用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2773 lines
103 KiB

/* Copyright (c) 2011, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file sql/sql_tmp_table.cc
Temporary tables implementation.
*/
#include "sql/sql_tmp_table.h"
#include <fcntl.h>
#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <new>
#include <vector>
#include "lex_string.h"
#include "m_ctype.h"
#include "m_string.h"
#include "my_alloc.h"
#include "my_bitmap.h"
#include "my_compare.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_macros.h"
#include "my_pointer_arithmetic.h"
#include "my_sys.h"
#include "mysql/plugin.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "sql/current_thd.h"
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/field.h"
#include "sql/filesort.h" // filesort_free_buffers
#include "sql/handler.h"
#include "sql/item_func.h" // Item_func
#include "sql/item_sum.h" // Item_sum
#include "sql/key.h"
#include "sql/mem_root_array.h" // Mem_root_array
#include "sql/mysqld.h" // heap_hton
#include "sql/opt_range.h" // QUICK_SELECT_I
#include "sql/opt_trace.h" // Opt_trace_object
#include "sql/opt_trace_context.h" // Opt_trace_context
#include "sql/psi_memory_key.h"
#include "sql/query_options.h"
#include "sql/sql_base.h" // free_io_cache
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/sql_executor.h" // SJ_TMP_TABLE
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_plugin.h" // plugin_unlock
#include "sql/sql_plugin_ref.h"
#include "sql/sql_select.h"
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/temp_table_param.h"
#include "sql/thr_malloc.h"
#include "sql/window.h"
#include "template_utils.h"
using std::max;
using std::min;
static bool setup_tmp_table_handler(TABLE *table, ulonglong select_options,
bool force_disk_table, bool schema_table);
static bool alloc_record_buffers(TABLE *table);
/****************************************************************************
Create internal temporary table
****************************************************************************/
/**
Create field for temporary table from given field.
@param thd Thread handler
@param org_field field from which new field will be created
@param name New field name
@param table Temporary table
@param item !=NULL if item->result_field should point to new field.
This is relevant for how fill_record() is going to work:
If item != NULL then fill_record() will update
the record in the original table.
If item == NULL then fill_record() will update
the temporary table
@retval
NULL on error
@retval
new_created field
*/
Field *create_tmp_field_from_field(THD *thd, Field *org_field, const char *name,
TABLE *table, Item_field *item) {
Field *new_field;
new_field =
org_field->new_field(thd->mem_root, table, table == org_field->table);
if (new_field) {
new_field->init(table);
new_field->orig_table = org_field->table;
if (item)
item->result_field = new_field;
else
new_field->field_name = name;
new_field->flags |= (org_field->flags & NO_DEFAULT_VALUE_FLAG);
if (org_field->maybe_null() || (item && item->maybe_null))
new_field->flags &= ~NOT_NULL_FLAG; // Because of outer join
if (org_field->type() == FIELD_TYPE_DOUBLE)
((Field_double *)new_field)->not_fixed = true;
/*
This field will belong to an internal temporary table, it cannot be
generated.
*/
new_field->gcol_info = NULL;
new_field->stored_in_db = true;
}
return new_field;
}
/**
Create field for temporary table using type of given item.
@param item Item to create a field for
@param table Temporary table
@param copy_func If set and item is a function, store copy of
item in this array
@param modify_item 1 if item->result_field should point to new
item. This is relevent for how fill_record()
is going to work:
If modify_item is 1 then fill_record() will
update the record in the original table.
If modify_item is 0 then fill_record() will
update the temporary table
@retval
0 on error
@retval
new_created field
*/
static Field *create_tmp_field_from_item(Item *item, TABLE *table,
Func_ptr_array *copy_func,
bool modify_item) {
bool maybe_null = item->maybe_null;
Field *new_field = NULL;
switch (item->result_type()) {
case REAL_RESULT:
new_field = new (*THR_MALLOC)
Field_double(item->max_length, maybe_null, item->item_name.ptr(),
item->decimals, false, true);
break;
case INT_RESULT:
/*
Select an integer type with the minimal fit precision.
MY_INT32_NUM_DECIMAL_DIGITS is sign inclusive, don't consider the sign.
Values with MY_INT32_NUM_DECIMAL_DIGITS digits may or may not fit into
Field_long : make them Field_longlong.
*/
if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
new_field = new (*THR_MALLOC)
Field_longlong(item->max_length, maybe_null, item->item_name.ptr(),
item->unsigned_flag);
else
new_field = new (*THR_MALLOC)
Field_long(item->max_length, maybe_null, item->item_name.ptr(),
item->unsigned_flag);
break;
case STRING_RESULT:
DBUG_ASSERT(item->collation.collation);
/*
DATE/TIME, GEOMETRY and JSON fields have STRING_RESULT result type.
To preserve type they needed to be handled separately.
*/
if (item->is_temporal() || item->data_type() == MYSQL_TYPE_GEOMETRY ||
item->data_type() == MYSQL_TYPE_JSON) {
new_field = item->tmp_table_field_from_field_type(table, 1);
} else {
new_field = item->make_string_field(table);
}
new_field->set_derivation(item->collation.derivation);
break;
case DECIMAL_RESULT:
new_field = Field_new_decimal::create_from_item(item);
break;
case ROW_RESULT:
default:
// This case should never be choosen
DBUG_ASSERT(0);
new_field = 0;
break;
}
if (new_field) new_field->init(table);
/*
If the item is a function, a pointer to the item is stored in
copy_func. We separate fields from functions by checking if the
item is a result field item. The real_item() must be checked to
avoid falsely identifying Item_ref and its subclasses as functions
when they refer to field-like items, such as Item_copy and
subclasses. References to true fields have already been untangled
in the beginning of create_tmp_field().
*/
if (copy_func && item->real_item()->is_result_field())
copy_func->push_back(Func_ptr(item));
if (modify_item) item->set_result_field(new_field);
if (item->type() == Item::NULL_ITEM)
new_field->is_created_from_null_item = true;
return new_field;
}
/**
Create field for information schema table.
@param table Temporary table
@param item Item to create a field for
@retval
0 on error
@retval
new_created field
*/
static Field *create_tmp_field_for_schema(Item *item, TABLE *table) {
if (item->data_type() == MYSQL_TYPE_VARCHAR) {
Field *field;
if (item->max_length > MAX_FIELD_VARCHARLENGTH)
field = new (*THR_MALLOC)
Field_blob(item->max_length, item->maybe_null, item->item_name.ptr(),
item->collation.collation, false);
else {
field = new (*THR_MALLOC) Field_varstring(
item->max_length, item->maybe_null, item->item_name.ptr(), table->s,
item->collation.collation);
table->s->db_create_options |= HA_OPTION_PACK_RECORD;
}
if (field) field->init(table);
return field;
}
return item->tmp_table_field_from_field_type(table, 0);
}
/**
Create field for temporary table.
@param thd Thread handler
@param table Temporary table
@param item Item to create a field for
@param type Type of item (normally item->type)
@param copy_func If set and item is a function, store copy of item
in this array
@param from_field if field will be created using other field as example,
pointer example field will be written here
@param default_field If field has a default value field, store it here
@param group 1 if we are going to do a relative group by on result
@param modify_item 1 if item->result_field should point to new item.
This is relevent for how fill_record() is going to
work:
If modify_item is 1 then fill_record() will update
the record in the original table.
If modify_item is 0 then fill_record() will update
the temporary table
@param table_cant_handle_bit_fields
@param make_copy_field
@param copy_result_field true <=> save item's result_field in the from_field
arg, before changing it. This is used for a window's
OUT table when window uses frame buffer to copy a
function's result field from OUT table to frame buffer
(and back). @note that the goals of 'from_field' when
this argument is true and when it is false, are
different.
@retval NULL On error.
@retval new_created field
*/
Field *create_tmp_field(THD *thd, TABLE *table, Item *item, Item::Type type,
Func_ptr_array *copy_func, Field **from_field,
Field **default_field, bool group, bool modify_item,
bool table_cant_handle_bit_fields, bool make_copy_field,
bool copy_result_field) {
DBUG_TRACE;
Field *result = NULL;
Item::Type orig_type = type;
Item *orig_item = 0;
if (type != Item::FIELD_ITEM &&
item->real_item()->type() == Item::FIELD_ITEM) {
orig_item = item;
item = item->real_item();
type = Item::FIELD_ITEM;
}
bool is_wf =
type == Item::SUM_FUNC_ITEM && item->real_item()->m_is_window_function;
switch (type) {
case Item::FIELD_ITEM:
case Item::DEFAULT_VALUE_ITEM:
case Item::TRIGGER_FIELD_ITEM: {
Item_field *field = (Item_field *)item;
bool orig_modify = modify_item;
if (orig_type == Item::REF_ITEM) modify_item = 0;
/*
If item have to be able to store NULLs but underlaid field can't do it,
create_tmp_field_from_field() can't be used for tmp field creation.
*/
if (field->maybe_null && !field->field->maybe_null()) {
result = create_tmp_field_from_item(item, table, NULL, modify_item);
if (!result) break;
*from_field = field->field;
if (modify_item) field->result_field = result;
} else if (table_cant_handle_bit_fields &&
field->field->type() == MYSQL_TYPE_BIT) {
*from_field = field->field;
result =
create_tmp_field_from_item(item, table, copy_func, modify_item);
if (!result) break;
if (modify_item) field->result_field = result;
} else {
result = create_tmp_field_from_field(
thd, (*from_field = field->field),
orig_item ? orig_item->item_name.ptr() : item->item_name.ptr(),
table, modify_item ? field : NULL);
if (!result) break;
}
if (orig_type == Item::REF_ITEM && orig_modify)
((Item_ref *)orig_item)->set_result_field(result);
/*
Fields that are used as arguments to the DEFAULT() function already have
their data pointers set to the default value during name resulotion. See
Item_default_value::fix_fields.
*/
if (orig_type != Item::DEFAULT_VALUE_ITEM && field->field->eq_def(result))
*default_field = field->field;
break;
}
/* Fall through */
case Item::FUNC_ITEM:
if (((Item_func *)item)->functype() == Item_func::FUNC_SP) {
Item_func_sp *item_func_sp = (Item_func_sp *)item;
Field *sp_result_field = item_func_sp->get_sp_result_field();
if (make_copy_field) {
DBUG_ASSERT(item_func_sp->result_field);
*from_field = item_func_sp->result_field;
} else {
copy_func->push_back(Func_ptr(item));
}
result = create_tmp_field_from_field(
thd, sp_result_field, item_func_sp->item_name.ptr(), table, NULL);
if (!result) break;
if (modify_item) item->set_result_field(result);
break;
}
/* Fall through */
case Item::COND_ITEM:
case Item::FIELD_AVG_ITEM:
case Item::FIELD_BIT_ITEM:
case Item::FIELD_STD_ITEM:
case Item::FIELD_VARIANCE_ITEM:
case Item::SUBSELECT_ITEM:
/* The following can only happen with 'CREATE TABLE ... SELECT' */
case Item::PROC_ITEM:
case Item::INT_ITEM:
case Item::REAL_ITEM:
case Item::DECIMAL_ITEM:
case Item::STRING_ITEM:
case Item::REF_ITEM:
case Item::NULL_ITEM:
case Item::VARBIN_ITEM:
case Item::PARAM_ITEM:
case Item::SUM_FUNC_ITEM:
if (type == Item::SUM_FUNC_ITEM && !is_wf) {
Item_sum *item_sum = (Item_sum *)item;
result = item_sum->create_tmp_field(group, table);
if (!result) my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR));
} else {
/*
(2) we're windowing. The Item doesn't contain any not-yet-calculated
window function (per logic in our caller create_tmp_table()). So it
is an ordinary function or can be considered as such. We're creating
the OUT table using IN table as source, and we have previously
created a frame buffer (FB) using IN table as source. That previous
creation has set IN's item's result_field to be the FB field. Here
we save that FB field in from_field. Right after that,
create_tmp_field_from_item() sets IN's item's result_field to the
OUT field (which OUT field is the 'result' variable). We mark the
OUT field with FIELD_IS_MARKED. Later we detect the mark, and create
a Copy_field to from_field (FB) from the marked field (OUT). The end
situation is: IN's item's result_field is in OUT, enabling the
initial function evaluation and saving of its result in OUT; the
Copy_field from OUT to FB and back will allow buffering/restoration
of that result.
