
|
if (intg > 0) {
|
|
|
intg -= count_leading_zeroes((intg - 1) % DIG_PER_DEC1, *buf0);
|
|
|
DBUG_ASSERT(intg > 0);
|
|
|
} else
|
|
|
intg = 0;
|
|
|
*intg_result = intg;
|
|
|
return buf0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Count actual length of fraction part (without ending zeroes)
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_actual_fraction()
|
|
|
from number for processing
|
|
|
*/
|
|
|
|
|
|
int decimal_actual_fraction(const decimal_t *from) {
|
|
|
int frac = from->frac, i;
|
|
|
const dec1 *buf0 = from->buf + ROUND_UP(from->intg) + ROUND_UP(frac) - 1;
|
|
|
|
|
|
if (frac == 0) return 0;
|
|
|
|
|
|
i = ((frac - 1) % DIG_PER_DEC1 + 1);
|
|
|
while (frac > 0 && *buf0 == 0) {
|
|
|
frac -= i;
|
|
|
i = DIG_PER_DEC1;
|
|
|
buf0--;
|
|
|
}
|
|
|
if (frac > 0) {
|
|
|
frac -= count_trailing_zeroes(DIG_PER_DEC1 - ((frac - 1) % DIG_PER_DEC1),
|
|
|
*buf0);
|
|
|
}
|
|
|
return frac;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Convert decimal to its printable string representation
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal2string()
|
|
|
from - value to convert
|
|
|
to - points to buffer where string representation
|
|
|
should be stored
|
|
|
*to_len - in: size of to buffer (incl. terminating '\0')
|
|
|
out: length of the actually written string (excl. '\0')
|
|
|
fixed_precision - 0 if representation can be variable length and
|
|
|
fixed_decimals will not be checked in this case.
|
|
|
Put number as with fixed point position with this
|
|
|
number of digits (sign counted and decimal point is
|
|
|
counted)
|
|
|
fixed_decimals - number digits after point.
|
|
|
filler - character to fill gaps in case of fixed_precision > 0
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|
|
*/
|
|
|
|
|
|
int decimal2string(const decimal_t *from, char *to, int *to_len,
|
|
|
int fixed_precision, int fixed_decimals, char filler) {
|
|
|
/* {intg_len, frac_len} output widths; {intg, frac} places in input */
|
|
|
int len, intg, frac = from->frac, i, intg_len, frac_len, fill;
|
|
|
/* number digits before decimal point */
|
|
|
int fixed_intg = (fixed_precision ? (fixed_precision - fixed_decimals) : 0);
|
|
|
int error = E_DEC_OK;
|
|
|
char *s = to;
|
|
|
dec1 *buf, *buf0 = from->buf, tmp;
|
|
|
|
|
|
DBUG_ASSERT(*to_len >= 2 + from->sign);
|
|
|
|
|
|
/* removing leading zeroes */
|
|
|
buf0 = remove_leading_zeroes(from, &intg);
|
|
|
if (unlikely(intg + frac == 0)) {
|
|
|
intg = 1;
|
|
|
tmp = 0;
|
|
|
buf0 = &tmp;
|
|
|
}
|
|
|
|
|
|
if (!(intg_len = fixed_precision ? fixed_intg : intg)) intg_len = 1;
|
|
|
frac_len = fixed_precision ? fixed_decimals : frac;
|
|
|
len = from->sign + intg_len + MY_TEST(frac) + frac_len;
|
|
|
if (fixed_precision) {
|
|
|
if (frac > fixed_decimals) {
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
frac = fixed_decimals;
|
|
|
}
|
|
|
if (intg > fixed_intg) {
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
intg = fixed_intg;
|
|
|
}
|
|
|
} else if (unlikely(len > --*to_len)) /* reserve one byte for \0 */
|
|
|
{
|
|
|
int j = len - *to_len; /* excess printable chars */
|
|
|
error = (frac && j <= frac + 1) ? E_DEC_TRUNCATED : E_DEC_OVERFLOW;
|
|
|
|
|
|
/*
|
|
|
If we need to cut more places than frac is wide, we'll end up
|
|
|
dropping the decimal point as well. Account for this.
|
|
|
*/
|
|
|
if (frac && j >= frac + 1) j--;
|
|
|
|
|
|
if (j > frac) {
|
|
|
intg_len = intg -= j - frac;
|
|
|
frac = 0;
|
|
|
} else
|
|
|
frac -= j;
|
|
|
frac_len = frac;
|
|
|
len = from->sign + intg_len + MY_TEST(frac) + frac_len;
|
|
|
}
|
|
|
*to_len = len;
|
|
|
s[len] = 0;
|
|
|
|
|
|
if (from->sign) *s++ = '-';
|
|
|
|
|
|
if (frac) {
|
|
|
char *s1 = s + intg_len;
|
|
|
fill = frac_len - frac;
|
|
|
buf = buf0 + ROUND_UP(intg);
|
|
|
*s1++ = '.';
|
|
|
for (; frac > 0; frac -= DIG_PER_DEC1) {
|
|
|
dec1 x = *buf++;
|
|
|
for (i = MY_MIN(frac, DIG_PER_DEC1); i; i--) {
|
|
|
dec1 y = x / DIG_MASK;
|
|
|
*s1++ = '0' + (uchar)y;
|
|
|
x -= y * DIG_MASK;
|
|
|
x *= 10;
|
|
|
}
|
|
|
}
|
|
|
for (; fill > 0; fill--) *s1++ = filler;
|
|
|
}
|
|
|
|
|
|
fill = intg_len - intg;
|
|
|
if (intg == 0) fill--; /* symbol 0 before digital point */
|
|
|
for (; fill > 0; fill--) *s++ = filler;
|
|
|
if (intg) {
|
|
|
s += intg;
|
|
|
for (buf = buf0 + ROUND_UP(intg); intg > 0; intg -= DIG_PER_DEC1) {
|
|
|
dec1 x = *--buf;
|
|
|
for (i = MY_MIN(intg, DIG_PER_DEC1); i; i--) {
|
|
|
dec1 y = x / 10;
|
|
|
*--s = '0' + (uchar)(x - y * 10);
|
|
|
x = y;
|
|
|
}
|
|
|
}
|
|
|
} else
|
|
|
*s = '0';
|
|
|
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Return bounds of decimal digits in the number
|
|
|
|
|
|
SYNOPSIS
|
|
|
digits_bounds()
|
|
|
from - decimal number for processing
|
|
|
start_result - index (from 0 ) of first decimal digits will
|
|
|
be written by this address
|
|
|
end_result - index of position just after last decimal digit
|
|
|
be written by this address
|
|
|
*/
|
|
|
|
|
|
static void digits_bounds(const decimal_t *from, int *start_result,
|
|
|
int *end_result) {
|
|
|
int start, stop, i;
|
|
|
dec1 *buf_beg = from->buf;
|
|
|
dec1 *end = from->buf + ROUND_UP(from->intg) + ROUND_UP(from->frac);
|
|
|
dec1 *buf_end = end - 1;
|
|
|
|
|
|
/* find non-zero digit from number begining */
|
|
|
while (buf_beg < end && *buf_beg == 0) buf_beg++;
|
|
|
|
|
|
if (buf_beg >= end) {
|
|
|
/* it is zero */
|
|
|
*start_result = *end_result = 0;
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
/* find non-zero decimal digit from number begining */
|
|
|
if (buf_beg == from->buf && from->intg) {
|
|
|
start = DIG_PER_DEC1 - (i = ((from->intg - 1) % DIG_PER_DEC1 + 1));
|
|
|
i--;
|
|
|
} else {
|
|
|
i = DIG_PER_DEC1 - 1;
|
|
|
start = (int)((buf_beg - from->buf) * DIG_PER_DEC1);
|
|
|
}
|
|
|
if (buf_beg < end) start += count_leading_zeroes(i, *buf_beg);
|
|
|
|
|
|
*start_result = start; /* index of first decimal digit (from 0) */
|
|
|
|
|
|
/* find non-zero digit at the end */
|
|
|
while (buf_end > buf_beg && *buf_end == 0) buf_end--;
|
|
|
/* find non-zero decimal digit from the end */
|
|
|
if (buf_end == end - 1 && from->frac) {
|
|
|
stop = (int)(((buf_end - from->buf) * DIG_PER_DEC1 +
|
|
|
(i = ((from->frac - 1) % DIG_PER_DEC1 + 1))));
|
|
|
i = DIG_PER_DEC1 - i + 1;
|
|
|
} else {
|
|
|
stop = (int)((buf_end - from->buf + 1) * DIG_PER_DEC1);
|
|
|
i = 1;
|
|
|
}
|
|
|
stop -= count_trailing_zeroes(i, *buf_end);
|
|
|
*end_result = stop; /* index of position after last decimal digit (from 0) */
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Left shift for alignment of data in buffer
|
|
|
|
|
|
SYNOPSIS
|
|
|
do_mini_left_shift()
|
|
|
dec pointer to decimal number which have to be shifted
|
|
|
shift number of decimal digits on which it should be shifted
|
|
|
beg/end bounds of decimal digits (see digits_bounds())
|
|
|
|
|
|
NOTE
|
|
|
Result fitting in the buffer should be garanted.
|
|
|
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
|
|
|
*/
|
|
|
|
|
|
static void do_mini_left_shift(decimal_t *dec, int shift, int beg, int last) {
|
|
|
dec1 *from = dec->buf + ROUND_UP(beg + 1) - 1;
|
|
|
dec1 *end = dec->buf + ROUND_UP(last) - 1;
|
|
|
int c_shift = DIG_PER_DEC1 - shift;
|
|
|
DBUG_ASSERT(from >= dec->buf);
|
|
|
DBUG_ASSERT(end < dec->buf + dec->len);
|
|
|
if (beg % DIG_PER_DEC1 < shift) *(from - 1) = (*from) / powers10[c_shift];
|
|
|
for (; from < end; from++)
|
|
|
*from = ((*from % powers10[c_shift]) * powers10[shift] +
|
|
|
(*(from + 1)) / powers10[c_shift]);
|
|
|
*from = (*from % powers10[c_shift]) * powers10[shift];
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Right shift for alignment of data in buffer
|
|
|
|
|
|
SYNOPSIS
|
|
|
do_mini_left_shift()
|
|
|
dec pointer to decimal number which have to be shifted
|
|
|
shift number of decimal digits on which it should be shifted
|
|
|
beg/end bounds of decimal digits (see digits_bounds())
|
|
|
|
|
|
NOTE
|
|
|
Result fitting in the buffer should be garanted.
|
|
|
'shift' have to be from 1 to DIG_PER_DEC1-1 (inclusive)
|
|
|
*/
|
|
|
|
|
|
static void do_mini_right_shift(decimal_t *dec, int shift, int beg, int last) {
|
|
|
dec1 *from = dec->buf + ROUND_UP(last) - 1;
|
|
|
dec1 *end = dec->buf + ROUND_UP(beg + 1) - 1;
|
|
|
int c_shift = DIG_PER_DEC1 - shift;
|
|
|
DBUG_ASSERT(from < dec->buf + dec->len);
|
|
|
DBUG_ASSERT(end >= dec->buf);
|
|
|
if (DIG_PER_DEC1 - ((last - 1) % DIG_PER_DEC1 + 1) < shift)
|
|
|
*(from + 1) = (*from % powers10[shift]) * powers10[c_shift];
|
|
|
for (; from > end; from--)
|
|
|
*from = (*from / powers10[shift] +
|
|
|
(*(from - 1) % powers10[shift]) * powers10[c_shift]);
|
|
|
*from = *from / powers10[shift];
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Shift of decimal digits in given number (with rounding if it need)
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_shift()
|
|
|
dec number to be shifted
|
|
|
shift number of decimal positions
|
|
|
shift > 0 means shift to left shift
|
|
|
shift < 0 meand right shift
|
|
|
NOTE
|
|
|
In fact it is multipling on 10^shift.
