用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1222 lines
40 KiB

/* Copyright (c) 2006, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/rpl_utility.h"
#include <string.h>
#include <iterator>
#include <new>
#include <utility>
#include "lex_string.h"
#include "libbinlogevents/export/binary_log_funcs.h"
#include "my_byteorder.h"
#include "my_dbug.h"
#include "my_loglevel.h"
#include "my_sys.h"
#include "mysql/components/services/log_builtins.h"
#include "mysql/service_mysql_alloc.h"
#include "sql/thr_malloc.h"
struct TYPELIB;
#ifdef MYSQL_SERVER
#include <algorithm>
#include "libbinlogevents/include/binlog_event.h" // checksum_crv32
#include "m_ctype.h"
#include "m_string.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "mysql/components/services/log_builtins.h"
#include "mysql/psi/psi_memory.h"
#include "mysqld_error.h"
#include "sql/create_field.h"
#include "sql/dd/dd.h" // get_dictionary
#include "sql/dd/dictionary.h" // is_dd_table_access_allowed
#include "sql/derror.h" // ER_THD
#include "sql/field.h" // Field
#include "sql/log.h"
#include "sql/log_event.h" // Log_event
#include "sql/my_decimal.h"
#include "sql/mysqld.h" // slave_type_conversions_options
#include "sql/psi_memory_key.h"
#include "sql/rpl_rli.h" // Relay_log_info
#include "sql/rpl_slave.h"
#include "sql/sql_class.h" // THD
#include "sql/sql_const.h"
#include "sql/sql_list.h"
#include "sql/sql_plugin_ref.h"
#include "sql/sql_tmp_table.h" // create_tmp_table_from_fields
#include "sql_show.h" // show_sql_type
#include "sql_string.h"
#include "template_utils.h" // delete_container_pointers
#include "typelib.h"
using binary_log::checksum_crc32;
using std::max;
using std::min;
using std::unique_ptr;
#endif // MYSQL_SERVER
/*********************************************************************
* table_def member definitions *
*********************************************************************/
/*
This function returns the field size in raw bytes based on the type
and the encoded field data from the master's raw data.
*/
uint32 table_def::calc_field_size(uint col, const uchar *master_data) const {
uint32 length =
::calc_field_size(type(col), master_data, m_field_metadata[col]);
return length;
}
#if defined(MYSQL_SERVER)
/**
Function to compare two size_t integers for their relative
order. Used below.
*/
static int compare(size_t a, size_t b) {
if (a < b) return -1;
if (b < a) return 1;
return 0;
}
/*
Compare the pack lengths of a source field (on the master) and a
target field (on the slave).
@param field Target field.
@param type Source field type.
@param metadata Source field metadata.
@retval -1 The length of the source field is smaller than the target field.
@retval 0 The length of the source and target fields are the same.
@retval 1 The length of the source field is greater than the target field.
*/
static int compare_lengths(Field *field, enum_field_types source_type,
uint16 metadata) {
DBUG_TRACE;
size_t const source_length =
max_display_length_for_field(source_type, metadata);
size_t const target_length = field->max_display_length();
DBUG_PRINT("debug", ("source_length: %lu, source_type: %u,"
" target_length: %lu, target_type: %u",
(unsigned long)source_length, source_type,
(unsigned long)target_length, field->real_type()));
int result = compare(source_length, target_length);
DBUG_PRINT("result", ("%d", result));
return result;
}
/**
Check the order variable and print errors if the order is not
acceptable according to the current settings.
@param order The computed order of the conversion needed.
*/
static bool is_conversion_ok(int order) {
DBUG_TRACE;
bool allow_non_lossy, allow_lossy;
allow_non_lossy = slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_NON_LOSSY);
allow_lossy = slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_LOSSY);
DBUG_PRINT("enter", ("order: %d, flags:%s%s", order,
allow_non_lossy ? " ALL_NON_LOSSY" : "",
allow_lossy ? " ALL_LOSSY" : ""));
if (order < 0 && !allow_non_lossy) {
/* !!! Add error message saying that non-lossy conversions need to be
* allowed. */
return false;
}
if (order > 0 && !allow_lossy) {
/* !!! Add error message saying that lossy conversions need to be allowed.
*/
return false;
}
return true;
}
/**
Check if the types are criss cross means type1 is MYSQL_TYPE_TIMESTAMP
and type2 as MYSQL_TYPE_TIMESTAMP2 or vice versa.