*/
if (make_copy_field || (copy_result_field && !is_wf)) // (2)
{
*from_field = item->get_tmp_table_field();
DBUG_ASSERT(*from_field);
}
result = create_tmp_field_from_item(
item, table, (make_copy_field ? NULL : copy_func), modify_item);
result->flags |= copy_result_field ? FIELD_IS_MARKED : 0;
}
break;
case Item::TYPE_HOLDER:
result = ((Item_type_holder *)item)
->make_field_by_type(table, thd->is_strict_mode());
if (!result) break;
result->set_derivation(item->collation.derivation);
break;
default: // Dosen't have to be stored
DBUG_ASSERT(false);
break;
}
return result;
}
/*
Set up column usage bitmaps for a temporary table
IMPLEMENTATION
For temporary tables, we need one bitmap with all columns set and
a tmp_set bitmap to be used by things like filesort.
*/
static void setup_tmp_table_column_bitmaps(TABLE *table, uchar *bitmaps) {
uint field_count = table->s->fields;
bitmap_init(&table->def_read_set, (my_bitmap_map *)bitmaps, field_count,
false);
bitmap_init(&table->tmp_set,
(my_bitmap_map *)(bitmaps + bitmap_buffer_size(field_count)),
field_count, false);
bitmap_init(&table->cond_set,
(my_bitmap_map *)(bitmaps + bitmap_buffer_size(field_count) * 2),
field_count, false);
/* write_set and all_set are copies of read_set */
table->def_write_set = table->def_read_set;
table->s->all_set = table->def_read_set;
bitmap_set_all(&table->s->all_set);
table->default_column_bitmaps();
table->s->column_bitmap_size = bitmap_buffer_size(field_count);
}
/**
Cache for the storage engine properties for the alternative temporary table
storage engines. This cache is initialized during startup of the server by
asking the storage engines for the values properties.
*/
class Cache_temp_engine_properties {
public:
static uint HEAP_MAX_KEY_LENGTH;
static uint TEMPTABLE_MAX_KEY_LENGTH;
static uint INNODB_MAX_KEY_LENGTH;
static uint HEAP_MAX_KEY_PART_LENGTH;
static uint TEMPTABLE_MAX_KEY_PART_LENGTH;
static uint INNODB_MAX_KEY_PART_LENGTH;
static uint HEAP_MAX_KEY_PARTS;
static uint TEMPTABLE_MAX_KEY_PARTS;
static uint INNODB_MAX_KEY_PARTS;
static void init(THD *thd);
};
void Cache_temp_engine_properties::init(THD *thd) {
handler *handler;
plugin_ref db_plugin;
// Cache HEAP engine's
db_plugin = ha_lock_engine(0, heap_hton);
handler = get_new_handler((TABLE_SHARE *)0, false, thd->mem_root, heap_hton);
HEAP_MAX_KEY_LENGTH = handler->max_key_length();
HEAP_MAX_KEY_PART_LENGTH = handler->max_key_part_length(nullptr);
HEAP_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(0, db_plugin);
// Cache TempTable engine's
db_plugin = ha_lock_engine(0, temptable_hton);
handler =
get_new_handler((TABLE_SHARE *)0, false, thd->mem_root, temptable_hton);
TEMPTABLE_MAX_KEY_LENGTH = handler->max_key_length();
TEMPTABLE_MAX_KEY_PART_LENGTH = handler->max_key_part_length(nullptr);
TEMPTABLE_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(0, db_plugin);
// Cache INNODB engine's
db_plugin = ha_lock_engine(0, innodb_hton);
handler =
get_new_handler((TABLE_SHARE *)0, false, thd->mem_root, innodb_hton);
INNODB_MAX_KEY_LENGTH = handler->max_key_length();
/*
For ha_innobase::max_supported_key_part_length(), the returned value
is constant. However, in innodb itself, the limitation
on key_part length is up to the ROW_FORMAT. In current trunk, internal
temp table's ROW_FORMAT is DYNAMIC. In order to keep the consistence
between server and innodb, here we hard-coded 3072 as the maximum of
key_part length supported by innodb until bug#20629014 is fixed.
TODO: Remove the hard-code here after bug#20629014 is fixed.
*/
INNODB_MAX_KEY_PART_LENGTH = 3072;
INNODB_MAX_KEY_PARTS = handler->max_key_parts();
destroy(handler);
plugin_unlock(0, db_plugin);
}
uint Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_LENGTH = 0;
uint Cache_temp_engine_properties::HEAP_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_PART_LENGTH = 0;
uint Cache_temp_engine_properties::HEAP_MAX_KEY_PARTS = 0;
uint Cache_temp_engine_properties::TEMPTABLE_MAX_KEY_PARTS = 0;
uint Cache_temp_engine_properties::INNODB_MAX_KEY_PARTS = 0;
/**
Initialize the storage engine properties for the alternative temporary table
storage engines.
*/
void init_cache_tmp_engine_properties() {
DBUG_ASSERT(!current_thd);
THD *thd = new THD();
thd->thread_stack = pointer_cast<char *>(&thd);
thd->store_globals();
Cache_temp_engine_properties::init(thd);
delete thd;
}
/**
Get the minimum of max_key_length/part_length/parts.
The minimum is between HEAP engine and internal_tmp_disk_storage_engine.
@param[out] max_key_length Minimum of max_key_length
@param[out] max_key_part_length Minimum of max_key_part_length
@param[out] max_key_parts Minimum of max_key_parts
*/
void get_max_key_and_part_length(uint *max_key_length,
uint *max_key_part_length,
uint *max_key_parts) {
// Make sure these cached properties are initialized.
DBUG_ASSERT(Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH);
*max_key_length =
std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_LENGTH,
Cache_temp_engine_properties::INNODB_MAX_KEY_LENGTH);
*max_key_part_length =
std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_PART_LENGTH,
Cache_temp_engine_properties::INNODB_MAX_KEY_PART_LENGTH);
*max_key_parts = std::min(Cache_temp_engine_properties::HEAP_MAX_KEY_PARTS,
Cache_temp_engine_properties::INNODB_MAX_KEY_PARTS);
}
/**
Create a temporary name for one field if the field_name is empty.
@param thd Thread handle
@param field_index Index of this field in table->field
*/
static const char *create_tmp_table_field_tmp_name(THD *thd, int field_index) {
char buf[64];
snprintf(buf, 64, "tmp_field_%d", field_index);
return thd->mem_strdup(buf);
}
/**
Helper function for create_tmp_table().
Insert a field at the head of the hidden field area.
@param table Temporary table
@param default_field Default value array pointer
@param from_field Original field array pointer
@param blob_field Array pointer to record fields index of blob type
@param field The registed hidden field
*/
static void register_hidden_field(TABLE *table, Field **default_field,
Field **from_field, uint *blob_field,
Field *field) {
uint i;
Field **tmp_field = table->field;
/* Increase all of registed fields index */
for (i = 0; i < table->s->fields; i++) tmp_field[i]->field_index++;
// Increase the field_index of visible blob field
for (i = 0; i < table->s->blob_fields; i++) blob_field[i]++;
// Insert field
table->field[-1] = field;
default_field[-1] = NULL;
from_field[-1] = NULL;
field->table = field->orig_table = table;
field->field_index = 0;
// Keep the field from being expanded by SELECT *.
field->set_hidden(dd::Column::enum_hidden_type::HT_HIDDEN_SQL);
}
/**
Helper function which evaluates correct TABLE_SHARE::real_row_type
for the temporary table.
*/
static void set_real_row_type(TABLE *table) {
HA_CREATE_INFO create_info;
create_info.row_type = table->s->row_type;
create_info.options |=
HA_LEX_CREATE_TMP_TABLE | HA_LEX_CREATE_INTERNAL_TMP_TABLE;
create_info.table_options = table->s->db_create_options;
table->s->real_row_type = table->file->get_real_row_type(&create_info);
}
/**
Moves to the end of the 'copy_func' array the elements which contain a
reference to an expression of the SELECT list of 'select'.
@param[in,out] copy_func array to sort
@param select query block to search in.
*/
static void sort_copy_func(const SELECT_LEX *select,
Func_ptr_array *copy_func) {
/*
In the select->all_fields list, there are hidden elements first, then
non-hidden. Non-hidden are those of the SELECT list. Hidden ones are:
(a) those of GROUP BY, HAVING, ORDER BY
(b) those which have been extracted from higher-level elements (of the
SELECT, GROUP BY, etc) by split_sum_func() (when aggregates are
involved).
Note that the clauses in (a) are allowed to reference a non-hidden
expression through an alias (e.g. "SELECT a+2 AS x GROUP BY x+3"). The
clauses in (b) can reference non-hidden expressions without aliases if they
have been generated in a query transformation (for example when transforming
an IN subquery to a correlated EXISTS subquery ("(x, y) IN (SELECT expr1,
expr2 ...)" -> "EXISTS (SELECT * ... HAVING x = expr1 AND y = expr2 ...").
Let's go through the process of writing to the tmp table
(e.g. end_write(), end_write_group()). We also include here the
"pseudo-tmp table" embedded into REF_SLICE_ORDERED_GROUP_BY, used by
end_send_group().
(1) we switch to the REF_SLICE used to read from that tmp table
(2.1) we (copy_fields() part 1) copy some columns from the
output of the previous step of execution (e.g. the join's output) to the
tmp table
(2.2) (specifically for REF_SLICE_ORDERED_GROUP_BY in end_send_group()) we
(copy_fields() part 2) evaluate some expressions from the same previous
step of execution, with Item_copy::copy(). The mechanism of Item_copy is:
* copy() evaluates the expression and caches its value in memory
* val_*() returns the cached value;
so Item_copy::copy() for "a+2" evaluates "a+2" (using the join's value
of "a") and caches the value; then Item_copy::copy() for "x+3" evaluates
"x", through Item_ref (because of the alias), that Item_ref points to
the Item_copy for "a+2" (does not point to the "a+2" Item_func_plus
expression, as we advanced the REF_SLICE to TMP3); copy() on
"x+3" thus evaluates the Item_copy for "a+2" which returns the cached value.
This way, if "a+2" were rather some non-deterministic expression
(e.g. rand()), the logic above does only one evaluation of rand(), which is
correct (the two objects "x" and "a+2" in 'fields' thus have equal
values).
For this to work, the Item_copy for "x" must be copy()d after that
of "a+2", so it can use the value cached for "a+2". setup_copy_fields()
ensures this by putting Item_copy-s of hidden elements last.
(3) We are now done with copy_fields(). Next is copy_funcs(). It
is meant to evaluate expressions and store their values into the tmp table.
[ note that we could replace Item_copy in (2) with a real one-row tmp
table; then end_send_group() could just use copy_funcs() instead of
Item_copy: copy_funcs() would store into the tmp table's column which
would thus be the storage for the cached value ].
Because we advanced the REF_SLICE, when copy_funcs() evaluates an
expression which uses Item_ref, that Item_ref may point to a column of
the tmp table. It is thus important that this column has been filled
already. So the order of evaluation of expressions by copy_funcs() must
respect "dependencies".
It is incorrect to evaluate elements of (a) first if they refer to
non-hidden elements through aliases. It is incorrect to evaluate elements of
(b) first if they refer to non-hidden elements. So, we partition the
elements below, moving to the end the ones which reference other expressions
in the same query block. We use a stable partitioning
(std::stable_partition), to avoid disturbing any dependency already
reflected in the order.