|
|
|
RETURN
|
|
|
E_DEC_OK OK
|
|
|
E_DEC_OVERFLOW operation lead to overflow, number is untoched
|
|
|
E_DEC_TRUNCATED number was rounded to fit into buffer
|
|
|
*/
|
|
|
|
|
|
int decimal_shift(decimal_t *dec, int shift) {
|
|
|
/* index of first non zero digit (all indexes from 0) */
|
|
|
int beg;
|
|
|
/* index of position after last decimal digit */
|
|
|
int end;
|
|
|
/* index of digit position just after point */
|
|
|
int point = ROUND_UP(dec->intg) * DIG_PER_DEC1;
|
|
|
/* new point position */
|
|
|
int new_point = point + shift;
|
|
|
/* number of digits in result */
|
|
|
int digits_int, digits_frac;
|
|
|
/* length of result and new fraction in big digits*/
|
|
|
int new_len, new_frac_len;
|
|
|
/* return code */
|
|
|
int err = E_DEC_OK;
|
|
|
int new_front;
|
|
|
|
|
|
if (shift == 0) return E_DEC_OK;
|
|
|
|
|
|
digits_bounds(dec, &beg, &end);
|
|
|
|
|
|
if (beg == end) {
|
|
|
decimal_make_zero(dec);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
|
|
|
digits_int = new_point - beg;
|
|
|
set_if_bigger(digits_int, 0);
|
|
|
digits_frac = end - new_point;
|
|
|
set_if_bigger(digits_frac, 0);
|
|
|
|
|
|
if ((new_len = ROUND_UP(digits_int) +
|
|
|
(new_frac_len = ROUND_UP(digits_frac))) > dec->len) {
|
|
|
int lack = new_len - dec->len;
|
|
|
int diff;
|
|
|
|
|
|
if (new_frac_len < lack)
|
|
|
return E_DEC_OVERFLOW; /* lack more then we have in fraction */
|
|
|
|
|
|
/* cat off fraction part to allow new number to fit in our buffer */
|
|
|
err = E_DEC_TRUNCATED;
|
|
|
new_frac_len -= lack;
|
|
|
diff = digits_frac - (new_frac_len * DIG_PER_DEC1);
|
|
|
/* Make rounding method as parameter? */
|
|
|
decimal_round(dec, dec, end - point - diff, HALF_UP);
|
|
|
end -= diff;
|
|
|
digits_frac = new_frac_len * DIG_PER_DEC1;
|
|
|
|
|
|
if (end <= beg) {
|
|
|
/*
|
|
|
we lost all digits (they will be shifted out of buffer), so we can
|
|
|
just return 0
|
|
|
*/
|
|
|
decimal_make_zero(dec);
|
|
|
return E_DEC_TRUNCATED;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
if (shift % DIG_PER_DEC1) {
|
|
|
int l_mini_shift, r_mini_shift, mini_shift;
|
|
|
int do_left;
|
|
|
/*
|
|
|
Calculate left/right shift to align decimal digits inside our bug
|
|
|
digits correctly
|
|
|
*/
|
|
|
if (shift > 0) {
|
|
|
l_mini_shift = shift % DIG_PER_DEC1;
|
|
|
r_mini_shift = DIG_PER_DEC1 - l_mini_shift;
|
|
|
/*
|
|
|
It is left shift so prefer left shift, but if we have not place from
|
|
|
left, we have to have it from right, because we checked length of
|
|
|
result
|
|
|
*/
|
|
|
do_left = l_mini_shift <= beg;
|
|
|
DBUG_ASSERT(do_left || (dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
|
|
|
} else {
|
|
|
r_mini_shift = (-shift) % DIG_PER_DEC1;
|
|
|
l_mini_shift = DIG_PER_DEC1 - r_mini_shift;
|
|
|
/* see comment above */
|
|
|
do_left = !((dec->len * DIG_PER_DEC1 - end) >= r_mini_shift);
|
|
|
DBUG_ASSERT(!do_left || l_mini_shift <= beg);
|
|
|
}
|
|
|
if (do_left) {
|
|
|
do_mini_left_shift(dec, l_mini_shift, beg, end);
|
|
|
mini_shift = -l_mini_shift;
|
|
|
} else {
|
|
|
do_mini_right_shift(dec, r_mini_shift, beg, end);
|
|
|
mini_shift = r_mini_shift;
|
|
|
}
|
|
|
new_point += mini_shift;
|
|
|
/*
|
|
|
If number is shifted and correctly aligned in buffer we can
|
|
|
finish
|
|
|
*/
|
|
|
if (!(shift += mini_shift) && (new_point - digits_int) < DIG_PER_DEC1) {
|
|
|
dec->intg = digits_int;
|
|
|
dec->frac = digits_frac;
|
|
|
return err; /* already shifted as it should be */
|
|
|
}
|
|
|
beg += mini_shift;
|
|
|
end += mini_shift;
|
|
|
}
|
|
|
|
|
|
/* if new 'decimal front' is in first digit, we do not need move digits */
|
|
|
if ((new_front = (new_point - digits_int)) >= DIG_PER_DEC1 || new_front < 0) {
|
|
|
/* need to move digits */
|
|
|
int d_shift;
|
|
|
dec1 *to, *barier;
|
|
|
if (new_front > 0) {
|
|
|
/* move left */
|
|
|
d_shift = new_front / DIG_PER_DEC1;
|
|
|
to = dec->buf + (ROUND_UP(beg + 1) - 1 - d_shift);
|
|
|
barier = dec->buf + (ROUND_UP(end) - 1 - d_shift);
|
|
|
DBUG_ASSERT(to >= dec->buf);
|
|
|
DBUG_ASSERT(barier + d_shift < dec->buf + dec->len);
|
|
|
for (; to <= barier; to++) *to = *(to + d_shift);
|
|
|
for (barier += d_shift; to <= barier; to++) *to = 0;
|
|
|
d_shift = -d_shift;
|
|
|
} else {
|
|
|
/* move right */
|
|
|
d_shift = (1 - new_front) / DIG_PER_DEC1;
|
|
|
to = dec->buf + ROUND_UP(end) - 1 + d_shift;
|
|
|
barier = dec->buf + ROUND_UP(beg + 1) - 1 + d_shift;
|
|
|
DBUG_ASSERT(to < dec->buf + dec->len);
|
|
|
DBUG_ASSERT(barier - d_shift >= dec->buf);
|
|
|
for (; to >= barier; to--) *to = *(to - d_shift);
|
|
|
for (barier -= d_shift; to >= barier; to--) *to = 0;
|
|
|
}
|
|
|
d_shift *= DIG_PER_DEC1;
|
|
|
beg += d_shift;
|
|
|
end += d_shift;
|
|
|
new_point += d_shift;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
If there are gaps then fill ren with 0.
|
|
|
|
|
|
Only one of following 'for' loops will work becouse beg <= end
|
|
|
*/
|
|
|
beg = ROUND_UP(beg + 1) - 1;
|
|
|
end = ROUND_UP(end) - 1;
|
|
|
DBUG_ASSERT(new_point >= 0);
|
|
|
|
|
|
/* We don't want negative new_point below */
|
|
|
if (new_point != 0) new_point = ROUND_UP(new_point) - 1;
|
|
|
|
|
|
if (new_point > end) {
|
|
|
do {
|
|
|
dec->buf[new_point] = 0;
|
|
|
} while (--new_point > end);
|
|
|
} else {
|
|
|
for (; new_point < beg; new_point++) dec->buf[new_point] = 0;
|
|
|
}
|
|
|
dec->intg = digits_int;
|
|
|
dec->frac = digits_frac;
|
|
|
return err;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Convert string to decimal
|
|
|
|
|
|
SYNOPSIS
|
|
|
string2decimal()
|
|
|
from - value to convert. Doesn't have to be \0 terminated!
|
|
|
to - decimal where where the result will be stored
|
|
|
to->buf and to->len must be set.
|
|
|
end - Pointer to pointer to end of string. Will on return be
|
|
|
set to the char after the last used character
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_BAD_NUM/E_DEC_OOM
|
|
|
In case of E_DEC_FATAL_ERROR *to is set to decimal zero
|
|
|
(to make error handling easier)
|
|
|
*/
|
|
|
|
|
|
int string2decimal(const char *from, decimal_t *to, const char **end) {
|
|
|
const char *s = from, *s1, *endp, *end_of_string = *end;
|
|
|
int i, intg, frac, error, intg1, frac1;
|
|
|
dec1 x, *buf;
|
|
|
sanity(to);
|
|
|
|
|
|
error = E_DEC_BAD_NUM; /* In case of bad number */
|
|
|
while (s < end_of_string && my_isspace(&my_charset_latin1, *s)) s++;
|
|
|
if (s == end_of_string) goto fatal_error;
|
|
|
|
|
|
if ((to->sign = (*s == '-')))
|
|
|
s++;
|
|
|
else if (*s == '+')
|
|
|
s++;
|
|
|
|
|
|
s1 = s;
|
|
|
while (s < end_of_string && my_isdigit(&my_charset_latin1, *s)) s++;
|
|
|
intg = (int)(s - s1);
|
|
|
if (s < end_of_string && *s == '.') {
|
|
|
endp = s + 1;
|
|
|
while (endp < end_of_string && my_isdigit(&my_charset_latin1, *endp))
|
|
|
endp++;
|
|
|
frac = (int)(endp - s - 1);
|
|
|
} else {
|
|
|
frac = 0;
|
|
|
endp = s;
|
|
|
}
|
|
|
|
|
|
*end = endp;
|
|
|
|
|
|
if (frac + intg == 0) goto fatal_error;
|
|
|
|
|
|
error = 0;
|
|
|
|
|
|
intg1 = ROUND_UP(intg);
|
|
|
frac1 = ROUND_UP(frac);
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
|
|
if (unlikely(error)) {
|
|
|
frac = frac1 * DIG_PER_DEC1;
|
|
|
if (error == E_DEC_OVERFLOW) intg = intg1 * DIG_PER_DEC1;
|
|
|
}
|
|
|
|
|
|
/* Error is guranteed to be set here */
|
|
|
to->intg = intg;
|
|
|
to->frac = frac;
|
|
|
|
|
|
buf = to->buf + intg1;
|
|
|
s1 = s;
|
|
|
|
|
|
for (x = 0, i = 0; intg; intg--) {
|
|
|
x += (*--s - '0') * powers10[i];
|
|
|
|
|
|
if (unlikely(++i == DIG_PER_DEC1)) {
|
|
|
*--buf = x;
|
|
|
x = 0;
|
|
|
i = 0;
|
|
|
}
|
|
|
}
|
|
|
if (i) *--buf = x;
|
|
|
|
|
|
buf = to->buf + intg1;
|
|
|
for (x = 0, i = 0; frac; frac--) {
|
|
|
x = (*++s1 - '0') + x * 10;
|
|
|
|
|
|
if (unlikely(++i == DIG_PER_DEC1)) {
|
|
|
*buf++ = x;
|
|
|
x = 0;
|
|
|
i = 0;
|
|
|
}
|
|
|
}
|
|
|
if (i) *buf = x * powers10[DIG_PER_DEC1 - i];
|
|
|
|
|
|
/* Handle exponent */
|
|
|
if (endp + 1 < end_of_string && (*endp == 'e' || *endp == 'E')) {
|
|
|
int str_error;
|
|
|
longlong exponent = my_strtoll10(endp + 1, &end_of_string, &str_error);
|
|
|
|
|
|
if (end_of_string != endp + 1) /* If at least one digit */
|
|
|
{
|
|
|
*end = end_of_string;
|
|
|
if (str_error > 0) {
|
|
|
error = E_DEC_BAD_NUM;
|
|
|
goto fatal_error;
|
|
|
}
|
|
|
if (exponent > INT_MAX / 2 || (str_error == 0 && exponent < 0)) {
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
goto fatal_error;
|
|
|
}
|
|
|
if (exponent < INT_MIN / 2 && error != E_DEC_OVERFLOW) {
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
goto fatal_error;
|
|
|
}
|
|
|
if (error != E_DEC_OVERFLOW) error = decimal_shift(to, (int)exponent);
|
|
|
}
|
|
|
}
|
|
|
/* Avoid returning negative zero, cfr. decimal_cmp() */
|
|
|
if (to->sign && decimal_is_zero(to)) to->sign = false;
|
|
|
return error;
|
|
|
|
|
|
fatal_error:
|
|
|
decimal_make_zero(to);
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
Add zeros behind comma to increase precision of decimal.