*/
inline bool timestamp_cross_check(enum_field_types type1,
enum_field_types type2) {
return ((type1 == MYSQL_TYPE_TIMESTAMP && type2 == MYSQL_TYPE_TIMESTAMP2) ||
(type1 == MYSQL_TYPE_TIMESTAMP2 && type2 == MYSQL_TYPE_TIMESTAMP));
}
/**
Check if the types are criss cross means type1 is MYSQL_TYPE_DATETIME
and type2 as MYSQL_TYPE_DATETIME or vice versa.
*/
inline bool datetime_cross_check(enum_field_types type1,
enum_field_types type2) {
return ((type1 == MYSQL_TYPE_DATETIME && type2 == MYSQL_TYPE_DATETIME2) ||
(type1 == MYSQL_TYPE_DATETIME2 && type2 == MYSQL_TYPE_DATETIME));
}
/**
Check if the types are criss cross means type1 is MYSQL_TYPE_TIME
and type2 as MYSQL_TYPE_TIME2 or vice versa.
*/
inline bool time_cross_check(enum_field_types type1, enum_field_types type2) {
return ((type1 == MYSQL_TYPE_TIME && type2 == MYSQL_TYPE_TIME2) ||
(type1 == MYSQL_TYPE_TIME2 && type2 == MYSQL_TYPE_TIME));
}
/**
Can a type potentially be converted to another type?
This function check if the types are convertible and what
conversion is required.
If conversion is not possible, and error is printed.
If conversion is possible:
- *order will be set to -1 if source type is smaller than target
type and a non-lossy conversion can be required. This includes
the case where the field types are different but types could
actually be converted in either direction.
- *order will be set to 0 if no conversion is required.
- *order will be set to 1 if the source type is strictly larger
than the target type and that conversion is potentially lossy.
@param[in] field Target field
@param[in] source_type Source field type
@param[in] metadata Source field metadata
@param[in] is_array Whether the source field is a typed array
@param[in] rli Relay log info (for error reporting)
@param[in] mflags Flags from the table map event
@param[out] order_var Order between source field and target field
@return @c true if conversion is possible according to the current
settings, @c false if conversion is not possible according to the
current setting.
*/
static bool can_convert_field_to(Field *field, enum_field_types source_type,
uint metadata, bool is_array,
Relay_log_info *rli, uint16 mflags,
int *order_var) {
DBUG_TRACE;
#ifndef DBUG_OFF
char field_type_buf[MAX_FIELD_WIDTH];
String field_type(field_type_buf, sizeof(field_type_buf), &my_charset_latin1);
field->sql_type(field_type);
DBUG_PRINT("enter", ("field_type: %s, target_type: %d, source_type: %d, "
"source_metadata: 0x%x",
field_type.c_ptr_safe(), field->real_type(), source_type,
metadata));
#endif
// Can't convert from scalar to array and vice versa
if (is_array != field->is_array()) return false;
/*
If the real type is the same, we need to check the metadata to
decide if conversions are allowed.
*/
if (field->real_type() == source_type) {
if (metadata == 0) // Metadata can only be zero if no metadata was provided
{
/*
If there is no metadata, we either have an old event where no
metadata were supplied, or a type that does not require any
metadata. In either case, conversion can be done but no
conversion table is necessary.
*/
DBUG_PRINT("debug",
("Base types are identical, but there is no metadata"));
*order_var = 0;
return true;
}
DBUG_PRINT("debug",
("Base types are identical, doing field size comparison"));
if (field->compatible_field_size(metadata, rli, mflags, order_var))
return is_conversion_ok(*order_var);
else
return false;
} else if (is_array) {
// Can't covert between typed array of different types
return false;
} else if (metadata == 0 &&
(timestamp_cross_check(field->real_type(), source_type) ||
datetime_cross_check(field->real_type(), source_type) ||
time_cross_check(field->real_type(), source_type))) {
/*
In the above condition, we are taking care
of case where
1) Master having old TIME, TIMESTAMP, DATETIME
and slave have new TIME2, TIMESTAMP2, DATETIME2
or
2) Master having new TIMESTAMP2, DATETIME2, TIME2
with fraction part zero and slave have TIME,
TIMESTAMP, DATETIME.
We need second condition, as when we are
upgrading from 5.5 to 5.6 TIME, TIMESTAMP,
DATETIME columns are not upgraded to TIME(0),
TIMESTAMP(0), DATETIME(0).
So to support these conversion we are putting this
condition.
*/
/*
TS-TODO: conversion from FSP1>FSP2.
Can do non-lossy conversion
from old TIME, TIMESTAMP, DATETIME
to new TIME(0), TIMESTAMP(0), DATETIME(0).