A simpler and more robust solution would be to break the design that
hidden elements are always first in SELECT_LEX::all_fields: references
using aliases (in GROUP BY, HAVING, ORDER BY) would be added to
all_fields last (after the SELECT list); an inner element (split by
split_sum_func) would be added right before its containing element. That
would reflect dependencies naturally. But it is hard to implement, as
some code relies on the fact that non-hidden elements are last, and
other code relies on the fact that SELECT::fields is just a part of
SELECT::all_fields (i.e. they share 'next' pointers, in the
implementation).
You may wonder why setup_copy_fields() can solve the dependency problem
by putting all hidden elements last, while for the copy_func array we
have a (more complex) sort. It's because setup_copy_fields() is for
end_send_group() which handles only queries with GROUP BY without ORDER
BY, window functions or DISTINCT. So the hidden elements produced by
split_sum_func are only group aggregates (not anything from WFs), which
setup_copy_fields() ignores: these aggregates are thus not cached
(neither in Item_copy, nor in a further tmp table's row as there's no tmp
table); so any parent item which references them,
if evaluated, will reach to the aggregate, not to any cache
materializing the aggregate, so will get an up-to-date value.
Whereas with window functions, it's possible to have a hidden element be an
aggregate (produced by split_sum_func) _and_ be materialized (into a
further tmp table), so we cannot ignore such Item anymore: we have to
leave it at the beginning of the copy_func array. Except if it contains
an alias to an expression of the SELECT list: in that case, the sorting
will move it to the end, but will also move the aliased expression, and
their relative order will remain unchanged thanks to stable_partition, so
their evaluation will be in the right order.
So we walk each item to copy, put the ones that don't reference other
expressions in the query block first, and put those that reference other
expressions last.
*/
const auto without_reference_to_select_expr = [select](const Func_ptr &ptr) {
// We cast 'const' away, but the walker will not modify '*select'.
uchar *walk_arg = const_cast<uchar *>(pointer_cast<const uchar *>(select));
return !ptr.func()->walk(&Item::references_select_expr_of,
// the reference might be in a subquery
enum_walk::SUBQUERY_PREFIX, walk_arg);
};
std::stable_partition(copy_func->begin(), copy_func->end(),
without_reference_to_select_expr);
}
/**
Helper function for create_tmp_table_* family for setting tmp table fields
to their place in record buffer
@param field field to set
@param pos field's position in table's record buffer
@param null_flags beginning of table's null bits buffer
@param null_count field's null bit in null bits buffer
*/
inline void relocate_field(Field *field, uchar *pos, uchar *null_flags,
uint *null_count) {
if (!(field->flags & NOT_NULL_FLAG)) {
field->move_field(pos, null_flags + *null_count / 8,
(uint8)1 << (*null_count & 7));
(*null_count)++;
} else
field->move_field(pos, (uchar *)0, 0);
if (field->type() == MYSQL_TYPE_BIT) {
/* We have to reserve place for extra bits among null bits */
((Field_bit *)field)
->set_bit_ptr(null_flags + *null_count / 8, *null_count & 7);
(*null_count) += (field->field_length & 7);
}
field->reset();
}
/**
Create a temp table according to a field list.
Given field pointers are changed to point at tmp_table for
send_result_set_metadata. The table object is self contained: it's
allocated in its own memory root, as well as Field objects
created for table columns. Those Field objects are common to TABLE and
TABLE_SHARE.
This function will replace Item_sum items in 'fields' list with
corresponding Item_field items, pointing at the fields in the
temporary table, unless this was prohibited by true
value of argument save_sum_fields. The Item_field objects
are created in THD memory root.
@param thd thread handle
@param param a description used as input to create the table
@param fields list of items that will be used to define
column types of the table (also see NOTES)
@param group Group key to use for temporary table, NULL if
none
@param distinct should table rows be distinct
@param save_sum_fields see NOTES
@param select_options
@param rows_limit
@param table_alias possible name of the temporary table that can
be used for name resolving; can be "".
@remark mysql_create_view() checks that views have less than
MAX_FIELDS columns.
@remark We may actually end up with a table without any columns at all.
See comment below: We don't have to store this.
*/
#define STRING_TOTAL_LENGTH_TO_PACK_ROWS 128
#define AVG_STRING_LENGTH_TO_PACK_ROWS 64
#define RATIO_TO_PACK_ROWS 2
#define MIN_STRING_LENGTH_TO_PACK_ROWS 10
TABLE *create_tmp_table(THD *thd, Temp_table_param *param, List<Item> &fields,
ORDER *group, bool distinct, bool save_sum_fields,
ulonglong select_options, ha_rows rows_limit,
const char *table_alias) {
MEM_ROOT *mem_root_save, own_root;
TABLE *table;
TABLE_SHARE *share;
uint i, field_count, null_count, null_pack_length;
uint copy_func_count = param->func_count;
uint hidden_null_count, hidden_null_pack_length;
long hidden_field_count;
uint blob_count, group_null_items, string_count;
uint fieldnr = 0;
ulong reclength, string_total_length, distinct_key_length = 0;
/**
When true, enforces unique constraint (by adding a hidden hash_field and
creating a key over this field) when:
(1) unique key is too long, or
(2) number of key parts in distinct key is too big, or
(3) the caller has requested it.
*/
bool unique_constraint_via_hash_field = false;
bool use_packed_rows = false;
const bool not_all_columns = !(select_options & TMP_TABLE_ALL_COLUMNS);
uchar *pos, *group_buff, *bitmaps;
uchar *null_flags;
Field **reg_field, **from_field, **default_field;
uint *blob_field;
KEY *keyinfo;
KEY_PART_INFO *key_part_info;
/*
total_uneven_bit_length is uneven bit length for visible fields
hidden_uneven_bit_length is uneven bit length for hidden fields
*/
uint total_uneven_bit_length = 0, hidden_uneven_bit_length = 0;
bool force_copy_fields = param->force_copy_fields;
uint max_key_length, max_key_part_length, max_key_parts;
/* Treat sum functions as normal ones when loose index scan is used. */
save_sum_fields |= param->precomputed_group_by;
DBUG_TRACE;
DBUG_PRINT("enter",
("distinct: %d save_sum_fields: %d rows_limit: %lu group: %d",
(int)distinct, (int)save_sum_fields, (ulong)rows_limit,
static_cast<bool>(group)));
if (group) {
if (!param->allow_group_via_temp_table)
group = 0; // Can't use group key
else
for (ORDER *tmp = group; tmp; tmp = tmp->next) {
/*
marker == MARKER_BIT means two things:
- store NULLs in the key, and
- convert BIT fields to 64-bit long, needed because MEMORY tables
can't index BIT fields.
*/
(*tmp->item)->marker = Item::MARKER_BIT;
const uint char_len = (*tmp->item)->max_length /
(*tmp->item)->collation.collation->mbmaxlen;
if (char_len > CONVERT_IF_BIGGER_TO_BLOB)
unique_constraint_via_hash_field = true;
}
if (group) {
if (param->group_length >= MAX_BLOB_WIDTH)
unique_constraint_via_hash_field = true;
distinct = 0; // Can't use distinct
}
}
field_count = param->field_count + param->func_count + param->sum_func_count;
hidden_field_count = param->hidden_field_count;
/*
When loose index scan is employed as access method, it already
computes all groups and the result of all aggregate functions. We
make space for the items of the aggregate function in the list of
functions Temp_table_param::items_to_copy, so that the values of
these items are stored in the temporary table.
*/
if (param->precomputed_group_by) copy_func_count += param->sum_func_count;
init_sql_alloc(key_memory_TABLE, &own_root, TABLE_ALLOC_BLOCK_SIZE, 0);
void *rawmem = own_root.Alloc(sizeof(Func_ptr_array));
if (!rawmem) return NULL; /* purecov: inspected */
Func_ptr_array *copy_func = new (rawmem) Func_ptr_array(&own_root);
copy_func->reserve(copy_func_count);
if (!multi_alloc_root(
&own_root, &table, sizeof(*table), &share, sizeof(*share), &reg_field,
sizeof(Field *) * (field_count + 2), &default_field,
sizeof(Field *) * (field_count + 1), &blob_field,
sizeof(uint) * (field_count + 2), &from_field,
sizeof(Field *) * (field_count + 1), &param->keyinfo,
sizeof(*param->keyinfo), &key_part_info,
sizeof(*key_part_info) * (param->group_parts + 1), &group_buff,
(group && !unique_constraint_via_hash_field ? param->group_length
: 0),
&bitmaps, bitmap_buffer_size(field_count + 1) * 3, NullS)) {
return NULL; /* purecov: inspected */
}
try {
param->copy_fields.reserve(field_count);
} catch (std::bad_alloc &) {
return nullptr;
}
param->items_to_copy = copy_func;
/* make table according to fields */
new (table) TABLE;
memset(reg_field, 0, sizeof(Field *) * (field_count + 2));
memset(default_field, 0, sizeof(Field *) * (field_count + 1));
memset(from_field, 0, sizeof(Field *) * (field_count + 1));
// Leave the first place to be prepared for hash_field
reg_field++;
default_field++;
from_field++;
table->init_tmp_table(thd, share, &own_root, param->table_charset,
table_alias, reg_field, blob_field, false);
/*
We will use TABLE_SHARE's MEM_ROOT for all allocations, so TABLE's
MEM_ROOT remains uninitialized.
TABLE_SHARE's MEM_ROOT is a copy of own_root, upon error free_tmp_table()
will free it.
*/
mem_root_save = thd->mem_root;
thd->mem_root = &share->mem_root;
copy_func->set_mem_root(&share->mem_root);
if (param->schema_table) share->db = INFORMATION_SCHEMA_NAME;
/* Calculate which type of fields we will store in the temporary table */
reclength = string_total_length = 0;
blob_count = string_count = null_count = hidden_null_count =
group_null_items = 0;
param->using_outer_summary_function = 0;
List_iterator_fast<Item> li(fields);
Item *item;
Field **tmp_from_field = from_field;
while ((item = li++)) {
Field *new_field = NULL;
Item::Type type = item->type();
const bool is_sum_func =
type == Item::SUM_FUNC_ITEM && !item->m_is_window_function;
if (type == Item::COPY_STR_ITEM) {
item = ((Item_copy *)item)->get_item();
type = item->type();
}
if (not_all_columns) {
if (item->has_aggregation() && type != Item::SUM_FUNC_ITEM) {
if (item->used_tables() & OUTER_REF_TABLE_BIT)
item->update_used_tables();
if (type == Item::SUBSELECT_ITEM ||
(item->used_tables() & ~OUTER_REF_TABLE_BIT)) {
/*
Mark that we have ignored an item that refers to a summary
function. We need to know this if someone is going to use
DISTINCT on the result.
*/
param->using_outer_summary_function = 1;
goto update_hidden;
}
}
if (item->m_is_window_function) {
if (!param->m_window || param->m_window_frame_buffer) {
/*
A pre-windowing table; no point in storing WF.
Or a window's frame buffer:
- the window's WFs cannot be calculated yet
- same for later windows' WFs
- previous windows' WFs are already replaced with Item_field (so
don't come here).
*/
goto update_hidden;
}
if (param->m_window != down_cast<Item_sum *>(item)->window()) {
// A later window's WF: no point in storing it in this table.
goto update_hidden;
}
} else if (item->has_wf()) {
/*
A non-WF expression containing a WF conservatively requires all
windows to have been processed, and is not stored in any of
windowing tables until the last one.