|
|
|
|
|
|
@param new_frac the new fraction
|
|
|
@param[in,out] d the decimal target
|
|
|
|
|
|
new_frac is exected to be larger or equal than cd->frac and
|
|
|
new fraction is expected to fit in d.
|
|
|
*/
|
|
|
void widen_fraction(int new_frac, decimal_t *d) {
|
|
|
const int frac = d->frac;
|
|
|
const int intg = d->intg;
|
|
|
const int frac1 = ROUND_UP(frac);
|
|
|
const int intg1 = ROUND_UP(intg);
|
|
|
int new_frac1 = ROUND_UP(new_frac);
|
|
|
|
|
|
if (new_frac < frac || intg1 + new_frac1 > d->len) {
|
|
|
DBUG_ASSERT(false);
|
|
|
return;
|
|
|
}
|
|
|
decimal_digit_t *buf = d->buf + intg1 + frac1;
|
|
|
std::fill_n(buf, new_frac1 - frac1, 0);
|
|
|
d->frac = new_frac;
|
|
|
}
|
|
|
/*
|
|
|
Convert decimal to double
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal2double()
|
|
|
from - value to convert
|
|
|
to - result will be stored there
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
|
|
|
*/
|
|
|
|
|
|
int decimal2double(const decimal_t *from, double *to) {
|
|
|
char strbuf[FLOATING_POINT_BUFFER];
|
|
|
int len = sizeof(strbuf);
|
|
|
int rc, error;
|
|
|
|
|
|
rc = decimal2string(from, strbuf, &len, 0, 0, 0);
|
|
|
const char *end = strbuf + len;
|
|
|
|
|
|
DBUG_PRINT("info", ("interm.: %s", strbuf));
|
|
|
|
|
|
*to = my_strtod(strbuf, &end, &error);
|
|
|
|
|
|
DBUG_PRINT("info", ("result: %f", *to));
|
|
|
|
|
|
return (rc != E_DEC_OK) ? rc : (error ? E_DEC_OVERFLOW : E_DEC_OK);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Convert double to decimal
|
|
|
|
|
|
SYNOPSIS
|
|
|
double2decimal()
|
|
|
from - value to convert
|
|
|
to - result will be stored there
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_OVERFLOW/E_DEC_TRUNCATED
|
|
|
*/
|
|
|
|
|
|
int double2decimal(double from, decimal_t *to) {
|
|
|
char buff[FLOATING_POINT_BUFFER];
|
|
|
int res;
|
|
|
DBUG_TRACE;
|
|
|
const char *end = buff + my_gcvt(from, MY_GCVT_ARG_DOUBLE,
|
|
|
(int)sizeof(buff) - 1, buff, NULL);
|
|
|
res = string2decimal(buff, to, &end);
|
|
|
DBUG_PRINT("exit", ("res: %d", res));
|
|
|
return res;
|
|
|
}
|
|
|
|
|
|
static int ull2dec(ulonglong from, decimal_t *to) {
|
|
|
int intg1;
|
|
|
int error = E_DEC_OK;
|
|
|
ulonglong x = from;
|
|
|
dec1 *buf;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
if (from == 0)
|
|
|
intg1 = 1;
|
|
|
else {
|
|
|
/* Count the number of decimal_digit_t's we need. */
|
|
|
for (intg1 = 0; from != 0; intg1++, from /= DIG_BASE)
|
|
|
;
|
|
|
}
|
|
|
if (unlikely(intg1 > to->len)) {
|
|
|
intg1 = to->len;
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
}
|
|
|
to->frac = 0;
|
|
|
to->intg = intg1 * DIG_PER_DEC1;
|
|
|
|
|
|
for (buf = to->buf + intg1; intg1; intg1--) {
|
|
|
ulonglong y = x / DIG_BASE;
|
|
|
*--buf = (dec1)(x - y * DIG_BASE);
|
|
|
x = y;
|
|
|
}
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
int ulonglong2decimal(ulonglong from, decimal_t *to) {
|
|
|
to->sign = 0;
|
|
|
return ull2dec(from, to);
|
|
|
}
|
|
|
|
|
|
int longlong2decimal(longlong from, decimal_t *to) {
|
|
|
if ((to->sign = from < 0))
|
|
|
return ull2dec(from == LLONG_MIN ? static_cast<ulonglong>(from) : -from,
|
|
|
to);
|
|
|
return ull2dec(from, to);
|
|
|
}
|
|
|
|
|
|
int decimal2ulonglong(const decimal_t *from, ulonglong *to) {
|
|
|
dec1 *buf = from->buf;
|
|
|
ulonglong x = 0;
|
|
|
int intg, frac;
|
|
|
|
|
|
if (from->sign) {
|
|
|
*to = 0ULL;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
|
|
|
for (intg = from->intg; intg > 0; intg -= DIG_PER_DEC1) {
|
|
|
ulonglong y = x;
|
|
|
x = x * DIG_BASE + *buf++;
|
|
|
if (unlikely(y > ((ulonglong)ULLONG_MAX / DIG_BASE) || x < y)) {
|
|
|
*to = ULLONG_MAX;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
}
|
|
|
*to = x;
|
|
|
for (frac = from->frac; unlikely(frac > 0); frac -= DIG_PER_DEC1)
|
|
|
if (*buf++) return E_DEC_TRUNCATED;
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
|
|
|
int decimal2longlong(const decimal_t *from, longlong *to) {
|
|
|
dec1 *buf = from->buf;
|
|
|
longlong x = 0;
|
|
|
int intg, frac;
|
|
|
|
|
|
for (intg = from->intg; intg > 0; intg -= DIG_PER_DEC1) {
|
|
|
/*
|
|
|
Attention: trick!
|
|
|
we're calculating -|from| instead of |from| here
|
|
|
because |LLONG_MIN| > LLONG_MAX
|
|
|
so we can convert -9223372036854775808 correctly
|
|
|
*/
|
|
|
if (unlikely(x < (LLONG_MIN / DIG_BASE))) {
|
|
|
/*
|
|
|
the decimal is bigger than any possible integer
|
|
|
return border integer depending on the sign
|
|
|
*/
|
|
|
*to = from->sign ? LLONG_MIN : LLONG_MAX;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
x = x * DIG_BASE;
|
|
|
const longlong digit = *buf++;
|
|
|
if (unlikely(x < LLONG_MIN + digit)) {
|
|
|
/*
|
|
|
the decimal is bigger than any possible integer
|
|
|
return border integer depending on the sign
|
|
|
*/
|
|
|
*to = from->sign ? LLONG_MIN : LLONG_MAX;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
x = x - digit;
|
|
|
}
|
|
|
/* boundary case: 9223372036854775808 */
|
|
|
if (unlikely(from->sign == 0 && x == LLONG_MIN)) {
|
|
|
*to = LLONG_MAX;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
|
|
|
*to = from->sign ? x : -x;
|
|
|
for (frac = from->frac; unlikely(frac > 0); frac -= DIG_PER_DEC1)
|
|
|
if (*buf++) return E_DEC_TRUNCATED;
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
|
|
|
#define LLDIV_MIN -1000000000000000000LL
|
|
|
#define LLDIV_MAX 1000000000000000000LL
|
|
|
|
|
|
/**
|
|
|
Convert decimal value to lldiv_t value.
|
|
|
@param from The decimal value to convert from.
|
|
|
@param [out] to The lldiv_t variable to convert to.
|
|
|
@return 0 on success, error code on error.
|
|
|
*/
|
|
|
int decimal2lldiv_t(const decimal_t *from, lldiv_t *to) {
|
|
|
int int_part = ROUND_UP(from->intg);
|
|
|
int frac_part = ROUND_UP(from->frac);
|
|
|
if (int_part > 2) {
|
|
|
to->rem = 0;
|
|
|
to->quot = from->sign ? LLDIV_MIN : LLDIV_MAX;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
if (int_part == 2)
|
|
|
to->quot = ((longlong)from->buf[0]) * DIG_BASE + from->buf[1];
|
|
|
else if (int_part == 1)
|
|
|
to->quot = from->buf[0];
|
|
|
else
|
|
|
to->quot = 0;
|
|
|
to->rem = frac_part ? from->buf[int_part] : 0;
|
|
|
if (from->sign) {
|
|
|
to->quot = -to->quot;
|
|
|
to->rem = -to->rem;
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
/**
|
|
|
Convert double value to lldiv_t valie.
|
|
|
@param nr The double value to convert from.
|
|
|
@param [out] lld The lldit_t variable to convert to.
|
|
|
@return 0 on success, error code on error.
|
|
|
|
|
|
Integer part goes into lld.quot.
|
|
|
Fractional part multiplied to 1000000000 (10^9) goes to lld.rem.
|
|
|
Typically used in datetime calculations to split seconds
|
|
|
and nanoseconds.
|
|
|
*/
|
|
|
int double2lldiv_t(double nr, lldiv_t *lld) {
|
|
|
if (nr > LLDIV_MAX) {
|
|
|
lld->quot = LLDIV_MAX;
|
|
|
lld->rem = 0;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
} else if (nr < LLDIV_MIN) {
|
|
|
lld->quot = LLDIV_MIN;
|
|
|
lld->rem = 0;
|
|
|
return E_DEC_OVERFLOW;
|
|
|
}
|
|
|
/* Truncate fractional part toward zero and store into "quot" */
|
|
|
lld->quot = (longlong)(nr > 0 ? floor(nr) : ceil(nr));
|
|
|
/* Multiply reminder to 10^9 and store into "rem" */
|
|
|
lld->rem = (longlong)rint((nr - (double)lld->quot) * 1000000000);
|
|
|
/*
|
|
|
Sometimes the expression "(double) 0.999999999xxx * (double) 10e9"
|
|
|
gives 1,000,000,000 instead of 999,999,999 due to lack of double precision.
|
|
|
The callers do not expect lld->rem to be greater than 999,999,999.
|
|
|
Let's catch this corner case and put the "nanounit" (e.g. nanosecond)
|
|
|
value in ldd->rem back into the valid range.