*/
*order_var = -1;
return true;
} else if (!slave_type_conversions_options)
return false;
/*
Here, from and to will always be different. Since the types are
different, we cannot use the compatible_field_size() function, but
have to rely on hard-coded max-sizes for fields.
*/
DBUG_PRINT("debug", ("Base types are different, checking conversion"));
switch (source_type) // Source type (on master)
{
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
switch (field->real_type()) {
case MYSQL_TYPE_NEWDECIMAL:
/*
Then the other type is either FLOAT, DOUBLE, or old style
DECIMAL, so we require lossy conversion.
*/
*order_var = 1;
return is_conversion_ok(*order_var);
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE: {
if (source_type == MYSQL_TYPE_NEWDECIMAL ||
source_type == MYSQL_TYPE_DECIMAL)
*order_var = 1; // Always require lossy conversions
else
*order_var = compare_lengths(field, source_type, metadata);
DBUG_ASSERT(*order_var != 0);
return is_conversion_ok(*order_var);
}
default:
return false;
}
break;
/*
The length comparison check will do the correct job of comparing
the field lengths (in bytes) of two integer types.
*/
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
switch (field->real_type()) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
*order_var = compare_lengths(field, source_type, metadata);
DBUG_ASSERT(*order_var != 0);
return is_conversion_ok(*order_var);
default:
return false;
}
break;
/*
Since source and target type is different, and it is not possible
to convert bit types to anything else, this will return false.
*/
case MYSQL_TYPE_BIT:
return false;
/*
If all conversions are disabled, it is not allowed to convert
between these types. Since the TEXT vs. BINARY is distinguished by
the charset, and the charset is not replicated, we cannot
currently distinguish between , e.g., TEXT and BLOB.
*/
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
switch (field->real_type()) {
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_STRING:
case MYSQL_TYPE_VAR_STRING:
case MYSQL_TYPE_VARCHAR:
*order_var = compare_lengths(field, source_type, metadata);
/*
Here we know that the types are different, so if the order
gives that they do not require any conversion, we still need
to have non-lossy conversion enabled to allow conversion
between different (string) types of the same length.
*/
if (*order_var == 0) *order_var = -1;
return is_conversion_ok(*order_var);
default:
return false;
}
break;
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_JSON:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_YEAR:
case MYSQL_TYPE_NEWDATE:
case MYSQL_TYPE_NULL:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_TYPED_ARRAY:
return false;
}
return false; // To keep GCC happy
}
/**
Is the definition compatible with a table when it does not belong to
the data dictionary?
This function first finds out whether the table belongs to the data
dictionary. When not, it will compare the master table with an existing
table on the slave and see if they are compatible with respect to the
current settings of @c SLAVE_TYPE_CONVERSIONS.
If the tables are compatible and conversions are required, @c
*tmp_table_var will be set to a virtual temporary table with field
pointers for the fields that require conversions. This allow simple
checking of whether a conversion are to be applied or not.
If tables are compatible, but no conversions are necessary, @c
*tmp_table_var will be set to NULL.
@param [in] rli Relay log info, for error reporting.
@param [in] table Table to compare with
@param [out] conv_table_var Virtual temporary table for performing
conversions, if necessary.
@retval true Master table is compatible with slave table.
@retval false When the table belongs to the data dictionary or
master table is not compatible with slave table.
*/
bool table_def::compatible_with(THD *thd, Relay_log_info *rli, TABLE *table,
TABLE **conv_table_var) const {
/*
Prohibit replication into dictionary internal tables. We know this is
not DDL (which will be replicated as statements, and rejected by the
corresponding check for SQL statements), thus 'false' in the call below.
Also sserting that this is not a DD system thread.
*/
DBUG_ASSERT(!thd->is_dd_system_thread());
const dd::Dictionary *dictionary = dd::get_dictionary();
if (dictionary && !dictionary->is_dd_table_access_allowed(
false, false, table->s->db.str, table->s->db.length,
table->s->table_name.str)) {
DBUG_PRINT("debug", ("Access to dictionary table %s.%s is prohibited",
table->s->db.str, table->s->table_name.str));
rli->report(
ERROR_LEVEL, ER_SERVER_NO_SYSTEM_TABLE_ACCESS,
ER_THD(thd, ER_SERVER_NO_SYSTEM_TABLE_ACCESS),
ER_THD_NONCONST(thd, dictionary->table_type_error_code(
table->s->db.str, table->s->table_name.str)),
table->s->db.str, table->s->table_name.str);
return false;
}
/*
We only check the initial columns for the tables.