*/
if (param->m_window == nullptr || !param->m_window->is_last())
goto update_hidden;
}
if (item->const_item() && (int)hidden_field_count <= 0)
continue; // We don't have to store this
}
if (is_sum_func && !group && !save_sum_fields) { /* Can't calc group yet */
Item_sum *sum_item = down_cast<Item_sum *>(item);
uint arg_count = sum_item->get_arg_count();
for (i = 0; i < arg_count; i++) {
Item *arg = sum_item->get_arg(i);
if (is_sum_func && !arg->const_item()) {
new_field =
create_tmp_field(thd, table, arg, arg->type(), copy_func,
tmp_from_field, &default_field[fieldnr],
group != 0, not_all_columns, distinct, false);
if (!new_field) goto err; // Should be OOM
tmp_from_field++;
reclength += new_field->pack_length();
if (new_field->flags & BLOB_FLAG) {
*blob_field++ = fieldnr;
blob_count++;
}
if (new_field->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += new_field->field_length & 7;
*(reg_field++) = new_field;
if (new_field->real_type() == MYSQL_TYPE_STRING ||
new_field->real_type() == MYSQL_TYPE_VARCHAR) {
string_count++;
string_total_length += new_field->pack_length();
}
thd->mem_root = mem_root_save;
arg = sum_item->set_arg(i, thd, new Item_field(new_field));
thd->mem_root = &share->mem_root;
if (!(new_field->flags & NOT_NULL_FLAG)) {
null_count++;
/*
new_field->maybe_null() is still false, it will be
changed below. But we have to setup Item_field correctly
*/
arg->maybe_null = 1;
}
new_field->field_index = fieldnr++;
/* InnoDB temp table doesn't allow field with empty_name */
if (!new_field->field_name)
new_field->field_name =
create_tmp_table_field_tmp_name(thd, new_field->field_index);
}
}
} else {
/*
Parameters of create_tmp_field():
(1) is a bit tricky:
We need to set it to 0 in union, to get fill_record() to modify the
temporary table.
We need to set it to 1 on multi-table-update and in select to
write rows to the temporary table.
We here distinguish between UNION and multi-table-updates by the fact
that in the later case group is set to the row pointer.
(2) If item->marker == MARKER_BIT then we force create_tmp_field
to create a 64-bit longs for BIT fields because HEAP
tables can't index BIT fields directly. We do the same
for distinct, as we want the distinct index to be
usable in this case too.
(3) This is the OUT table of windowing, there is a frame buffer, and
the item is an expression which can store its value in a result_field
(e.g. it is Item_func). In that case we pass copy_result_field=true.
*/
new_field =
(param->schema_table)
? create_tmp_field_for_schema(item, table)
: create_tmp_field(
thd, table, item, type, copy_func, tmp_from_field,
&default_field[fieldnr],
group != 0, // (1)
!force_copy_fields && (not_all_columns || group != 0),
item->marker == Item::MARKER_BIT ||
param->bit_fields_as_long, //(2)
force_copy_fields,
(param->m_window && // (3)
param->m_window->frame_buffer_param() &&
item->is_result_field()));
if (!new_field) {
DBUG_ASSERT(thd->is_fatal_error());
goto err; // Got OOM
}
/*
Some group aggregate function use result_field to maintain their
current value (e.g. Item_avg_field stores both count and sum there).
But only for the group-by table. So do not set result_field if this is
a tmp table for UNION or derived table materialization.
*/
if (not_all_columns && type == Item::SUM_FUNC_ITEM)
((Item_sum *)item)->result_field = new_field;
tmp_from_field++;
reclength += new_field->pack_length();
if (!(new_field->flags & NOT_NULL_FLAG)) null_count++;
if (new_field->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += new_field->field_length & 7;
if (new_field->flags & BLOB_FLAG) {
*blob_field++ = fieldnr;
blob_count++;
}
if (new_field->real_type() == MYSQL_TYPE_STRING ||
new_field->real_type() == MYSQL_TYPE_VARCHAR) {
string_count++;
string_total_length += new_field->pack_length();
}
// In order to reduce footprint ask SE to pack variable-length fields.
if (new_field->type() == MYSQL_TYPE_VAR_STRING ||
new_field->type() == MYSQL_TYPE_VARCHAR)
table->s->db_create_options |= HA_OPTION_PACK_RECORD;
if (item->marker == Item::MARKER_BIT && item->maybe_null) {
group_null_items++;
new_field->flags |= GROUP_FLAG;
}
new_field->field_index = fieldnr++;
*(reg_field++) = new_field;
/* InnoDB temp table doesn't allow field with empty_name */
if (!new_field->field_name)
new_field->field_name =
create_tmp_table_field_tmp_name(thd, new_field->field_index);
}
update_hidden:
/*
Calculate length of distinct key. The goal is to decide what to use -
key or unique constraint. As blobs force unique constraint on their
own due to their length, they aren't taken into account.
*/
if (distinct && !unique_constraint_via_hash_field &&
hidden_field_count <= 0 && new_field) {
if (new_field->flags & BLOB_FLAG)
unique_constraint_via_hash_field = true;
else
distinct_key_length += new_field->pack_length();
}
if (!--hidden_field_count) {
/*
This was the last hidden field; Remember how many hidden fields could
have null
*/
hidden_null_count = null_count;
/*
We need to update hidden_field_count as we may have stored group
functions with constant arguments
*/
param->hidden_field_count = fieldnr;
null_count = 0;
/*
On last hidden field we store uneven bit length in
hidden_uneven_bit_length and proceed calculation of
uneven bits for visible fields into
total_uneven_bit_length variable.
*/
hidden_uneven_bit_length = total_uneven_bit_length;
total_uneven_bit_length = 0;
}
} // end of while ((item=li++)).
DBUG_ASSERT(fieldnr == (uint)(reg_field - table->field));
DBUG_ASSERT(field_count >= (uint)(reg_field - table->field));
field_count = fieldnr;
*reg_field = 0;
*blob_field = 0; // End marker
share->fields = field_count;
share->blob_fields = blob_count;
/*
Different temp table engine supports different max_key_length
and max_key_part_lengthi. If HEAP engine is selected, it can be
possible to convert into on-disk engine later. We must choose
the minimal of max_key_length and max_key_part_length between
HEAP engine and possible on-disk engine to verify whether unique
constraint is needed so that the convertion goes well.
*/
get_max_key_and_part_length(&max_key_length, &max_key_part_length,
&max_key_parts);
if (group && (param->group_parts > max_key_parts ||
param->group_length > max_key_length))
unique_constraint_via_hash_field = true;
keyinfo = param->keyinfo;
keyinfo->table = table;
keyinfo->is_visible = true;
if (group) {
DBUG_PRINT("info", ("Creating group key in temporary table"));
table->group = group; /* Table is grouped by key */
param->group_buff = group_buff;
share->keys = 1;
// Let each group expression know the column which materializes its value
for (ORDER *cur_group = group; cur_group; cur_group = cur_group->next) {
Field *field = (*cur_group->item)->get_tmp_table_field();
DBUG_ASSERT(field->table == table);
cur_group->field_in_tmp_table = field;
}
// Use key definition created below only if the key isn't too long.
// Otherwise a dedicated key over a hash value will be created and this
// definition will be used by server to calc hash.
if (!unique_constraint_via_hash_field) {
table->key_info = share->key_info = keyinfo;
keyinfo->key_part = key_part_info;
keyinfo->flags = HA_NOSAME;
keyinfo->usable_key_parts = keyinfo->user_defined_key_parts =
param->group_parts;
keyinfo->actual_key_parts = keyinfo->user_defined_key_parts;
share->key_parts = keyinfo->user_defined_key_parts;
keyinfo->rec_per_key = 0;
// keyinfo->algorithm is set later, when storage engine is known
keyinfo->set_rec_per_key_array(NULL, NULL);
keyinfo->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
keyinfo->name = "<group_key>";
ORDER *cur_group = group;
for (; cur_group; cur_group = cur_group->next, key_part_info++) {
Field *field = cur_group->field_in_tmp_table;
key_part_info->init_from_field(field);
/* In GROUP BY 'a' and 'a ' are equal for VARCHAR fields */
key_part_info->key_part_flag |= HA_END_SPACE_ARE_EQUAL;
if (key_part_info->store_length > max_key_part_length) {
unique_constraint_via_hash_field = true;
break;
}
}
keyinfo->actual_flags = keyinfo->flags;
}
}
if (distinct && field_count != param->hidden_field_count) {
/*
Create an unique key or an unique constraint over all columns
that should be in the result. In the temporary table, there are
'param->hidden_field_count' extra columns, whose null bits are stored
in the first 'hidden_null_pack_length' bytes of the row.
*/
DBUG_PRINT("info", ("hidden_field_count: %d", param->hidden_field_count));
share->keys = 1;
table->is_distinct = true;
if (!unique_constraint_via_hash_field) {
Field **reg_field;
keyinfo->user_defined_key_parts = field_count - param->hidden_field_count;
keyinfo->actual_key_parts = keyinfo->user_defined_key_parts;
share->key_parts = keyinfo->user_defined_key_parts;
if (!(key_part_info = new (&share->mem_root)
KEY_PART_INFO[keyinfo->user_defined_key_parts]))
goto err;
table->key_info = share->key_info = keyinfo;
keyinfo->key_part = key_part_info;
keyinfo->actual_flags = keyinfo->flags = HA_NOSAME | HA_NULL_ARE_EQUAL;
keyinfo->name = "<auto_distinct_key>";
// keyinfo->algorithm is set later, when storage engine is known
keyinfo->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
// Set up records-per-key estimates.
ulong *rec_per_key =
share->mem_root.ArrayAlloc<ulong>(keyinfo->user_defined_key_parts);
rec_per_key_t *rec_per_key_float =
share->mem_root.ArrayAlloc<rec_per_key_t>(
keyinfo->user_defined_key_parts);
keyinfo->set_rec_per_key_array(rec_per_key, rec_per_key_float);
for (unsigned key_part_idx = 0;
key_part_idx < keyinfo->user_defined_key_parts; ++key_part_idx) {
keyinfo->rec_per_key[key_part_idx] = 0;
keyinfo->set_records_per_key(key_part_idx, REC_PER_KEY_UNKNOWN);
}
/* Create a distinct key over the columns we are going to return */
for (i = param->hidden_field_count, reg_field = table->field + i;
i < field_count; i++, reg_field++, key_part_info++) {
key_part_info->init_from_field(*reg_field);
if (key_part_info->store_length > max_key_part_length) {
unique_constraint_via_hash_field = true;
break;
}
}
}
}
/*
To enforce unique constraint we need to add a field to hold key's hash
A1) distinct key is too long
A2) number of keyparts in distinct key is too big
A3) caller cannot accept distinct via indexes (e.g. because it wants
to turn off the checking at some point)
*/
if (distinct_key_length > max_key_length || // 1
(distinct && // 2
(fieldnr - param->hidden_field_count) > max_key_parts) ||
(distinct && param->force_hash_field_for_unique) // 3
) {
unique_constraint_via_hash_field = true;
}
if (setup_tmp_table_handler(table, select_options, false,
param->schema_table))
goto err; /* purecov: inspected */
if (table->s->keys == 1 && table->key_info)
table->key_info->algorithm = table->file->get_default_index_algorithm();
if (unique_constraint_via_hash_field) {
Field_longlong *field = new (&share->mem_root)
Field_longlong(sizeof(ulonglong), false, "<hash_field>", true);
if (!field) {
/* purecov: begin inspected */
DBUG_ASSERT(thd->is_fatal_error());
goto err; // Got OOM
/* purecov: end */
}
// Mark hash_field as NOT NULL
field->flags &= NOT_NULL_FLAG;
// Register hash_field as a hidden field.