|
|
|
*/
|
|
|
if (lld->rem > 999999999LL)
|
|
|
lld->rem = 999999999LL;
|
|
|
else if (lld->rem < -999999999LL)
|
|
|
lld->rem = -999999999LL;
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Convert decimal to its binary fixed-length representation
|
|
|
two representations of the same length can be compared with memcmp
|
|
|
with the correct -1/0/+1 result
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal2bin()
|
|
|
from - value to convert
|
|
|
to - points to buffer where string representation should be stored
|
|
|
precision/scale - see decimal_bin_size() below
|
|
|
|
|
|
NOTE
|
|
|
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|
|
|
|
|
DESCRIPTION
|
|
|
for storage decimal numbers are converted to the "binary" format.
|
|
|
|
|
|
This format has the following properties:
|
|
|
1. length of the binary representation depends on the {precision, scale}
|
|
|
as provided by the caller and NOT on the intg/frac of the decimal to
|
|
|
convert.
|
|
|
2. binary representations of the same {precision, scale} can be compared
|
|
|
with memcmp - with the same result as decimal_cmp() of the original
|
|
|
decimals (not taking into account possible precision loss during
|
|
|
conversion).
|
|
|
|
|
|
This binary format is as follows:
|
|
|
1. First the number is converted to have a requested precision and scale.
|
|
|
2. Every full DIG_PER_DEC1 digits of intg part are stored in 4 bytes
|
|
|
as is
|
|
|
3. The first intg % DIG_PER_DEC1 digits are stored in the reduced
|
|
|
number of bytes (enough bytes to store this number of digits -
|
|
|
see dig2bytes)
|
|
|
4. same for frac - full decimal_digit_t's are stored as is,
|
|
|
the last frac % DIG_PER_DEC1 digits - in the reduced number of bytes.
|
|
|
5. If the number is negative - every byte is inversed.
|
|
|
5. The very first bit of the resulting byte array is inverted (because
|
|
|
memcmp compares unsigned bytes, see property 2 above)
|
|
|
|
|
|
Example:
|
|
|
|
|
|
1234567890.1234
|
|
|
|
|
|
internally is represented as 3 decimal_digit_t's
|
|
|
|
|
|
1 234567890 123400000
|
|
|
|
|
|
(assuming we want a binary representation with precision=14, scale=4)
|
|
|
in hex it's
|
|
|
|
|
|
00-00-00-01 0D-FB-38-D2 07-5A-EF-40
|
|
|
|
|
|
now, middle decimal_digit_t is full - it stores 9 decimal digits. It goes
|
|
|
into binary representation as is:
|
|
|
|
|
|
|
|
|
........... 0D-FB-38-D2 ............
|
|
|
|
|
|
First decimal_digit_t has only one decimal digit. We can store one digit in
|
|
|
one byte, no need to waste four:
|
|
|
|
|
|
01 0D-FB-38-D2 ............
|
|
|
|
|
|
now, last digit. It's 123400000. We can store 1234 in two bytes:
|
|
|
|
|
|
01 0D-FB-38-D2 04-D2
|
|
|
|
|
|
So, we've packed 12 bytes number in 7 bytes.
|
|
|
And now we invert the highest bit to get the final result:
|
|
|
|
|
|
81 0D FB 38 D2 04 D2
|
|
|
|
|
|
And for -1234567890.1234 it would be
|
|
|
|
|
|
7E F2 04 C7 2D FB 2D
|
|
|
*/
|
|
|
int decimal2bin(const decimal_t *from, uchar *to, int precision, int frac) {
|
|
|
dec1 mask = from->sign ? -1 : 0, *buf1 = from->buf, *stop1;
|
|
|
int error = E_DEC_OK, intg = precision - frac, isize1, intg1, intg1x,
|
|
|
from_intg, intg0 = intg / DIG_PER_DEC1, frac0 = frac / DIG_PER_DEC1,
|
|
|
intg0x = intg - intg0 * DIG_PER_DEC1,
|
|
|
frac0x = frac - frac0 * DIG_PER_DEC1, frac1 = from->frac / DIG_PER_DEC1,
|
|
|
frac1x = from->frac - frac1 * DIG_PER_DEC1,
|
|
|
isize0 = intg0 * sizeof(dec1) + dig2bytes[intg0x],
|
|
|
fsize0 = frac0 * sizeof(dec1) + dig2bytes[frac0x],
|
|
|
fsize1 = frac1 * sizeof(dec1) + dig2bytes[frac1x];
|
|
|
const int orig_isize0 = isize0;
|
|
|
const int orig_fsize0 = fsize0;
|
|
|
uchar *orig_to = to;
|
|
|
|
|
|
buf1 = remove_leading_zeroes(from, &from_intg);
|
|
|
|
|
|
if (unlikely(from_intg + fsize1 == 0)) {
|
|
|
mask = 0; /* just in case */
|
|
|
intg = 1;
|
|
|
buf1 = &mask;
|
|
|
}
|
|
|
|
|
|
intg1 = from_intg / DIG_PER_DEC1;
|
|
|
intg1x = from_intg - intg1 * DIG_PER_DEC1;
|
|
|
isize1 = intg1 * sizeof(dec1) + dig2bytes[intg1x];
|
|
|
|
|
|
if (intg < from_intg) {
|
|
|
buf1 += intg1 - intg0 + (intg1x > 0) - (intg0x > 0);
|
|
|
intg1 = intg0;
|
|
|
intg1x = intg0x;
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
} else if (isize0 > isize1) {
|
|
|
while (isize0-- > isize1) *to++ = (char)mask;
|
|
|
}
|
|
|
if (fsize0 < fsize1) {
|
|
|
frac1 = frac0;
|
|
|
frac1x = frac0x;
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
} else if (fsize0 > fsize1 && frac1x) {
|
|
|
if (frac0 == frac1) {
|
|
|
frac1x = frac0x;
|
|
|
fsize0 = fsize1;
|
|
|
} else {
|
|
|
frac1++;
|
|
|
frac1x = 0;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* intg1x part */
|
|
|
if (intg1x) {
|
|
|
int i = dig2bytes[intg1x];
|
|
|
dec1 x = mod_by_pow10(*buf1++, intg1x) ^ mask;
|
|
|
switch (i) {
|
|
|
case 1:
|
|
|
mi_int1store(to, x);
|
|
|
break;
|
|
|
case 2:
|
|
|
mi_int2store(to, x);
|
|
|
break;
|
|
|
case 3:
|
|
|
mi_int3store(to, x);
|
|
|
break;
|
|
|
case 4:
|
|
|
mi_int4store(to, x);
|
|
|
break;
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
to += i;
|
|
|
}
|
|
|
|
|
|
/* intg1+frac1 part */
|
|
|
for (stop1 = buf1 + intg1 + frac1; buf1 < stop1; to += sizeof(dec1)) {
|
|
|
dec1 x = *buf1++ ^ mask;
|
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|
|
mi_int4store(to, x);
|
|
|
}
|
|
|
|
|
|
/* frac1x part */
|
|
|
if (frac1x) {
|
|
|
dec1 x;
|
|
|
int i = dig2bytes[frac1x], lim = (frac1 < frac0 ? DIG_PER_DEC1 : frac0x);
|
|
|
while (frac1x < lim && dig2bytes[frac1x] == i) frac1x++;
|
|
|
x = div_by_pow10(*buf1, DIG_PER_DEC1 - frac1x) ^ mask;
|
|
|
switch (i) {
|
|
|
case 1:
|
|
|
mi_int1store(to, x);
|
|
|
break;
|
|
|
case 2:
|
|
|
mi_int2store(to, x);
|
|
|
break;
|
|
|
case 3:
|
|
|
mi_int3store(to, x);
|
|
|
break;
|
|
|
case 4:
|
|
|
mi_int4store(to, x);
|
|
|
break;
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
to += i;
|
|
|
}
|
|
|
if (fsize0 > fsize1) {
|
|
|
uchar *to_end = orig_to + orig_fsize0 + orig_isize0;
|
|
|
|
|
|
while (fsize0-- > fsize1 && to < to_end) *to++ = (uchar)mask;
|
|
|
}
|
|
|
orig_to[0] ^= 0x80;
|
|
|
|
|
|
/* Check that we have written the whole decimal and nothing more */
|
|
|
DBUG_ASSERT(to == orig_to + orig_fsize0 + orig_isize0);
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Restores decimal from its binary fixed-length representation
|
|
|
|
|
|
SYNOPSIS
|
|
|
bin2decimal()
|
|
|
from - value to convert
|
|
|
to - result
|
|
|
precision/scale - see decimal_bin_size() below
|
|
|
keep_prec do not trim leading zeros
|
|
|
|
|
|
NOTE
|
|
|
see decimal2bin()
|
|
|
the buffer is assumed to be of the size decimal_bin_size(precision, scale)
|
|
|
If the keep_prec is true, the value will be read and returned as is,
|
|
|
without precision reduction. This is used to read DECIMAL values that
|
|
|
are to be indexed by multi-valued index.
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW
|
|
|
*/
|
|
|
|
|
|
int bin2decimal(const uchar *from, decimal_t *to, int precision, int scale,
|
|
|
bool keep_prec) {
|
|
|
int error = E_DEC_OK, intg = precision - scale, intg0 = intg / DIG_PER_DEC1,
|
|
|
frac0 = scale / DIG_PER_DEC1, intg0x = intg - intg0 * DIG_PER_DEC1,
|
|
|
frac0x = scale - frac0 * DIG_PER_DEC1, intg1 = intg0 + (intg0x > 0),
|
|
|
frac1 = frac0 + (frac0x > 0);
|
|
|
dec1 *buf = to->buf, mask = (*from & 0x80) ? 0 : -1;
|
|
|
const uchar *stop;
|
|
|
uchar *d_copy;
|
|
|
int bin_size = decimal_bin_size_inline(precision, scale);
|
|
|
|
|
|
sanity(to);
|
|
|
d_copy = (uchar *)my_alloca(bin_size);
|
|
|
memcpy(d_copy, from, bin_size);
|
|
|
d_copy[0] ^= 0x80;
|
|
|
from = d_copy;
|
|
|
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac1, error);
|
|
|
if (unlikely(error)) {
|
|
|
if (intg1 < intg0 + (intg0x > 0)) {
|
|
|
from += dig2bytes[intg0x] + sizeof(dec1) * (intg0 - intg1);
|
|
|
frac0 = frac0x = intg0x = 0;
|
|
|
intg0 = intg1;
|
|
|
} else {
|
|
|
frac0x = 0;
|
|
|
frac0 = frac1;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
to->sign = (mask != 0);
|
|
|
to->intg = intg0 * DIG_PER_DEC1 + intg0x;
|
|
|
to->frac = frac0 * DIG_PER_DEC1 + frac0x;
|
|
|
|
|
|
if (intg0x) {
|
|
|
int i = dig2bytes[intg0x];
|
|
|
dec1 x = 0;
|
|
|
switch (i) {
|
|
|
case 1:
|
|
|
x = mi_sint1korr(from);
|
|
|
break;
|
|
|
case 2:
|
|
|
x = mi_sint2korr(from);
|
|
|
break;
|
|
|
case 3:
|
|
|
x = mi_sint3korr(from);
|
|
|
break;
|
|
|
case 4:
|
|
|
x = mi_sint4korr(from);
|
|
|
break;
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
from += i;
|
|
|
*buf = x ^ mask;
|
|
|
if (((ulonglong)*buf) >= (ulonglong)powers10[intg0x + 1]) goto err;
|
|
|
if (buf > to->buf || *buf != 0 || keep_prec)
|
|
|
buf++;
|
|
|
else
|
|
|
to->intg -= intg0x;
|
|
|
}
|
|
|
for (stop = from + intg0 * sizeof(dec1); from < stop; from += sizeof(dec1)) {
|
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|
|
*buf = mi_sint4korr(from) ^ mask;
|
|
|
if (((uint32)*buf) > DIG_MAX) goto err;
|
|
|
if (buf > to->buf || *buf != 0 || keep_prec)
|
|
|
buf++;
|
|
|
else
|
|
|
to->intg -= DIG_PER_DEC1;
|
|
|
}
|
|
|
DBUG_ASSERT(to->intg >= 0);
|
|
|
for (stop = from + frac0 * sizeof(dec1); from < stop; from += sizeof(dec1)) {
|
|
|
DBUG_ASSERT(sizeof(dec1) == 4);
|
|
|
*buf = mi_sint4korr(from) ^ mask;
|
|
|
if (((uint32)*buf) > DIG_MAX) goto err;
|
|
|
buf++;
|
|
|
}
|
|
|
if (frac0x) {
|
|
|
int i = dig2bytes[frac0x];
|
|
|
dec1 x = 0;
|
|
|
switch (i) {
|
|
|
case 1:
|
|
|
x = mi_sint1korr(from);
|
|
|
break;
|
|
|
case 2:
|
|
|
x = mi_sint2korr(from);
|
|
|
break;
|
|
|
case 3:
|
|
|
x = mi_sint3korr(from);
|
|
|
break;
|
|
|
case 4:
|
|
|
x = mi_sint4korr(from);
|
|
|
break;
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
*buf = (x ^ mask) * powers10[DIG_PER_DEC1 - frac0x];
|
|
|
if (((uint32)*buf) > DIG_MAX) goto err;
|
|
|
buf++;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
No digits? We have read the number zero, of unspecified precision.