register_hidden_field(table, default_field, from_field, share->blob_field,
field);
// Repoint arrays
table->field--;
default_field--;
from_field--;
reclength += field->pack_length();
field_count = ++fieldnr;
param->hidden_field_count++;
share->fields = field_count;
share->field--;
table->hash_field = field;
}
table->hidden_field_count = param->hidden_field_count;
if (!unique_constraint_via_hash_field)
reclength += group_null_items; // null flag is stored separately
if (blob_count == 0) {
/* We need to ensure that first byte is not 0 for the delete link */
if (param->hidden_field_count)
hidden_null_count++;
else
null_count++;
}
hidden_null_pack_length =
(hidden_null_count + 7 + hidden_uneven_bit_length) / 8;
null_pack_length = (hidden_null_pack_length +
(null_count + total_uneven_bit_length + 7) / 8);
reclength += null_pack_length;
if (!reclength) reclength = 1; // Dummy select
/* Use packed rows if there is blobs or a lot of space to gain */
if (blob_count ||
(string_total_length >= STRING_TOTAL_LENGTH_TO_PACK_ROWS &&
(reclength / string_total_length <= RATIO_TO_PACK_ROWS ||
string_total_length / string_count >= AVG_STRING_LENGTH_TO_PACK_ROWS)))
use_packed_rows = true;
if (!use_packed_rows) share->db_create_options &= ~HA_OPTION_PACK_RECORD;
share->reclength = reclength;
share->null_bytes = null_pack_length;
share->null_fields = null_count + hidden_null_count;
if (alloc_record_buffers(table)) goto err;
param->func_count = copy_func->size();
DBUG_ASSERT(param->func_count <= copy_func_count); // Used <= allocated
sort_copy_func(thd->lex->current_select(), copy_func);
setup_tmp_table_column_bitmaps(table, bitmaps);
null_flags = table->record[0];
pos = table->record[0] + null_pack_length;
null_count = (blob_count == 0) ? 1 : 0;
hidden_field_count = param->hidden_field_count;
DBUG_ASSERT((uint)hidden_field_count <= field_count);
for (i = 0, reg_field = table->field; i < field_count; i++, reg_field++) {
Field *field = *reg_field;
uint length;
if (!(field->flags & NOT_NULL_FLAG)) {
if (field->flags & GROUP_FLAG && !unique_constraint_via_hash_field) {
/*
We have to reserve one byte here for NULL bits,
as this is updated by 'end_update()'
*/
*pos++ = 0; // Null is stored here
}
}
relocate_field(field, pos, null_flags, &null_count);
/*
Test if there is a default field value. The test for ->ptr is to skip
'offset' fields generated by initalize_tables
*/
if (default_field[i] && default_field[i]->ptr) {
/*
default_field[i] is set only in the cases when 'field' can
inherit the default value that is defined for the field referred
by the Item_field object from which 'field' has been created.
*/
Field *orig_field = default_field[i];
/*
Get the value from default_values. Note that orig_field->ptr might not
point into record[0] if previous step is REF_SLICE_ORDERED_GROUP_BY and
we are creating a tmp table to materialize the query's result.
*/
ptrdiff_t diff = orig_field->table->default_values_offset();
Field *f_in_record0 = orig_field->table->field[orig_field->field_index];
f_in_record0->move_field_offset(diff); // Points now at default_values
if (f_in_record0->is_real_null())
field->set_null();
else {
field->set_notnull();
memcpy(field->ptr, f_in_record0->ptr, field->pack_length());
}
f_in_record0->move_field_offset(-diff); // Back to record[0]
}
if (from_field[i]) {
/* This column is directly mapped to a column in the GROUP BY clause. */
if (param->m_window && param->m_window->frame_buffer_param() &&
field->flags & FIELD_IS_MARKED) {
Temp_table_param *window_fb = param->m_window->frame_buffer_param();
// Grep for FIELD_IS_MARKED in this file.
field->flags ^= FIELD_IS_MARKED;
window_fb->copy_fields.emplace_back(from_field[i], field,
save_sum_fields);
} else {
param->copy_fields.emplace_back(field, from_field[i], save_sum_fields);
}
}
length = field->pack_length();
pos += length;
if (!--hidden_field_count)
null_count = (null_count + 7) & ~7; // move to next byte
// fix table name in field entry
field->table_name = &table->alias;
}
store_record(table, s->default_values); // Make empty default record
/*
Push the LIMIT clause to the temporary table creation, so that we
materialize only up to 'rows_limit' records instead of all result records.
*/
set_if_smaller(share->max_rows, rows_limit);
param->end_write_records = rows_limit;
if (group && !unique_constraint_via_hash_field) {
ORDER *cur_group = group;
key_part_info = keyinfo->key_part;
if (param->can_use_pk_for_unique) share->primary_key = 0;
keyinfo->key_length = 0; // Will compute the sum of the parts below.
/*
Here, we have to make the group fields point to the right record
position.
*/
for (; cur_group; cur_group = cur_group->next, key_part_info++) {
Field *field = cur_group->field_in_tmp_table;
bool maybe_null = (*cur_group->item)->maybe_null;
key_part_info->init_from_field(key_part_info->field);
keyinfo->key_length += key_part_info->store_length;
cur_group->buff = (char *)group_buff;
cur_group->field_in_tmp_table =
field->new_key_field(thd->mem_root, table, group_buff + maybe_null);
if (!cur_group->field_in_tmp_table) goto err; /* purecov: inspected */
if (maybe_null) {
/*
To be able to group on NULL, we reserved place in group_buff
for the NULL flag just before the column. (see above).
The field data is after this flag.
The NULL flag is updated in 'end_update()' and 'end_write()'
*/
keyinfo->flags |= HA_NULL_ARE_EQUAL; // def. that NULL == NULL
cur_group->buff++; // Pointer to field data
group_buff++; // Skipp null flag
}
group_buff += cur_group->field_in_tmp_table->pack_length();
}
}
if (distinct && field_count != param->hidden_field_count &&
!unique_constraint_via_hash_field) {
null_pack_length -= hidden_null_pack_length;
key_part_info = keyinfo->key_part;
if (param->can_use_pk_for_unique) share->primary_key = 0;
keyinfo->key_length = 0; // Will compute the sum of the parts below.
/*
Here, we have to make the key fields point to the right record
position.
*/
for (i = param->hidden_field_count, reg_field = table->field + i;
i < field_count; i++, reg_field++, key_part_info++) {
key_part_info->init_from_field(*reg_field);
keyinfo->key_length += key_part_info->store_length;
}
}
// Create a key over hash_field to enforce unique constraint
if (unique_constraint_via_hash_field) {
KEY *hash_key;
KEY_PART_INFO *hash_kpi;
if (!multi_alloc_root(&share->mem_root, &hash_key, sizeof(*hash_key),
&hash_kpi, sizeof(*hash_kpi), // Only one key part
NullS))
goto err;
table->key_info = share->key_info = hash_key;
share->key_parts = 1;
hash_key->table = table;
hash_key->key_part = hash_kpi;
hash_key->actual_flags = hash_key->flags = HA_NULL_ARE_EQUAL;
hash_key->actual_key_parts = hash_key->usable_key_parts = 1;
hash_key->user_defined_key_parts = 1;
hash_key->set_rec_per_key_array(NULL, NULL);
hash_key->algorithm = table->file->get_default_index_algorithm();
hash_key->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
if (distinct)
hash_key->name = "<hash_distinct_key>";
else
hash_key->name = "<hash_group_key>";
hash_kpi->init_from_field(table->hash_field);
hash_key->key_length = hash_kpi->store_length;
param->keyinfo = hash_key;
}
if (thd->is_fatal_error()) // If end of memory
goto err; /* purecov: inspected */
set_real_row_type(table);
if (!param->skip_create_table) {
if (instantiate_tmp_table(thd, table)) goto err;
}
thd->mem_root = mem_root_save;
DEBUG_SYNC(thd, "tmp_table_created");
return table;
err:
thd->mem_root = mem_root_save;
free_tmp_table(thd, table); /* purecov: inspected */
return NULL; /* purecov: inspected */
}
/**
Create a temporary table to weed out duplicate rowid combinations
@param thd Thread handle
@param uniq_tuple_length_arg Length of the table's column
@param sjtbl Update sjtbl->[start_]recinfo values which
will be needed if we'll need to convert the
created temptable from HEAP to MyISAM/Maria.
@details
create_duplicate_weedout_tmp_table()
Create a temporary table to weed out duplicate rowid combinations. The
table has a single column that is a concatenation of all rowids in the
combination.
Depending on the needed length, there are two cases:
1. When the length of the column < max_key_length:
CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));
2. Otherwise (not a valid SQL syntax but internally supported):
CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));
The code in this function was produced by extraction of relevant parts
from create_tmp_table().
@return
created table
NULL on error
*/
TABLE *create_duplicate_weedout_tmp_table(THD *thd, uint uniq_tuple_length_arg,
SJ_TMP_TABLE *sjtbl) {
MEM_ROOT *mem_root_save, own_root;
TABLE *table;
TABLE_SHARE *share;
Field **reg_field;
KEY_PART_INFO *key_part_info;
KEY *keyinfo;
uchar *group_buff;
uchar *bitmaps;
uint *blob_field;
bool unique_constraint_via_hash_field = false;
Field *field, *key_field, *hash_field = nullptr;
uint null_pack_length;
uchar *null_flags;
uchar *pos;
uint i;
DBUG_TRACE;
DBUG_ASSERT(!sjtbl || !sjtbl->is_confluent);
DBUG_EXECUTE_IF("create_duplicate_weedout_tmp_table_error", {
my_error(ER_UNKNOWN_ERROR, MYF(0));
return nullptr;
});
/* STEP 1: Figure if we'll be using a key or blob+constraint */
if (uniq_tuple_length_arg > CONVERT_IF_BIGGER_TO_BLOB)
unique_constraint_via_hash_field = true;
/* STEP 2: Allocate memory for temptable description */
init_sql_alloc(key_memory_TABLE, &own_root, TABLE_ALLOC_BLOCK_SIZE, 0);
if (!multi_alloc_root(
&own_root, &table, sizeof(*table), &share, sizeof(*share), &reg_field,
sizeof(Field *) * (1 + 2), &blob_field, sizeof(uint) * 3, &keyinfo,
sizeof(*keyinfo), &key_part_info, sizeof(*key_part_info) * 2,
&group_buff,
(!unique_constraint_via_hash_field ? uniq_tuple_length_arg : 0),
&bitmaps, bitmap_buffer_size(1) * 3, NullS)) {
return NULL;
}
/* STEP 3: Create TABLE description */
new (table) TABLE;
memset(reg_field, 0, sizeof(Field *) * 3);
table->init_tmp_table(thd, share, &own_root, NULL, "weedout-tmp", reg_field,
blob_field, false);
mem_root_save = thd->mem_root;
thd->mem_root = &share->mem_root;
uint reclength = 0;
uint null_count = 0;
/* Create the field */
if (unique_constraint_via_hash_field) {
Field_longlong *field = new (&share->mem_root)
Field_longlong(sizeof(ulonglong), false, "<hash_field>", true);
if (!field) {
DBUG_ASSERT(thd->is_fatal_error());
goto err; // Got OOM
}
// Mark hash_field as NOT NULL
field->flags = NOT_NULL_FLAG;
*(reg_field++) = hash_field = field;
if (sjtbl) sjtbl->hash_field = field;
table->hash_field = field;
field->table = field->orig_table = table;
share->fields++;
field->field_index = 0;
reclength = field->pack_length();
table->hidden_field_count++;
}
{
/*
For the sake of uniformity, always use Field_varstring (altough we could
use Field_string for shorter keys)
*/
field = new (thd->mem_root) Field_varstring(
uniq_tuple_length_arg, false, "rowids", share, &my_charset_bin);
if (!field) return 0;
field->table = table;
field->auto_flags = Field::NONE;
field->flags = (NOT_NULL_FLAG | BINARY_FLAG | NO_DEFAULT_VALUE_FLAG);
field->reset_fields();
field->init(table);
field->orig_table = NULL;
*(reg_field++) = field;
*blob_field = 0;
*reg_field = 0;
field->field_index = share->fields;
share->fields++;
share->blob_fields = 0;
reclength += field->pack_length();
null_count++;
}
/* See also create_tmp_table() */
if (setup_tmp_table_handler(table, 0LL, unique_constraint_via_hash_field,
false))
goto err;
null_pack_length = 1;
reclength += null_pack_length;
share->reclength = reclength;
share->null_bytes = null_pack_length;
share->null_fields = null_count;
if (alloc_record_buffers(table)) goto err;
setup_tmp_table_column_bitmaps(table, bitmaps);
null_flags = table->record[0];
pos = table->record[0] + null_pack_length;
null_count = 1;
for (i = 0, reg_field = table->field; i < share->fields; i++, reg_field++) {
Field *field = *reg_field;
uint length;
relocate_field(field, pos, null_flags, &null_count);
length = field->pack_length();
pos += length;
// fix table name in field entry
field->table_name = &table->alias;
}
// Create a key over param->hash_field to enforce unique constraint
if (unique_constraint_via_hash_field) {
KEY *hash_key = keyinfo;
KEY_PART_INFO *hash_kpi = key_part_info;
share->keys = 1;
table->key_info = share->key_info = hash_key;
hash_key->table = table;
hash_key->key_part = hash_kpi;
hash_key->actual_flags = hash_key->flags = HA_NULL_ARE_EQUAL;
hash_kpi->init_from_field(hash_field);
hash_key->key_length = hash_kpi->store_length;
} else {
DBUG_PRINT("info", ("Creating group key in temporary table"));
share->keys = 1;
table->key_info = table->s->key_info = keyinfo;
keyinfo->key_part = key_part_info;
keyinfo->actual_flags = keyinfo->flags = HA_NOSAME;
keyinfo->key_length = 0;
{
key_part_info->init_from_field(field);
key_part_info->bin_cmp = true;
key_field = field->new_key_field(thd->mem_root, table, group_buff);
if (!key_field) goto err;
key_part_info->key_part_flag |= HA_END_SPACE_ARE_EQUAL; // todo need
// this?