|
|
|
Make it a proper zero, with non-zero precision.
|
|
|
Note: this is valid only if scale == 0, otherwise frac is always non-zero
|
|
|
*/
|
|
|
if (to->intg == 0 && to->frac == 0) decimal_make_zero(to);
|
|
|
return error;
|
|
|
|
|
|
err:
|
|
|
decimal_make_zero(to);
|
|
|
return (E_DEC_BAD_NUM);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Returns the size of array to hold a decimal with given precision and scale
|
|
|
|
|
|
RETURN VALUE
|
|
|
size in dec1
|
|
|
(multiply by sizeof(dec1) to get the size if bytes)
|
|
|
*/
|
|
|
|
|
|
int decimal_size(int precision, int scale) {
|
|
|
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
|
|
return ROUND_UP(precision - scale) + ROUND_UP(scale);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Returns the size of array to hold a binary representation of a decimal
|
|
|
|
|
|
RETURN VALUE
|
|
|
size in bytes
|
|
|
*/
|
|
|
ALWAYS_INLINE static int decimal_bin_size_inline(int precision, int scale) {
|
|
|
int intg = precision - scale, intg0 = intg / DIG_PER_DEC1,
|
|
|
frac0 = scale / DIG_PER_DEC1, intg0x = intg - intg0 * DIG_PER_DEC1,
|
|
|
frac0x = scale - frac0 * DIG_PER_DEC1;
|
|
|
|
|
|
DBUG_ASSERT(scale >= 0 && precision > 0 && scale <= precision);
|
|
|
DBUG_ASSERT(intg0x >= 0);
|
|
|
DBUG_ASSERT(intg0x <= DIG_PER_DEC1);
|
|
|
DBUG_ASSERT(frac0x >= 0);
|
|
|
DBUG_ASSERT(frac0x <= DIG_PER_DEC1);
|
|
|
return intg0 * sizeof(dec1) + dig2bytes[intg0x] + frac0 * sizeof(dec1) +
|
|
|
dig2bytes[frac0x];
|
|
|
}
|
|
|
|
|
|
int decimal_bin_size(int precision, int scale) {
|
|
|
return decimal_bin_size_inline(precision, scale);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Rounds the decimal to "scale" digits
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_round()
|
|
|
from - decimal to round,
|
|
|
to - result buffer. from==to is allowed
|
|
|
scale - to what position to round. can be negative!
|
|
|
mode - round to nearest even or truncate
|
|
|
|
|
|
NOTES
|
|
|
scale can be negative !
|
|
|
one TRUNCATED error (line XXX below) isn't treated very logical :(
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED
|
|
|
*/
|
|
|
|
|
|
int decimal_round(const decimal_t *from, decimal_t *to, int scale,
|
|
|
decimal_round_mode mode) {
|
|
|
int frac0 = scale > 0 ? ROUND_UP(scale) : (scale + 1) / DIG_PER_DEC1,
|
|
|
frac1 = ROUND_UP(from->frac), round_digit = 0,
|
|
|
intg0 = ROUND_UP(from->intg), error = E_DEC_OK, len = to->len;
|
|
|
|
|
|
dec1 *buf0 = from->buf, *buf1 = to->buf, x, y, carry = 0;
|
|
|
int first_dig;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
switch (mode) {
|
|
|
case HALF_UP:
|
|
|
case HALF_EVEN:
|
|
|
round_digit = 5;
|
|
|
break;
|
|
|
case CEILING:
|
|
|
round_digit = from->sign ? 10 : 0;
|
|
|
break;
|
|
|
case FLOOR:
|
|
|
round_digit = from->sign ? 0 : 10;
|
|
|
break;
|
|
|
case TRUNCATE:
|
|
|
round_digit = 10;
|
|
|
break;
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
For my_decimal we always use len == DECIMAL_BUFF_LENGTH == 9
|
|
|
For internal testing here (ifdef MAIN) we always use len == 100/4
|
|
|
*/
|
|
|
DBUG_ASSERT(from->len == to->len);
|
|
|
|
|
|
if (unlikely(frac0 + intg0 > len)) {
|
|
|
frac0 = len - intg0;
|
|
|
scale = frac0 * DIG_PER_DEC1;
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
}
|
|
|
|
|
|
if (scale + from->intg < 0) {
|
|
|
decimal_make_zero(to);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
|
|
|
if (to != from) {
|
|
|
dec1 *p0 = buf0 + intg0 + MY_MAX(frac1, frac0);
|
|
|
dec1 *p1 = buf1 + intg0 + MY_MAX(frac1, frac0);
|
|
|
|
|
|
DBUG_ASSERT(p0 - buf0 <= len);
|
|
|
DBUG_ASSERT(p1 - buf1 <= len);
|
|
|
|
|
|
while (buf0 < p0) *(--p1) = *(--p0);
|
|
|
|
|
|
buf0 = to->buf;
|
|
|
buf1 = to->buf;
|
|
|
to->sign = from->sign;
|
|
|
to->intg = MY_MIN(intg0, len) * DIG_PER_DEC1;
|
|
|
}
|
|
|
|
|
|
if (frac0 > frac1) {
|
|
|
buf1 += intg0 + frac1;
|
|
|
while (frac0-- > frac1) *buf1++ = 0;
|
|
|
goto done;
|
|
|
}
|
|
|
|
|
|
if (scale >= from->frac) goto done; /* nothing to do */
|
|
|
|
|
|
buf0 += intg0 + frac0 - 1;
|
|
|
buf1 += intg0 + frac0 - 1;
|
|
|
if (scale == frac0 * DIG_PER_DEC1) {
|
|
|
int do_inc = false;
|
|
|
DBUG_ASSERT(frac0 + intg0 >= 0);
|
|
|
switch (round_digit) {
|
|
|
case 0: {
|
|
|
dec1 *p0 = buf0 + (frac1 - frac0);
|
|
|
for (; p0 > buf0; p0--) {
|
|
|
if (*p0) {
|
|
|
do_inc = true;
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
break;
|
|
|
}
|
|
|
case 5: {
|
|
|
x = buf0[1] / DIG_MASK;
|
|
|
do_inc =
|
|
|
(x > 5) ||
|
|
|
((x == 5) && (mode == HALF_UP || (frac0 + intg0 > 0 && *buf0 & 1)));
|
|
|
break;
|
|
|
}
|
|
|
default:
|
|
|
break;
|
|
|
}
|
|
|
if (do_inc) {
|
|
|
if (frac0 + intg0 > 0)
|
|
|
(*buf1)++;
|
|
|
else
|
|
|
*(++buf1) = DIG_BASE;
|
|
|
} else if (frac0 + intg0 == 0) {
|
|
|
decimal_make_zero(to);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
} else {
|
|
|
/* TODO - fix this code as it won't work for CEILING mode */
|
|
|
int pos = frac0 * DIG_PER_DEC1 - scale - 1;
|
|
|
DBUG_ASSERT(frac0 + intg0 > 0);
|
|
|
x = *buf1 / powers10[pos];
|
|
|
y = x % 10;
|
|
|
if (y > round_digit ||
|
|
|
(round_digit == 5 && y == 5 && (mode == HALF_UP || (x / 10) & 1)))
|
|
|
x += 10;
|
|
|
*buf1 = powers10[pos] * (x - y);
|
|
|
}
|
|
|
/*
|
|
|
In case we're rounding e.g. 1.5e9 to 2.0e9, the decimal_digit_t's inside
|
|
|
the buffer are as follows.
|
|
|
|
|
|
Before <1, 5e8>
|
|
|
After <2, 5e8>
|
|
|
|
|
|
Hence we need to set the 2nd field to 0.
|
|
|
The same holds if we round 1.5e-9 to 2e-9.
|
|
|
*/
|
|
|
if (frac0 < frac1) {
|
|
|
dec1 *buf = to->buf + ((scale == 0 && intg0 == 0) ? 1 : intg0 + frac0);
|
|
|
dec1 *end = to->buf + len;
|
|
|
|
|
|
while (buf < end) *buf++ = 0;
|
|
|
}
|
|
|
if (*buf1 >= DIG_BASE) {
|
|
|
carry = 1;
|
|
|
*buf1 -= DIG_BASE;
|
|
|
while (carry && --buf1 >= to->buf) ADD(*buf1, *buf1, 0, carry);
|
|
|
if (unlikely(carry)) {
|
|
|
/* shifting the number to create space for new digit */
|
|
|
if (frac0 + intg0 >= len) {
|
|
|
frac0--;
|
|
|
scale = frac0 * DIG_PER_DEC1;
|
|
|
error = E_DEC_TRUNCATED; /* XXX */
|
|
|
}
|
|
|
for (buf1 = to->buf + intg0 + MY_MAX(frac0, 0); buf1 > to->buf; buf1--) {
|
|
|
/* Avoid out-of-bounds write. */
|
|
|
if (buf1 < to->buf + len)
|
|
|
buf1[0] = buf1[-1];
|
|
|
else
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
}
|
|
|
*buf1 = 1;
|
|
|
/* We cannot have more than 9 * 9 = 81 digits. */
|
|
|
if (to->intg < len * DIG_PER_DEC1)
|
|
|
to->intg++;
|
|
|
else
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
}
|
|
|
} else {
|
|
|
for (;;) {
|
|
|
if (likely(*buf1)) break;
|
|
|
if (buf1-- == to->buf) {
|
|
|
/* making 'zero' with the proper scale */
|
|
|
dec1 *p0 = to->buf + frac0 + 1;
|
|
|
to->intg = 1;
|
|
|
to->frac = MY_MAX(scale, 0);
|
|
|
to->sign = 0;
|
|
|
for (buf1 = to->buf; buf1 < p0; buf1++) *buf1 = 0;
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Here we check 999.9 -> 1000 case when we need to increase intg */
|
|
|
first_dig = to->intg % DIG_PER_DEC1;
|
|
|
if (first_dig && (*buf1 >= powers10[first_dig])) to->intg++;
|
|
|
|
|
|
if (scale < 0) scale = 0;
|
|
|
|
|
|
done:
|
|
|
DBUG_ASSERT(to->intg <= (len * DIG_PER_DEC1));
|
|
|
to->frac = scale;
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
Returns the size of the result of the operation
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_result_size()
|
|
|
from1 - operand of the unary operation or first operand of the
|
|
|
binary operation
|
|
|
from2 - second operand of the binary operation
|
|
|
op - operation. one char '+', '-', '*', '/' are allowed
|
|
|
others may be added later
|
|
|
param - extra param to the operation. unused for '+', '-', '*'
|
|
|
scale increment for '/'
|
|
|
|
|
|
NOTE
|
|
|
returned valued may be larger than the actual buffer requred
|
|
|
in the operation, as decimal_result_size, by design, operates on
|
|
|
precision/scale values only and not on the actual decimal number
|
|
|
|
|
|
RETURN VALUE
|
|
|
size of to->buf array in dec1 elements. to get size in bytes
|
|
|
multiply by sizeof(dec1)
|
|
|
*/
|
|
|
|
|
|
int decimal_result_size(const decimal_t *from1, const decimal_t *from2, char op,
|
|
|
int param) {
|
|
|
switch (op) {
|
|
|
case '-':
|
|
|
return ROUND_UP(MY_MAX(from1->intg, from2->intg)) +
|
|
|
ROUND_UP(MY_MAX(from1->frac, from2->frac));
|
|
|
case '+':
|
|
|
return ROUND_UP(MY_MAX(from1->intg, from2->intg) + 1) +
|
|
|
ROUND_UP(MY_MAX(from1->frac, from2->frac));
|
|
|
case '*':
|
|
|
return ROUND_UP(from1->intg + from2->intg) + ROUND_UP(from1->frac) +
|
|
|
ROUND_UP(from2->frac);
|
|
|
case '/':
|
|
|
return ROUND_UP(from1->intg + from2->intg + 1 + from1->frac +
|
|
|
from2->frac + param);
|
|
|
default:
|
|
|
DBUG_ASSERT(0);
|
|
|
}
|
|
|
return -1; /* shut up the warning */
|
|
|
}
|
|
|
|
|
|
static int do_add(const decimal_t *from1, const decimal_t *from2,
|
|
|
decimal_t *to) {
|
|
|
int intg1 = ROUND_UP(from1->intg), intg2 = ROUND_UP(from2->intg),
|
|
|
frac1 = ROUND_UP(from1->frac), frac2 = ROUND_UP(from2->frac),
|
|
|
frac0 = MY_MAX(frac1, frac2), intg0 = MY_MAX(intg1, intg2), error;
|
|
|
dec1 *buf1, *buf2, *buf0, *stop, *stop2, x, carry;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
/* is there a need for extra word because of carry ? */
|
|
|
x = intg1 > intg2
|
|
|
? from1->buf[0]
|
|
|
: intg2 > intg1 ? from2->buf[0] : from1->buf[0] + from2->buf[0];
|
|
|
if (unlikely(x > DIG_MAX - 1)) /* yes, there is */
|
|
|
{
|
|
|
intg0++;
|
|
|
to->buf[0] = 0; /* safety */
|
|
|
}
|
|
|
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
|
|
if (unlikely(error == E_DEC_OVERFLOW)) {
|
|
|
max_decimal(to->len * DIG_PER_DEC1, 0, to);
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
buf0 = to->buf + intg0 + frac0;
|
|
|
|
|
|
to->sign = from1->sign;
|
|
|
to->frac = MY_MAX(from1->frac, from2->frac);
|
|
|
to->intg = intg0 * DIG_PER_DEC1;
|
|
|
if (unlikely(error)) {
|
|
|
set_if_smaller(to->frac, frac0 * DIG_PER_DEC1);
|
|
|
set_if_smaller(frac1, frac0);
|
|
|
set_if_smaller(frac2, frac0);
|
|
|
set_if_smaller(intg1, intg0);
|
|
|
set_if_smaller(intg2, intg0);
|
|
|
}
|
|
|
|
|
|
/* part 1 - max(frac) ... min (frac) */
|
|
|
if (frac1 > frac2) {
|
|
|
buf1 = from1->buf + intg1 + frac1;
|
|
|
stop = from1->buf + intg1 + frac2;
|
|
|
buf2 = from2->buf + intg2 + frac2;
|
|
|
stop2 = from1->buf + (intg1 > intg2 ? intg1 - intg2 : 0);
|
|
|
} else {
|
|
|
buf1 = from2->buf + intg2 + frac2;
|
|
|
stop = from2->buf + intg2 + frac1;
|
|
|
buf2 = from1->buf + intg1 + frac1;
|
|
|
stop2 = from2->buf + (intg2 > intg1 ? intg2 - intg1 : 0);
|
|
|
}
|
|
|
while (buf1 > stop) *--buf0 = *--buf1;
|
|
|
|
|
|
/* part 2 - min(frac) ... min(intg) */
|
|
|
carry = 0;
|
|
|
while (buf1 > stop2) {
|
|
|
ADD(*--buf0, *--buf1, *--buf2, carry);
|
|
|
}
|
|
|
|
|
|
/* part 3 - min(intg) ... max(intg) */
|
|
|
buf1 = intg1 > intg2 ? ((stop = from1->buf) + intg1 - intg2)
|
|
|
: ((stop = from2->buf) + intg2 - intg1);
|
|
|
while (buf1 > stop) {
|
|
|
ADD(*--buf0, *--buf1, 0, carry);
|
|
|
}
|
|
|
|
|
|
if (unlikely(carry)) *--buf0 = 1;
|
|
|
DBUG_ASSERT(buf0 == to->buf || buf0 == to->buf + 1);
|
|
|
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/* to=from1-from2.
|
|
|
if to==0, return -1/0/+1 - the result of the comparison */
|
|
|
static int do_sub(const decimal_t *from1, const decimal_t *from2,
|
|
|
decimal_t *to) {
|
|
|
int intg1 = ROUND_UP(from1->intg), intg2 = ROUND_UP(from2->intg),
|
|
|
frac1 = ROUND_UP(from1->frac), frac2 = ROUND_UP(from2->frac);
|
|
|
int frac0 = MY_MAX(frac1, frac2), error;
|
|
|
dec1 *buf1, *buf2, *buf0, *stop1, *stop2, *start1, *start2, carry = 0;
|
|
|
|
|
|
/* let carry:=1 if from2 > from1 */
|
|
|
start1 = buf1 = from1->buf;
|
|
|
stop1 = buf1 + intg1;
|
|
|
start2 = buf2 = from2->buf;
|
|
|
stop2 = buf2 + intg2;
|
|
|
if (unlikely(*buf1 == 0)) {
|
|
|
while (buf1 < stop1 && *buf1 == 0) buf1++;
|
|
|
start1 = buf1;
|
|
|
intg1 = (int)(stop1 - buf1);
|
|
|
}
|
|
|
if (unlikely(*buf2 == 0)) {
|
|
|
while (buf2 < stop2 && *buf2 == 0) buf2++;
|
|
|
start2 = buf2;
|
|
|
intg2 = (int)(stop2 - buf2);
|
|
|
}
|
|
|
if (intg2 > intg1)
|
|
|
carry = 1;
|
|
|
else if (intg2 == intg1) {
|
|
|
dec1 *end1 = stop1 + (frac1 - 1);
|
|
|
dec1 *end2 = stop2 + (frac2 - 1);
|
|
|
while (unlikely((buf1 <= end1) && (*end1 == 0))) end1--;
|
|
|
while (unlikely((buf2 <= end2) && (*end2 == 0))) end2--;
|
|
|
frac1 = (int)(end1 - stop1) + 1;
|
|
|
frac2 = (int)(end2 - stop2) + 1;
|
|
|
while (buf1 <= end1 && buf2 <= end2 && *buf1 == *buf2) buf1++, buf2++;
|
|
|
if (buf1 <= end1) {
|
|
|
if (buf2 <= end2)
|
|
|
carry = *buf2 > *buf1;
|
|
|
else
|
|
|
carry = 0;
|
|
|
} else {
|
|
|
if (buf2 <= end2)
|
|
|
carry = 1;
|
|
|
else /* short-circuit everything: from1 == from2 */
|
|
|
{
|
|
|
if (to == 0) /* decimal_cmp() */
|
|
|
return 0;
|
|
|
decimal_make_zero(to);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
if (to == 0) /* decimal_cmp() */
|
|
|
return carry == from1->sign ? 1 : -1;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
to->sign = from1->sign;
|
|
|
|
|
|
/* ensure that always from1 > from2 (and intg1 >= intg2) */
|
|
|
if (carry) {
|
|
|
std::swap(from1, from2);
|
|
|
std::swap(start1, start2);
|
|
|
std::swap(intg1, intg2);
|
|
|
std::swap(frac1, frac2);
|
|
|
to->sign = 1 - to->sign;
|
|
|
}
|
|
|
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg1, frac0, error);
|
|
|
buf0 = to->buf + intg1 + frac0;
|
|
|
|
|
|
to->frac = MY_MAX(from1->frac, from2->frac);
|
|
|
to->intg = intg1 * DIG_PER_DEC1;
|
|
|
if (unlikely(error)) {
|
|
|
set_if_smaller(to->frac, frac0 * DIG_PER_DEC1);
|
|
|
set_if_smaller(frac1, frac0);
|
|
|
set_if_smaller(frac2, frac0);
|
|
|
set_if_smaller(intg2, intg1);
|
|
|
}
|
|
|
carry = 0;
|
|
|
|
|
|
/* part 1 - max(frac) ... min (frac) */
|
|
|
if (frac1 > frac2) {
|
|
|
buf1 = start1 + intg1 + frac1;
|
|
|
stop1 = start1 + intg1 + frac2;
|
|
|
buf2 = start2 + intg2 + frac2;
|
|
|
while (frac0-- > frac1) *--buf0 = 0;
|
|
|
while (buf1 > stop1) *--buf0 = *--buf1;
|
|
|
} else {
|
|
|
buf1 = start1 + intg1 + frac1;
|
|
|
buf2 = start2 + intg2 + frac2;
|
|
|
stop2 = start2 + intg2 + frac1;
|
|
|
while (frac0-- > frac2) *--buf0 = 0;
|
|
|
while (buf2 > stop2) {
|
|
|
SUB(*--buf0, 0, *--buf2, carry);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* part 2 - min(frac) ... intg2 */
|
|
|
while (buf2 > start2) {
|
|
|
SUB(*--buf0, *--buf1, *--buf2, carry);
|
|
|
}
|
|
|
|
|
|
/* part 3 - intg2 ... intg1 */
|
|
|
while (carry && buf1 > start1) {
|
|
|
SUB(*--buf0, *--buf1, 0, carry);
|
|
|
}
|
|
|
|
|
|
while (buf1 > start1) *--buf0 = *--buf1;
|
|
|
|
|
|
while (buf0 > to->buf) *--buf0 = 0;
|
|
|
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
int decimal_intg(const decimal_t *from) {
|
|
|
int res;
|
|
|
remove_leading_zeroes(from, &res);
|
|
|
return res;
|
|
|
}
|
|
|
|
|
|
int decimal_add(const decimal_t *from1, const decimal_t *from2, decimal_t *to) {
|
|
|
if (likely(from1->sign == from2->sign)) return do_add(from1, from2, to);
|
|
|
return do_sub(from1, from2, to);
|
|
|
}
|
|
|
|
|
|
int decimal_sub(const decimal_t *from1, const decimal_t *from2, decimal_t *to) {
|
|
|
if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, to);
|
|
|
return do_add(from1, from2, to);
|
|
|
}
|
|
|
|
|
|
int decimal_cmp(const decimal_t *from1, const decimal_t *from2) {
|
|
|
if (likely(from1->sign == from2->sign)) return do_sub(from1, from2, 0);
|
|
|
|
|
|
// Reject negative zero, cfr. string2decimal()
|
|
|
DBUG_ASSERT(!(decimal_is_zero(from1) && from1->sign));
|
|
|
DBUG_ASSERT(!(decimal_is_zero(from2) && from2->sign));
|
|
|
|
|
|
return from1->sign > from2->sign ? -1 : 1;
|
|
|
}
|
|
|
|
|
|
int decimal_is_zero(const decimal_t *from) {
|
|
|
dec1 *buf1 = from->buf,
|
|
|
*end = buf1 + ROUND_UP(from->intg) + ROUND_UP(from->frac);
|
|
|
while (buf1 < end)
|
|
|
if (*buf1++) return 0;
|
|
|
return 1;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
multiply two decimals
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_mul()
|
|
|
from_1, from_2 - factors
|
|
|
to - product
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW;
|
|
|
|
|
|
NOTES
|
|
|
in this implementation, with sizeof(dec1)=4 we have DIG_PER_DEC1=9,
|
|
|
and 63-digit number will take only 7 dec1 words (basically a 7-digit
|
|
|
"base 999999999" number). Thus there's no need in fast multiplication
|
|
|
algorithms, 7-digit numbers can be multiplied with a naive O(n*n)
|
|
|
method.