keyinfo->key_length += key_part_info->length;
}
}
{
table->key_info->user_defined_key_parts = 1;
table->key_info->usable_key_parts = 1;
table->key_info->actual_key_parts = table->key_info->user_defined_key_parts;
share->key_parts = table->key_info->user_defined_key_parts;
table->key_info->set_rec_per_key_array(NULL, NULL);
table->key_info->algorithm = table->file->get_default_index_algorithm();
table->key_info->set_in_memory_estimate(IN_MEMORY_ESTIMATE_UNKNOWN);
table->key_info->name = "weedout_key";
}
if (thd->is_fatal_error()) // If end of memory
goto err;
set_real_row_type(table);
if (instantiate_tmp_table(thd, table)) goto err;
thd->mem_root = mem_root_save;
return table;
err:
thd->mem_root = mem_root_save;
table->file->ha_index_or_rnd_end();
free_tmp_table(thd, table); /* purecov: inspected */
return NULL; /* purecov: inspected */
}
/****************************************************************************/
/**
Create an, optionally reduced, TABLE object with properly set up Field list
from a list of field definitions.
@details
When is_virtual arg is true:
The created table doesn't have a table handler associated with
it, has no keys, no group/distinct, no copy_funcs array.
The sole purpose of this TABLE object is to use the power of Field
class to read/write data to/from table->record[0]. Then one can store
the record in any container (RB tree, hash, etc).
The table is created in THD mem_root, so are the table's fields.
Consequently, if you don't BLOB fields, you don't need to free it.
When is_virtual is false:
This function creates a normal tmp table out of fields' definitions,
rather than from lst of items. This is the main difference with
create_tmp_table. Also the table created here doesn't do grouping,
doesn't have indexes and copy_funcs/fields. The purpose is to be able to
create result table for table functions out of fields' definitions
without need in intermediate list of items.
@param thd connection handle
@param field_list list of column definitions
@param is_virtual if true, then it's effectively only a record buffer
with wrapper, used e.g to store vars in SP
if false, then a normal table, which can hold
records, is created
@param select_options options for non-virtual tmp table
@param alias table's alias
@return
0 if out of memory, TABLE object in case of success
*/
TABLE *create_tmp_table_from_fields(THD *thd, List<Create_field> &field_list,
bool is_virtual, ulonglong select_options,
const char *alias) {
uint field_count = field_list.elements;
uint blob_count = 0;
Field **reg_field;
Create_field *cdef; /* column definition */
uint record_length = 0;
uint null_count = 0; /* number of columns which may be null */
uint null_pack_length; /* NULL representation array length */
uint *blob_field;
uchar *bitmaps;
TABLE *table;
TABLE_SHARE *share;
MEM_ROOT own_root, *m_root;
/*
total_uneven_bit_length is uneven bit length for BIT fields
*/
uint total_uneven_bit_length = 0;
if (!is_virtual) {
init_sql_alloc(key_memory_TABLE, &own_root, TABLE_ALLOC_BLOCK_SIZE, 0);
m_root = &own_root;
} else
m_root = thd->mem_root;
if (!multi_alloc_root(m_root, &table, sizeof(*table), &share, sizeof(*share),
&reg_field, (field_count + 1) * sizeof(Field *),
&blob_field, (field_count + 1) * sizeof(uint), &bitmaps,
bitmap_buffer_size(field_count) * 3, NullS))
return 0;
new (table) TABLE;
new (share) TABLE_SHARE;
table->init_tmp_table(thd, share, m_root, NULL, alias, reg_field, blob_field,
is_virtual);
/* Create all fields and calculate the total length of record */
List_iterator_fast<Create_field> it(field_list);
uint idx = 0;
while ((cdef = it++)) {
*reg_field =
cdef->maybe_null
? make_field(*cdef, share, nullptr,
pointer_cast<uchar *>(const_cast<char *>("")), 1)
: make_field(*cdef, share);
if (!*reg_field) goto error;
(*reg_field)->init(table);
record_length += (*reg_field)->pack_length();
if (!((*reg_field)->flags & NOT_NULL_FLAG)) null_count++;
(*reg_field)->field_index = idx++;
if ((*reg_field)->type() == MYSQL_TYPE_BIT)
total_uneven_bit_length += (*reg_field)->field_length & 7;
if ((*reg_field)->flags & BLOB_FLAG)
share->blob_field[blob_count++] = (uint)(reg_field - table->field);
reg_field++;
}
*reg_field = NULL; /* mark the end of the list */
share->blob_field[blob_count] = 0; /* mark the end of the list */
share->blob_fields = blob_count;
null_pack_length = (null_count + total_uneven_bit_length + 7) / 8;
share->reclength = record_length + null_pack_length;
share->null_bytes = null_pack_length;
share->null_fields = null_count;
share->fields = field_count;
if (is_virtual) {
/*
When the table is virtual, updates won't be done on the table and
default values won't be stored. Thus no need to allocate buffers for
that.
*/
share->rec_buff_length = ALIGN_SIZE(share->reclength + 1);
table->record[0] = (uchar *)thd->alloc(share->rec_buff_length);
if (!table->record[0]) goto error;
if (null_pack_length) {
table->null_flags = table->record[0];
memset(table->record[0], 255, null_pack_length); // Set null fields
}
} else if (alloc_record_buffers(table))
goto error;
setup_tmp_table_column_bitmaps(table, bitmaps);
{
/* Set up field pointers */
uchar *null_flags = table->record[0];
uchar *pos = null_flags + share->null_bytes;
uint null_count = 0;
for (reg_field = table->field; *reg_field; ++reg_field) {
Field *field = *reg_field;
relocate_field(field, pos, null_flags, &null_count);
pos += field->pack_length();
}
}
if (is_virtual) return table;
store_record(table, s->default_values); // Make empty default record
if (setup_tmp_table_handler(table, select_options, false, false)) goto error;
return table;
error:
for (reg_field = table->field; *reg_field; ++reg_field) destroy(*reg_field);
return 0;
}
/**
Checks if disk storage engine should be used for temporary table.
@param table table to allocate SE for
@param select_options current select's options
@param force_disk_table true <=> Use InnoDB
@param mem_engine Selected in-memory storage engine.
@return
true if disk storage engine should be used
false if disk storage engine is not required
*/
static bool use_tmp_disk_storage_engine(
TABLE *table, ulonglong select_options, bool force_disk_table,
enum_internal_tmp_mem_storage_engine mem_engine) {
THD *thd = table->in_use;
TABLE_SHARE *share = table->s;
/* Caller needs SE to be disk-based (@see create_tmp_table()). */
if (force_disk_table) {
return true;
}
/*
During bootstrap, the heap engine is not available, so we force using
disk storage engine. This is especially hit when creating a I_S system
view definition with a UNION in it AND is also when upgrading from
older DD tables which involves execution of UPDATE queries to adjust
metadata of DD tables.
*/
if (opt_initialize || thd->is_dd_system_thread()) {
return true;
}
if (mem_engine == TMP_TABLE_MEMORY) {
/* MEMORY do not support BLOBs */
if (share->blob_fields) {
return true;
}
} else {
DBUG_ASSERT(mem_engine == TMP_TABLE_TEMPTABLE);
}
/* User said the result would be big, so may not fit in memory */
if ((thd->variables.big_tables) && !(select_options & SELECT_SMALL_RESULT)) {
return true;
}
return false;
}
/**
Helper function to create_tmp_table_* family for setting up table's SE
@param table table to allocate SE for
@param select_options current select's options
@param force_disk_table true <=> Use InnoDB
@param schema_table whether the table is a schema table
@returns
false on success
true otherwise
*/
static bool setup_tmp_table_handler(TABLE *table, ulonglong select_options,
bool force_disk_table, bool schema_table) {
THD *thd = table->in_use;
TABLE_SHARE *share = table->s;
enum_internal_tmp_mem_storage_engine mem_engine =
static_cast<enum_internal_tmp_mem_storage_engine>(
thd->variables.internal_tmp_mem_storage_engine);
/* Except for special conditions, tmp table engine will be chosen by user. */
/* For information_schema tables we use the Heap engine because we do
not allow user-created TempTable tables and even though information_schema
tables are not user-created, an ingenious user may execute:
CREATE TABLE myowntemptabletable LIKE information_schema.some; */
if (schema_table && (mem_engine == TMP_TABLE_TEMPTABLE)) {
mem_engine = TMP_TABLE_MEMORY;
}
if (use_tmp_disk_storage_engine(table, select_options, force_disk_table,
mem_engine)) {
share->db_plugin = ha_lock_engine(0, innodb_hton);
} else {
share->db_plugin = nullptr;
switch (mem_engine) {
case TMP_TABLE_TEMPTABLE:
share->db_plugin = ha_lock_engine(0, temptable_hton);
break;
case TMP_TABLE_MEMORY:
share->db_plugin = ha_lock_engine(0, heap_hton);
break;
}
DBUG_ASSERT(share->db_plugin != nullptr);
}
if (!(table->file =
get_new_handler(share, false, &share->mem_root, share->db_type())))
return true;
// Update the handler with information about the table object
table->file->change_table_ptr(table, share);
if (table->file->set_ha_share_ref(&share->ha_share)) {
destroy(table->file);
return true;
}
// Initialize cost model for this table
table->init_cost_model(thd->cost_model());
return false;
}
/**
Helper function for create_tmp_table_* family for allocating record buffers
@note Caller must initialize TABLE_SHARE::reclength and
TABLE_SHARE::null_bytes before calling this function.
@param table table to allocate record buffers for
@returns
false on success
true otherwise
*/
static bool alloc_record_buffers(TABLE *table) {
TABLE_SHARE *share = table->s;
THD *thd = table->in_use;
/*
Same as MI_UNIQUE_HASH_LENGTH,
allows to exclude "myisam.h" from include files.