|
|
|
|
|
|
XXX if this library is to be used with huge numbers of thousands of
|
|
|
digits, fast multiplication must be implemented.
|
|
|
*/
|
|
|
int decimal_mul(const decimal_t *from_1, const decimal_t *from_2,
|
|
|
decimal_t *to) {
|
|
|
if (decimal_is_zero(from_1) || decimal_is_zero(from_2)) {
|
|
|
decimal_make_zero(to);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
decimal_t f1 = *from_1;
|
|
|
decimal_t f2 = *from_2;
|
|
|
f1.buf = remove_leading_zeroes(&f1, &f1.intg);
|
|
|
f2.buf = remove_leading_zeroes(&f2, &f2.intg);
|
|
|
|
|
|
const decimal_t *from1 = &f1;
|
|
|
const decimal_t *from2 = &f2;
|
|
|
int intg1 = ROUND_UP(from1->intg), intg2 = ROUND_UP(from2->intg),
|
|
|
frac1 = ROUND_UP(from1->frac), frac2 = ROUND_UP(from2->frac),
|
|
|
intg0 = ROUND_UP(from1->intg + from2->intg), frac0 = frac1 + frac2, error,
|
|
|
iii, jjj, d_to_move;
|
|
|
dec1 *buf1 = from1->buf + intg1, *buf2 = from2->buf + intg2, *buf0, *start2,
|
|
|
*stop2, *stop1, *start0, carry;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
iii = intg0; /* save 'ideal' values */
|
|
|
jjj = frac0;
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error); /* bound size */
|
|
|
to->sign = from1->sign != from2->sign;
|
|
|
to->frac = from1->frac + from2->frac; /* store size in digits */
|
|
|
set_if_smaller(to->frac, DECIMAL_NOT_SPECIFIED);
|
|
|
to->intg = intg0 * DIG_PER_DEC1;
|
|
|
|
|
|
if (unlikely(error)) {
|
|
|
set_if_smaller(to->frac, frac0 * DIG_PER_DEC1);
|
|
|
set_if_smaller(to->intg, intg0 * DIG_PER_DEC1);
|
|
|
if (unlikely(iii > intg0)) /* bounded integer-part */
|
|
|
{
|
|
|
iii -= intg0;
|
|
|
jjj = iii >> 1;
|
|
|
intg1 -= jjj;
|
|
|
intg2 -= iii - jjj;
|
|
|
frac1 = frac2 = 0; /* frac0 is already 0 here */
|
|
|
} else /* bounded fract part */
|
|
|
{
|
|
|
jjj -= frac0;
|
|
|
iii = jjj >> 1;
|
|
|
if (frac1 <= frac2) {
|
|
|
frac1 -= iii;
|
|
|
frac2 -= jjj - iii;
|
|
|
} else {
|
|
|
frac2 -= iii;
|
|
|
frac1 -= jjj - iii;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
start0 = to->buf + intg0 + frac0 - 1;
|
|
|
start2 = buf2 + frac2 - 1;
|
|
|
stop1 = buf1 - intg1;
|
|
|
stop2 = buf2 - intg2;
|
|
|
|
|
|
memset(to->buf, 0, (intg0 + frac0) * sizeof(dec1));
|
|
|
|
|
|
for (buf1 += frac1 - 1; buf1 >= stop1; buf1--, start0--) {
|
|
|
carry = 0;
|
|
|
for (buf0 = start0, buf2 = start2; buf2 >= stop2; buf2--, buf0--) {
|
|
|
dec1 hi, lo;
|
|
|
dec2 p = ((dec2)*buf1) * ((dec2)*buf2);
|
|
|
hi = (dec1)(p / DIG_BASE);
|
|
|
lo = (dec1)(p - ((dec2)hi) * DIG_BASE);
|
|
|
ADD2(*buf0, *buf0, lo, carry);
|
|
|
carry += hi;
|
|
|
}
|
|
|
if (carry) {
|
|
|
if (buf0 < to->buf) return E_DEC_OVERFLOW;
|
|
|
ADD2(*buf0, *buf0, 0, carry);
|
|
|
}
|
|
|
for (buf0--; carry; buf0--) {
|
|
|
if (buf0 < to->buf) return E_DEC_OVERFLOW;
|
|
|
ADD(*buf0, *buf0, 0, carry);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/* Now we have to check for -0.000 case */
|
|
|
if (to->sign) {
|
|
|
dec1 *buf = to->buf;
|
|
|
dec1 *end = to->buf + intg0 + frac0;
|
|
|
DBUG_ASSERT(buf != end);
|
|
|
for (;;) {
|
|
|
if (*buf) break;
|
|
|
if (++buf == end) {
|
|
|
/* We got decimal zero */
|
|
|
decimal_make_zero(to);
|
|
|
break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
buf1 = to->buf;
|
|
|
d_to_move = intg0 + ROUND_UP(to->frac);
|
|
|
while (!*buf1 && (to->intg > DIG_PER_DEC1)) {
|
|
|
buf1++;
|
|
|
to->intg -= DIG_PER_DEC1;
|
|
|
d_to_move--;
|
|
|
}
|
|
|
if (to->buf < buf1) {
|
|
|
dec1 *cur_d = to->buf;
|
|
|
for (; d_to_move--; cur_d++, buf1++) *cur_d = *buf1;
|
|
|
}
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
naive division algorithm (Knuth's Algorithm D in 4.3.1) -
|
|
|
it's ok for short numbers
|
|
|
also we're using alloca() to allocate a temporary buffer
|
|
|
|
|
|
XXX if this library is to be used with huge numbers of thousands of
|
|
|
digits, fast division must be implemented and alloca should be
|
|
|
changed to malloc (or at least fallback to malloc if alloca() fails)
|
|
|
but then, decimal_mul() should be rewritten too :(
|
|
|
*/
|
|
|
static int do_div_mod(const decimal_t *from1, const decimal_t *from2,
|
|
|
decimal_t *to, decimal_t *mod, int scale_incr) {
|
|
|
/*
|
|
|
frac* - number of digits in fractional part of the number
|
|
|
prec* - precision of the number
|
|
|
intg* - number of digits in the integer part
|
|
|
buf* - buffer having the actual number
|
|
|
All variables ending with 0 - like frac0, intg0 etc are
|
|
|
for the final result. Similarly frac1, intg1 etc are for
|
|
|
the first number and frac2, intg2 etc are for the second number
|
|
|
*/
|
|
|
int frac1 = ROUND_UP(from1->frac) * DIG_PER_DEC1, prec1 = from1->intg + frac1,
|
|
|
frac2 = ROUND_UP(from2->frac) * DIG_PER_DEC1, prec2 = from2->intg + frac2,
|
|
|
error = 0, i, intg0, frac0, len1, len2,
|
|
|
dintg, /* Holds the estimate of number of integer digits in final result
|
|
|
*/
|
|
|
div_mod = (!mod) /*true if this is division */;
|
|
|
dec1 *buf0, *buf1 = from1->buf, *buf2 = from2->buf, *start1, *stop1, *start2,
|
|
|
*stop2, *stop0, norm2, carry, dcarry, *tmp1;
|
|
|
dec2 norm_factor, x, guess, y;
|
|
|
|
|
|
if (mod) to = mod;
|
|
|
|
|
|
sanity(to);
|
|
|
|
|
|
/*
|
|
|
removing all the leading zeroes in the second number. Leading zeroes are
|
|
|
added later to the result.
|
|
|
*/
|
|
|
i = ((prec2 - 1) % DIG_PER_DEC1) + 1;
|
|
|
while (prec2 > 0 && *buf2 == 0) {
|
|
|
prec2 -= i;
|
|
|
i = DIG_PER_DEC1;
|
|
|
buf2++;
|
|
|
}
|
|
|
if (prec2 <= 0) /* short-circuit everything: from2 == 0 */
|
|
|
return E_DEC_DIV_ZERO;
|
|
|
|
|
|
/*
|
|
|
Remove the remanining zeroes . For ex: for 0.000000000001
|
|
|
the above while loop removes 9 zeroes and the result will have 0.0001
|
|
|
these remaining zeroes are removed here
|
|
|
*/
|
|
|
prec2 -= count_leading_zeroes((prec2 - 1) % DIG_PER_DEC1, *buf2);
|
|
|
DBUG_ASSERT(prec2 > 0);
|
|
|
|
|
|
/*
|
|
|
Do the same for the first number. Remove the leading zeroes.
|
|
|
Check if the number is actually 0. Then remove the remaining zeroes.
|
|
|
*/
|
|
|
|
|
|
i = ((prec1 - 1) % DIG_PER_DEC1) + 1;
|
|
|
while (prec1 > 0 && *buf1 == 0) {
|
|
|
prec1 -= i;
|
|
|
i = DIG_PER_DEC1;
|
|
|
buf1++;
|
|
|
}
|
|
|
if (prec1 <= 0) { /* short-circuit everything: from1 == 0 */
|
|
|
decimal_make_zero(to);
|
|
|
return E_DEC_OK;
|
|
|
}
|
|
|
prec1 -= count_leading_zeroes((prec1 - 1) % DIG_PER_DEC1, *buf1);
|
|
|
DBUG_ASSERT(prec1 > 0);
|
|
|
|
|
|
/* let's fix scale_incr, taking into account frac1,frac2 increase */
|
|
|
if ((scale_incr -= frac1 - from1->frac + frac2 - from2->frac) < 0)
|
|
|
scale_incr = 0;
|
|
|
|
|
|
/* Calculate the integer digits in final result */
|
|
|
dintg = (prec1 - frac1) - (prec2 - frac2) + (*buf1 >= *buf2);
|
|
|
if (dintg < 0) {
|
|
|
dintg /= DIG_PER_DEC1;
|
|
|
intg0 = 0;
|
|
|
} else
|
|
|
intg0 = ROUND_UP(dintg);
|
|
|
if (mod) {
|
|
|
/* we're calculating N1 % N2.