*/
const int TMP_TABLE_UNIQUE_HASH_LENGTH = 4;
uint alloc_length =
ALIGN_SIZE(share->reclength + TMP_TABLE_UNIQUE_HASH_LENGTH + 1);
share->rec_buff_length = alloc_length;
/*
Note that code in open_table_from_share() relies on the fact that
for optimizer-created temporary tables TABLE_SHARE::default_values
is allocated in a single chuck with TABLE::record[0] for the first
TABLE instance.
*/
if (!(table->record[0] = (uchar *)share->mem_root.Alloc(
(alloc_length * 3 + share->null_bytes))))
return true;
table->record[1] = table->record[0] + alloc_length;
share->default_values = table->record[1] + alloc_length;
table->null_flags_saved = share->default_values + alloc_length;
if (share->null_bytes) {
table->null_flags = table->record[0];
memset(table->record[0], 255, share->null_bytes); // Set null fields
}
if (thd->variables.tmp_table_size == ~(ulonglong)0) // No limit
share->max_rows = ~(ha_rows)0;
else
share->max_rows = (ha_rows)(((share->db_type() == heap_hton)
? min(thd->variables.tmp_table_size,
thd->variables.max_heap_table_size)
: thd->variables.tmp_table_size) /
share->reclength);
set_if_bigger(share->max_rows, 1); // For dummy start options
return false;
}
bool open_tmp_table(TABLE *table) {
DBUG_ASSERT(table->s->ref_count() == 1 || // not shared, or:
table->s->db_type() == heap_hton || // using right engines
table->s->db_type() == temptable_hton ||
table->s->db_type() == innodb_hton);
int error;
if ((error = table->file->ha_open(table, table->s->table_name.str, O_RDWR,
HA_OPEN_TMP_TABLE | HA_OPEN_INTERNAL_TABLE,
nullptr))) {
table->file->print_error(error, MYF(0)); /* purecov: inspected */
table->db_stat = 0;
return (1);
}
(void)table->file->ha_extra(HA_EXTRA_QUICK); /* Faster */
table->set_created();
table->s->tmp_handler_count++;
return false;
}
/**
Try to create an in-memory temporary table and if not enough space, then
try to create an on-disk one.
Create a temporary table according to passed description.
The passed array or MI_COLUMNDEF structures must have this form:
1. 1-byte column (afaiu for 'deleted' flag) (note maybe not 1-byte
when there are many nullable columns)
2. Table columns
3. One free MI_COLUMNDEF element (*recinfo points here)
This function may use the free element to create hash column for unique
constraint.
@param[in,out] table Table object that describes the table to be created
@retval false OK
@retval true Error
*/
static bool create_tmp_table_with_fallback(TABLE *table) {
TABLE_SHARE *share = table->s;
DBUG_TRACE;
HA_CREATE_INFO create_info;
create_info.db_type = table->s->db_type();
create_info.row_type = table->s->row_type;
create_info.options |=
HA_LEX_CREATE_TMP_TABLE | HA_LEX_CREATE_INTERNAL_TMP_TABLE;
/*
INNODB's fixed length column size is restricted to 1024. Exceeding this can
result in incorrect behavior.
*/
if (table->s->db_type() == innodb_hton) {
for (Field **field = table->field; *field; ++field) {
if ((*field)->type() == MYSQL_TYPE_STRING &&
(*field)->key_length() > 1024) {
my_error(ER_TOO_LONG_KEY, MYF(0), 1024);
return true;
}
}
}
int error =
table->file->create(share->table_name.str, table, &create_info, nullptr);
if (error == HA_ERR_RECORD_FILE_FULL &&
table->s->db_type() == temptable_hton) {
table->file =
get_new_handler(table->s, false, &table->s->mem_root, innodb_hton);
error = table->file->create(share->table_name.str, table, &create_info,
nullptr);
}
if (error) {
table->file->print_error(error, MYF(0)); /* purecov: inspected */
table->db_stat = 0;
return true;
} else {
if (table->s->db_type() != temptable_hton) {
table->in_use->inc_status_created_tmp_disk_tables();
}
return false;
}
}
static void trace_tmp_table(Opt_trace_context *trace, const TABLE *table) {
TABLE_SHARE *s = table->s;
Opt_trace_object trace_tmp(trace, "tmp_table_info");
if (strlen(table->alias) != 0)
trace_tmp.add_utf8_table(table->pos_in_table_list);
else
trace_tmp.add_alnum("table", "intermediate_tmp_table");
QEP_TAB *tab = table->reginfo.qep_tab;
if (tab) trace_tmp.add("in_plan_at_position", tab->idx());
trace_tmp.add("columns", s->fields)
.add("row_length", s->reclength)
.add("key_length", table->key_info ? table->key_info->key_length : 0)
.add("unique_constraint", table->hash_field ? true : false)
.add("makes_grouped_rows", table->group != nullptr)
.add("cannot_insert_duplicates", table->is_distinct);
if (s->db_type() == innodb_hton) {
trace_tmp.add_alnum("location", "disk (InnoDB)");
if (s->db_create_options & HA_OPTION_PACK_RECORD)
trace_tmp.add_alnum("record_format", "packed");
else
trace_tmp.add_alnum("record_format", "fixed");
} else if (table->s->db_type() == temptable_hton) {
trace_tmp.add_alnum("location", "TempTable");
} else {
DBUG_ASSERT(s->db_type() == heap_hton);
trace_tmp.add_alnum("location", "memory (heap)")
.add("row_limit_estimate", s->max_rows);
}
}
/**
@brief
Instantiates temporary table
@param thd Thread handler
@param table Table object that describes the table to be
instantiated
@details
Creates tmp table and opens it.
@return
false - OK
true - Error
*/
bool instantiate_tmp_table(THD *thd, TABLE *table) {
TABLE_SHARE *const share = table->s;
#ifndef DBUG_OFF
for (uint i = 0; i < share->fields; i++)
DBUG_ASSERT(table->field[i]->gcol_info == NULL &&
table->field[i]->stored_in_db);
#endif
thd->inc_status_created_tmp_tables();
if (share->db_type() == temptable_hton) {
if (create_tmp_table_with_fallback(table)) return true;
} else if (share->db_type() == innodb_hton) {
if (create_tmp_table_with_fallback(table)) return true;
// Make empty record so random data is not written to disk
empty_record(table);
}
// If a heap table, it's created by open_tmp_table().
if (open_tmp_table(table)) {
/*
Delete table immediately if we fail to open it, so
TABLE::is_created() also implies that table is open.
*/
table->file->ha_delete_table(share->table_name.str,
nullptr); /* purecov: inspected */
return true;
}
if (share->first_unused_tmp_key < share->keys) {
/*
Some other clone of this materialized temporary table has defined
"possible" keys; as we are here creating the table in the engine, we must
decide here what to do with them: drop them now, or make them "existing"
now. As the other clone assumes they will be available if the Optimizer
chooses them, we make them existing.
*/
share->find_first_unused_tmp_key(Key_map(share->keys));
}
Opt_trace_context *const trace = &thd->opt_trace;
if (unlikely(trace->is_started())) {
Opt_trace_object wrapper(trace);
Opt_trace_object convert(trace, "creating_tmp_table");
trace_tmp_table(trace, table);
}
return false;
}
/**
Free TABLE object and release associated resources for
internal temporary table.
*/
void free_tmp_table(THD *thd, TABLE *entry) {
const char *save_proc_info;
DBUG_TRACE;
DBUG_PRINT("enter", ("table: %s", entry->alias));
save_proc_info = thd->proc_info;
THD_STAGE_INFO(thd, stage_removing_tmp_table);
filesort_free_buffers(entry, true);
DBUG_ASSERT(entry->s->tmp_handler_count <= entry->s->ref_count());
if (entry->is_created()) {
DBUG_ASSERT(entry->s->tmp_handler_count >= 1);
// Table is marked as created only if was successfully opened.
if (--entry->s->tmp_handler_count)
entry->file->ha_close();
else // no more open 'handler' objects
entry->file->ha_drop_table(entry->s->table_name.str);
entry->set_deleted();
}
destroy(entry->file);
entry->file = NULL;
/* free blobs */
for (Field **ptr = entry->field; *ptr; ptr++) (*ptr)->mem_free();
free_io_cache(entry);
DBUG_ASSERT(entry->mem_root.allocated_size() == 0);
DBUG_ASSERT(entry->s->ref_count() >= 1);
if (entry->s->decrement_ref_count() == 0) // no more TABLE objects
{
plugin_unlock(0, entry->s->db_plugin);
/*
In create_tmp_table(), the share's memroot is allocated inside own_root
and is then made a copy of own_root, so it is inside its memory blocks,
so as soon as we free a memory block the memroot becomes unreadable.
So we need a copy to free it.
*/
MEM_ROOT own_root = std::move(entry->s->mem_root);
destroy(entry);
free_root(&own_root, MYF(0));
}
thd_proc_info(thd, save_proc_info);
}
/**
If a MEMORY table gets full, create a disk-based table and copy all rows
to this.
@param thd THD reference
@param wtable Table reference being written to
@param error Reason why inserting into MEMORY table failed.
@param ignore_last_dup If true, ignore duplicate key error for last
inserted key (see detailed description below).
@param [out] is_duplicate if non-NULL and ignore_last_dup is true,
return true if last key was a duplicate,
and false otherwise.
@details
Function can be called with any error code, but only HA_ERR_RECORD_FILE_FULL
will be handled, all other errors cause a fatal error to be thrown.
The function creates a disk-based temporary table, copies all records
from the MEMORY table into this new table, deletes the old table and
switches to use the new table within the table handle.
The function uses table->record[1] as a temporary buffer while copying.
The function assumes that table->record[0] contains the row that caused
the error when inserting into the MEMORY table (the "last row").
After all existing rows have been copied to the new table, the last row
is attempted to be inserted as well. If ignore_last_dup is true,
this row can be a duplicate of an existing row without throwing an error.
If is_duplicate is non-NULL, an indication of whether the last row was
a duplicate is returned.
@note that any index/scan access initialized on the MEMORY 'wtable' is not
replicated to the on-disk table - it's the caller's responsibility.
However, access initialized on other TABLEs, is replicated.
If 'wtable' has other TABLE clones (example: a multi-referenced or a
recursive CTE), we convert all clones; if an error happens during conversion
of clone B after successfully converting clone A, clone A and B will exit
from the function with a TABLE_SHARE corresponding to the pre-conversion
table ("old" TABLE_SHARE). So A will be inconsistent (for example
s->db_type() will say "MEMORY" while A->file will be a disk-based engine).
However, as all callers bail out, it is reasonable to think that they won't
be using the TABLE_SHARE except in free_tmp_table(); and free_tmp_table()
only uses properties of TABLE_SHARE which are common to the old and new
object (reference counts, MEM_ROOT), so that should work.
Solutions to fix this cleanly:
- allocate new TABLE_SHARE on heap instead of on stack, to be able to
exit with two TABLE_SHAREs (drawback: more heap memory consumption, and need
to verify all exit paths are safe),
- close all TABLEs if error (but then callers and cleanup code may be
surprised to find already-closed tables so they would need fixing).
To lower the risk of error between A and B: we expect most errors will
happen when copying rows (e.g. read or write errors); so we convert 'wtable'
(which does the row copying) first; if it fails, the A-B situation is
avoided and we can properly exit with the old TABLE_SHARE.
@returns true if error.
*/
bool create_ondisk_from_heap(THD *thd, TABLE *wtable, int error,
bool ignore_last_dup, bool *is_duplicate) {
int write_err = 0;
#ifndef DBUG_OFF
const uint initial_handler_count = wtable->s->tmp_handler_count;
bool rows_on_disk = false;
#endif
bool table_on_disk = false;
DBUG_TRACE;
if (error != HA_ERR_RECORD_FILE_FULL) {
/*
We don't want this error to be converted to a warning, e.g. in case of
INSERT IGNORE ... SELECT.