|
|
|
The result will have
|
|
|
frac=max(frac1, frac2), as for subtraction
|
|
|
intg=intg2
|
|
|
*/
|
|
|
to->sign = from1->sign;
|
|
|
to->frac = MY_MAX(from1->frac, from2->frac);
|
|
|
frac0 = 0;
|
|
|
} else {
|
|
|
/*
|
|
|
we're calculating N1/N2. N1 is in the buf1, has prec1 digits
|
|
|
N2 is in the buf2, has prec2 digits. Scales are frac1 and
|
|
|
frac2 accordingly.
|
|
|
Thus, the result will have
|
|
|
frac = ROUND_UP(frac1+frac2+scale_incr)
|
|
|
and
|
|
|
intg = (prec1-frac1) - (prec2-frac2) + 1
|
|
|
prec = intg+frac
|
|
|
*/
|
|
|
frac0 = ROUND_UP(frac1 + frac2 + scale_incr);
|
|
|
FIX_INTG_FRAC_ERROR(to->len, intg0, frac0, error);
|
|
|
to->sign = from1->sign != from2->sign;
|
|
|
to->intg = intg0 * DIG_PER_DEC1;
|
|
|
to->frac = frac0 * DIG_PER_DEC1;
|
|
|
}
|
|
|
buf0 = to->buf;
|
|
|
stop0 = buf0 + intg0 + frac0;
|
|
|
if (likely(div_mod))
|
|
|
while (dintg++ < 0 && buf0 < &to->buf[to->len]) {
|
|
|
*buf0++ = 0;
|
|
|
}
|
|
|
|
|
|
len1 = (i = ROUND_UP(prec1)) + ROUND_UP(2 * frac2 + scale_incr + 1) + 1;
|
|
|
set_if_bigger(len1, 3);
|
|
|
if (!(tmp1 = (dec1 *)my_alloca(len1 * sizeof(dec1)))) return E_DEC_OOM;
|
|
|
memcpy(tmp1, buf1, i * sizeof(dec1));
|
|
|
memset(tmp1 + i, 0, (len1 - i) * sizeof(dec1));
|
|
|
|
|
|
start1 = tmp1;
|
|
|
stop1 = start1 + len1;
|
|
|
start2 = buf2;
|
|
|
stop2 = buf2 + ROUND_UP(prec2) - 1;
|
|
|
|
|
|
/* removing end zeroes */
|
|
|
while (*stop2 == 0 && stop2 >= start2) stop2--;
|
|
|
len2 = (int)(stop2++ - start2);
|
|
|
|
|
|
/*
|
|
|
calculating norm2 (normalized *start2) - we need *start2 to be large
|
|
|
(at least > DIG_BASE/2), but unlike Knuth's Alg. D we don't want to
|
|
|
normalize input numbers (as we don't make a copy of the divisor).
|
|
|
Thus we normalize first dec1 of buf2 only, and we'll normalize *start1
|
|
|
on the fly for the purpose of guesstimation only.
|
|
|
It's also faster, as we're saving on normalization of buf2
|
|
|
*/
|
|
|
norm_factor = DIG_BASE / (*start2 + 1);
|
|
|
norm2 = (dec1)(norm_factor * start2[0]);
|
|
|
if (likely(len2 > 0)) norm2 += (dec1)(norm_factor * start2[1] / DIG_BASE);
|
|
|
|
|
|
if (*start1 < *start2)
|
|
|
dcarry = *start1++;
|
|
|
else
|
|
|
dcarry = 0;
|
|
|
|
|
|
/* main loop */
|
|
|
for (; buf0 < stop0; buf0++) {
|
|
|
/* short-circuit, if possible */
|
|
|
if (unlikely(dcarry == 0 && *start1 < *start2))
|
|
|
guess = 0;
|
|
|
else {
|
|
|
/* D3: make a guess */
|
|
|
x = start1[0] + ((dec2)dcarry) * DIG_BASE;
|
|
|
y = start1[1];
|
|
|
guess = (norm_factor * x + norm_factor * y / DIG_BASE) / norm2;
|
|
|
if (unlikely(guess >= DIG_BASE)) guess = DIG_BASE - 1;
|
|
|
if (likely(len2 > 0)) {
|
|
|
/* hmm, this is a suspicious trick - I removed normalization here */
|
|
|
if (start2[1] * guess > (x - guess * start2[0]) * DIG_BASE + y) guess--;
|
|
|
if (unlikely(start2[1] * guess >
|
|
|
(x - guess * start2[0]) * DIG_BASE + y))
|
|
|
guess--;
|
|
|
DBUG_ASSERT(start2[1] * guess <=
|
|
|
(x - guess * start2[0]) * DIG_BASE + y);
|
|
|
}
|
|
|
|
|
|
/* D4: multiply and subtract */
|
|
|
buf2 = stop2;
|
|
|
buf1 = start1 + len2;
|
|
|
DBUG_ASSERT(buf1 < stop1);
|
|
|
for (carry = 0; buf2 > start2; buf1--) {
|
|
|
dec1 hi, lo;
|
|
|
x = guess * (*--buf2);
|
|
|
hi = (dec1)(x / DIG_BASE);
|
|
|
lo = (dec1)(x - ((dec2)hi) * DIG_BASE);
|
|
|
SUB2(*buf1, *buf1, lo, carry);
|
|
|
carry += hi;
|
|
|
}
|
|
|
carry = dcarry < carry;
|
|
|
|
|
|
/* D5: check the remainder */
|
|
|
if (unlikely(carry)) {
|
|
|
/* D6: correct the guess */
|
|
|
guess--;
|
|
|
buf2 = stop2;
|
|
|
buf1 = start1 + len2;
|
|
|
for (carry = 0; buf2 > start2; buf1--) {
|
|
|
ADD(*buf1, *buf1, *--buf2, carry);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
if (likely(div_mod)) {
|
|
|
DBUG_ASSERT(buf0 < to->buf + to->len);
|
|
|
*buf0 = (dec1)guess;
|
|
|
}
|
|
|
dcarry = *start1;
|
|
|
start1++;
|
|
|
}
|
|
|
if (mod) {
|
|
|
/*
|
|
|
now the result is in tmp1, it has
|
|
|
intg=prec1-frac1 if there were no leading zeroes.
|
|
|
If leading zeroes were present, they have been removed
|
|
|
earlier. We need to now add them back to the result.
|
|
|
frac=max(frac1, frac2)=to->frac
|
|
|
*/
|
|
|
if (dcarry) *--start1 = dcarry;
|
|
|
buf0 = to->buf;
|
|
|
/* Calculate the final result's integer digits */
|
|
|
dintg = (prec1 - frac1) - ((start1 - tmp1) * DIG_PER_DEC1);
|
|
|
if (dintg < 0) {
|
|
|
/* If leading zeroes in the fractional part were earlier stripped */
|
|
|
intg0 = dintg / DIG_PER_DEC1;
|
|
|
} else
|
|
|
intg0 = ROUND_UP(dintg);
|
|
|
frac0 = ROUND_UP(to->frac);
|
|
|
error = E_DEC_OK;
|
|
|
if (unlikely(frac0 == 0 && intg0 == 0)) {
|
|
|
decimal_make_zero(to);
|
|
|
goto done;
|
|
|
}
|
|
|
if (intg0 <= 0) {
|
|
|
/* Add back the leading zeroes that were earlier stripped */
|
|
|
if (unlikely(-intg0 >= to->len)) {
|
|
|
decimal_make_zero(to);
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
goto done;
|
|
|
}
|
|
|
stop1 = start1 + frac0 + intg0;
|
|
|
frac0 += intg0;
|
|
|
to->intg = 0;
|
|
|
while (intg0++ < 0) *buf0++ = 0;
|
|
|
} else {
|
|
|
if (unlikely(intg0 > to->len)) {
|
|
|
frac0 = 0;
|
|
|
intg0 = to->len;
|
|
|
error = E_DEC_OVERFLOW;
|
|
|
goto done;
|
|
|
}
|
|
|
DBUG_ASSERT(intg0 <= ROUND_UP(from2->intg));
|
|
|
stop1 = start1 + frac0 + intg0;
|
|
|
to->intg = MY_MIN(intg0 * DIG_PER_DEC1, from2->intg);
|
|
|
}
|
|
|
if (unlikely(intg0 + frac0 > to->len)) {
|
|
|
stop1 -= frac0 + intg0 - to->len;
|
|
|
frac0 = to->len - intg0;
|
|
|
to->frac = frac0 * DIG_PER_DEC1;
|
|
|
error = E_DEC_TRUNCATED;
|
|
|
}
|
|
|
DBUG_ASSERT(buf0 + (stop1 - start1) <= to->buf + to->len);
|
|
|
while (start1 < stop1) *buf0++ = *start1++;
|
|
|
}
|
|
|
done:
|
|
|
if (decimal_is_zero(to)) {
|
|
|
// Return "0." rather than "0.000000"
|
|
|
decimal_make_zero(to);
|
|
|
} else {
|
|
|
tmp1 = remove_leading_zeroes(to, &to->intg);
|
|
|
if (to->buf != tmp1)
|
|
|
memmove(to->buf, tmp1,
|
|
|
(ROUND_UP(to->intg) + ROUND_UP(to->frac)) * sizeof(dec1));
|
|
|
}
|
|
|
DBUG_ASSERT(to->intg + to->frac > 0);
|
|
|
return error;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
division of two decimals
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_div()
|
|
|
from1 - dividend
|
|
|
from2 - divisor
|
|
|
to - quotient
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
|
|
|
|
|
NOTES
|
|
|
see do_div_mod()
|
|
|
*/
|
|
|
|
|
|
int decimal_div(const decimal_t *from1, const decimal_t *from2, decimal_t *to,
|
|
|
int scale_incr) {
|
|
|
return do_div_mod(from1, from2, to, 0, scale_incr);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
modulus
|
|
|
|
|
|
SYNOPSIS
|
|
|
decimal_mod()
|
|
|
from1 - dividend
|
|
|
from2 - divisor
|
|
|
to - modulus
|
|
|
|
|
|
RETURN VALUE
|
|
|
E_DEC_OK/E_DEC_TRUNCATED/E_DEC_OVERFLOW/E_DEC_DIV_ZERO;
|
|
|
|
|
|
NOTES
|
|
|
see do_div_mod()
|
|
|
|
|
|
DESCRIPTION
|
|
|
the modulus R in R = M mod N
|
|
|
|
|
|
is defined as
|
|
|
|
|
|
0 <= |R| < |M|
|
|
|
sign R == sign M
|
|
|
R = M - k*N, where k is integer
|
|
|
|
|
|
thus, there's no requirement for M or N to be integers
|
|
|
*/
|
|
|
|
|
|
int decimal_mod(const decimal_t *from1, const decimal_t *from2, decimal_t *to) {
|
|
|
return do_div_mod(from1, from2, 0, to, 0);
|
|
|
}
|
|
|
|