*/
wtable->file->print_error(error, MYF(ME_FATALERROR));
return 1;
}
if (wtable->s->db_type() != heap_hton) {
if (wtable->s->db_type() != temptable_hton || temptable_use_mmap) {
/* Do not convert in-memory temporary tables to on-disk
temporary tables if the storage engine is anything other
than the temptable engine or if the user has set the variable
temptable_use_mmap to true to use mmap'ed files for temporary
tables. */
wtable->file->print_error(error, MYF(ME_FATALERROR));
return 1;
}
/* If we are here, then the in-memory temporary tables need
to be converted into on-disk temporary tables */
}
const char *save_proc_info = thd->proc_info;
THD_STAGE_INFO(thd, stage_converting_heap_to_ondisk);
TABLE_SHARE *const old_share = wtable->s;
const plugin_ref old_plugin = old_share->db_plugin;
TABLE_SHARE share = std::move(*old_share);
DBUG_ASSERT(share.ha_share == nullptr);
share.db_plugin = ha_lock_engine(thd, innodb_hton);
TABLE_LIST *const wtable_list = wtable->pos_in_table_list;
Derived_refs_iterator ref_it(wtable_list);
if (wtable_list) {
Common_table_expr *cte = wtable_list->common_table_expr();
if (cte) {
int i = 0, found = -1;
TABLE *t;
while ((t = ref_it.get_next())) {
if (t == wtable) {
found = i;
break;
}
++i;
}
DBUG_ASSERT(found >= 0);
if (found > 0)
// 'wtable' is at position 'found', move it to 0 to convert it first
std::swap(cte->tmp_tables[0], cte->tmp_tables[found]);
ref_it.rewind();
}
}
TABLE new_table, *table = nullptr;
while (true) {
if (wtable_list) // Possibly there are clones
{
table = ref_it.get_next();
if (table == nullptr) break;
} else // No clones
{
if (table == wtable) // Already processed
break;
table = wtable;
}
table->mem_root.Clear();
// Set up a partial copy of the table.
new_table.record[0] = table->record[0];
new_table.record[1] = table->record[1];
new_table.field = table->field;
new_table.key_info = table->key_info;
new_table.in_use = table->in_use;
new_table.db_stat = table->db_stat;
new_table.key_info = table->key_info;
new_table.hash_field = table->hash_field;
new_table.group = table->group;
new_table.is_distinct = table->is_distinct;
new_table.alias = table->alias;
new_table.pos_in_table_list = table->pos_in_table_list;
new_table.reginfo = table->reginfo;
new_table.read_set = table->read_set;
new_table.write_set = table->write_set;
new_table.s = &share; // New table points to new share
if (!(new_table.file = get_new_handler(
&share, false, &new_table.s->mem_root, new_table.s->db_type())))
goto err_after_proc_info; /* purecov: inspected */
if (new_table.file->set_ha_share_ref(&share.ha_share))
goto err_after_alloc; /* purecov: inspected */
/* Fix row type which might have changed with SE change. */
set_real_row_type(&new_table);
if (!table_on_disk) {
if (create_tmp_table_with_fallback(&new_table))
goto err_after_alloc; /* purecov: inspected */
table_on_disk = true;
}
bool rec_ref_w_open_cursor = false, psi_batch_started = false;
if (table->is_created()) {
// Close it, drop it, and open a new one in the disk-based engine.
if (open_tmp_table(&new_table))
goto err_after_create; /* purecov: inspected */
if (table->file->indexes_are_disabled())
new_table.file->ha_disable_indexes(HA_KEY_SWITCH_ALL);
if (table == wtable) {
// The table receiving writes; migrate rows before closing/dropping.
if (unlikely(thd->opt_trace.is_started())) {
Opt_trace_context *trace = &thd->opt_trace;
Opt_trace_object wrapper(trace);
Opt_trace_object convert(trace, "converting_tmp_table_to_ondisk");
DBUG_ASSERT(error == HA_ERR_RECORD_FILE_FULL);
convert.add_alnum("cause", "memory_table_size_exceeded");
trace_tmp_table(trace, &new_table);
}
table->file->ha_index_or_rnd_end();
if ((write_err = table->file->ha_rnd_init(1))) {
/* purecov: begin inspected */
table->file->print_error(write_err, MYF(ME_FATALERROR));
write_err = 0;
goto err_after_open;
/* purecov: end */
}
if (table->no_rows) {
new_table.file->ha_extra(HA_EXTRA_NO_ROWS);
new_table.no_rows = 1;
}
/*
copy all old rows from heap table to on-disk table
This is the only code that uses record[1] to read/write but this
is safe as this is a temporary on-disk table without timestamp/
autoincrement or partitioning.
*/
while (!table->file->ha_rnd_next(new_table.record[1])) {
write_err = new_table.file->ha_write_row(new_table.record[1]);
DBUG_EXECUTE_IF("raise_error", write_err = HA_ERR_FOUND_DUPP_KEY;);
if (write_err) goto err_after_open;
}
/* copy row that filled HEAP table */
if ((write_err = new_table.file->ha_write_row(table->record[0]))) {
if (!new_table.file->is_ignorable_error(write_err) ||
!ignore_last_dup)
goto err_after_open;
if (is_duplicate) *is_duplicate = true;
} else {
if (is_duplicate) *is_duplicate = false;
}
(void)table->file->ha_rnd_end();
#ifndef DBUG_OFF
rows_on_disk = true;
#endif
}
/* remove heap table and change to use on-disk table */
// TODO(sgunders): Move this into MaterializeIterator when we remove the
// pre-iterator executor.
if (table->pos_in_table_list &&
table->pos_in_table_list->is_recursive_reference() &&
table->file->inited) {
/*
Due to the last condition, this is guaranteed to be a recursive
reference belonging to the unit which 'wtable' materializes, and not
to the unit of another non-recursive reference (indeed, this other
reference will re-use the rows of 'wtable', i.e. not execute its
unit).
This reference has opened a cursor.
In the 'tmp_tables' list, 'wtable' is always before such recursive
reference, as setup_materialized_derived_tmp_table() runs before
substitute_recursive_reference(). So, we know the disk-based rows
already exist at this point.
*/
DBUG_ASSERT(rows_on_disk);
(void)table->file->ha_rnd_end();
rec_ref_w_open_cursor = true;
}
psi_batch_started = table->file->end_psi_batch_mode_if_started();
// Close the in-memory table
if (table->s->db_type() == temptable_hton) {
/* Drop the in-memory temptable.
This code can execute only if mmap'ed temporary
files were disabled using temptable_use_mmap variable */
DBUG_ASSERT(temptable_use_mmap == false);
table->file->ha_drop_table(table->s->table_name.str);
} else {
// Closing the MEMORY table drops it if its ref count is down to zero
(void)table->file->ha_close();
}
share.tmp_handler_count--;
}
/*
Replace the guts of the old table with the new one, although keeping
most members.
*/
destroy(table->file);
table->s = new_table.s;
table->file = new_table.file;
table->db_stat = new_table.db_stat;
table->in_use = new_table.in_use;
table->no_rows = new_table.no_rows;
table->record[0] = new_table.record[0];
table->record[1] = new_table.record[1];
table->mem_root = std::move(new_table.mem_root);
/*
Depending on if this TABLE clone is early/late in optimization, or in
execution, it has a JOIN_TAB or a QEP_TAB or none.
*/
QEP_TAB *qep_tab = table->reginfo.qep_tab;
QEP_shared_owner *tab;
if (qep_tab)
tab = qep_tab;
else
tab = table->reginfo.join_tab;
/* Update quick select, if any. */
if (tab && tab->quick()) {
DBUG_ASSERT(table->pos_in_table_list->uses_materialization());
tab->quick()->set_handler(table->file);
}
// TODO(sgunders): Move this into MaterializeIterator when we remove the
// pre-iterator executor.
if (rec_ref_w_open_cursor) {
/*
The table just changed from MEMORY to INNODB. 'table' is a reader and
had an open cursor to the MEMORY table. We closed the cursor, now need
to open it to InnoDB and re-position it at the same row as before.
Row positions (returned by handler::position()) are different in
MEMORY and InnoDB - so the MEMORY row and InnoDB row have differing
positions.
We had read N rows of the MEMORY table, need to re-position our
cursor after the same N rows in the InnoDB table.
*/
if (psi_batch_started) table->file->start_psi_batch_mode();
// In the iterator executor, repositioning happens by
// means of an explicit call to
// FollowTailIterator::RepositionCursorAfterSpillToDisk().
// qep_tab->m_fetched_rows is not used.
if (qep_tab->recursive_iterator == nullptr) {
if (reposition_innodb_cursor(table, qep_tab->m_fetched_rows))
goto err_after_proc_info; /* purecov: inspected */
}
}
// Point 'table' back to old_share; *old_share will be updated after loop.
table->s = old_share;
/*
Update share-dependent pointers cached in 'table->file' and in
read_set/write_set.
*/
table->file->change_table_ptr(table, table->s);
table->file->set_ha_share_ref(&table->s->ha_share);
table->use_all_columns();
} // End of tables-processing loop
plugin_unlock(0, old_plugin);
share.db_plugin = my_plugin_lock(0, &share.db_plugin);
*old_share = std::move(share);
/*
Now old_share is new, and all TABLEs in Derived_refs_iterator point to
it, and so do their table->file: everything is consistent.
*/
DBUG_ASSERT(initial_handler_count == wtable->s->tmp_handler_count);
if (save_proc_info)
thd_proc_info(thd, (!strcmp(save_proc_info, "Copying to tmp table")
? "Copying to tmp table on disk"
: save_proc_info));
return 0;
err_after_open:
if (write_err) {
DBUG_PRINT("error", ("Got error: %d", write_err));
new_table.file->print_error(write_err, MYF(0));
}
if (table->file->inited) (void)table->file->ha_rnd_end();
(void)new_table.file->ha_close();
err_after_create:
new_table.file->ha_delete_table(new_table.s->table_name.str, nullptr);
err_after_alloc:
destroy(new_table.file);
err_after_proc_info:
thd_proc_info(thd, save_proc_info);
// New share took control of old share mem_root; regain control:
old_share->mem_root = std::move(share.mem_root);
return 1;
}
/**
Encode an InnoDB PK in 6 bytes, high-byte first; like
InnoDB's dict_sys_write_row_id() does.
@param rowid_bytes where to store the result
@param length how many available bytes in rowid_bytes
@param row_num PK to encode
*/
void encode_innodb_position(uchar *rowid_bytes,
uint length MY_ATTRIBUTE((unused)),
ha_rows row_num) {
DBUG_ASSERT(length == 6);
for (int i = 0; i < 6; i++)
rowid_bytes[i] = (uchar)(row_num >> ((5 - i) * 8));
}
/**
Helper function for create_ondisk_from_heap().
Our InnoDB on-disk intrinsic table uses an autogenerated
auto-incrementing primary key:
- first inserted row has pk=1 (see
dict_table_get_next_table_sess_row_id()), second has pk=2, etc
- ha_rnd_next uses a PK index scan so returns rows in PK order
- position() returns the PK
- ha_rnd_pos() takes the PK in input.
@param table table read by cursor
@param row_num function should position on the row_num'th row in insertion
order.
*/
bool reposition_innodb_cursor(TABLE *table, ha_rows row_num) {
DBUG_ASSERT(table->s->db_type() == innodb_hton);
if (table->file->ha_rnd_init(false)) return true; /* purecov: inspected */
// Per the explanation above, the wanted InnoDB row has PK=row_num.
uchar rowid_bytes[6];
encode_innodb_position(rowid_bytes, sizeof(rowid_bytes), row_num);
/*
Go to the row, and discard the row. That places the cursor at
the same row as before the engine conversion, so that rnd_next() will
read the (row_num+1)th row.
*/
return table->file->ha_rnd_pos(table->record[0], rowid_bytes);
}