*/
uint const cols_to_check = min<ulong>(table->s->fields, size());
TABLE *tmp_table = nullptr;
for (uint col = 0; col < cols_to_check; ++col) {
Field *const field = table->field[col];
int order;
if (can_convert_field_to(field, type(col), field_metadata(col),
is_array(col), rli, m_flags, &order)) {
DBUG_PRINT("debug", ("Checking column %d -"
" field '%s' can be converted - order: %d",
col, field->field_name, order));
DBUG_ASSERT(order >= -1 && order <= 1);
/*
If order is not 0, a conversion is required, so we need to set
up the conversion table.
*/
if (order != 0 && tmp_table == nullptr) {
/*
This will create the full table with all fields. This is
necessary to ge the correct field lengths for the record.
*/
tmp_table = create_conversion_table(thd, rli, table);
if (tmp_table == nullptr) return false;
/*
Clear all fields up to, but not including, this column.
*/
for (unsigned int i = 0; i < col; ++i) tmp_table->field[i] = nullptr;
}
if (order == 0 && tmp_table != nullptr) tmp_table->field[col] = nullptr;
} else {
DBUG_PRINT("debug", ("Checking column %d -"
" field '%s' can not be converted",
col, field->field_name));
DBUG_ASSERT(col < size() && col < table->s->fields);
DBUG_ASSERT(table->s->db.str && table->s->table_name.str);
const char *db_name = table->s->db.str;
const char *tbl_name = table->s->table_name.str;
char source_buf[MAX_FIELD_WIDTH];
char target_buf[MAX_FIELD_WIDTH];
String field_sql_type;
enum loglevel report_level = INFORMATION_LEVEL;
String source_type(source_buf, sizeof(source_buf), &my_charset_latin1);
String target_type(target_buf, sizeof(target_buf), &my_charset_latin1);
show_sql_type(type(col), is_array(col), field_metadata(col),
&source_type);
field->sql_type(target_type);
if (!ignored_error_code(ER_SERVER_SLAVE_CONVERSION_FAILED)) {
report_level = ERROR_LEVEL;
thd->is_slave_error = 1;
} else if (log_error_verbosity >= 2)
report_level = WARNING_LEVEL;
if (field->has_charset() && (field->type() == MYSQL_TYPE_VARCHAR ||
field->type() == MYSQL_TYPE_STRING)) {
field_sql_type.append((field->type() == MYSQL_TYPE_VARCHAR) ? "varchar"
: "char");
const CHARSET_INFO *cs = field->charset();
size_t length = cs->cset->snprintf(
cs, target_type.ptr(), target_type.alloced_length(),
"%s(%u(bytes) %s)", field_sql_type.c_ptr_safe(),
field->field_length, field->charset()->csname);
target_type.length(length);
} else
field->sql_type(target_type);
if (report_level != INFORMATION_LEVEL)
rli->report(report_level, ER_SERVER_SLAVE_CONVERSION_FAILED,
ER_THD(thd, ER_SERVER_SLAVE_CONVERSION_FAILED), col,
db_name, tbl_name, source_type.c_ptr_safe(),
target_type.c_ptr_safe());
return false;
}
}
#ifndef DBUG_OFF
if (tmp_table) {
for (unsigned int col = 0; col < tmp_table->s->fields; ++col)
if (tmp_table->field[col]) {
char source_buf[MAX_FIELD_WIDTH];
char target_buf[MAX_FIELD_WIDTH];
String source_type(source_buf, sizeof(source_buf), &my_charset_latin1);
String target_type(target_buf, sizeof(target_buf), &my_charset_latin1);
tmp_table->field[col]->sql_type(source_type);
table->field[col]->sql_type(target_type);
DBUG_PRINT("debug",
("Field %s - conversion required."
" Source type: '%s', Target type: '%s'",
tmp_table->field[col]->field_name, source_type.c_ptr_safe(),
target_type.c_ptr_safe()));
}
}
#endif
*conv_table_var = tmp_table;
return true;
}
/**
Create a conversion table.
If the function is unable to create the conversion table, an error
will be printed and NULL will be returned.
@return Pointer to conversion table, or NULL if unable to create
conversion table.
*/
TABLE *table_def::create_conversion_table(THD *thd, Relay_log_info *rli,
TABLE *target_table) const {
DBUG_TRACE;
List<Create_field> field_list;
TABLE *conv_table = nullptr;
/*
At slave, columns may differ. So we should create
min(columns@master, columns@slave) columns in the
conversion table.
*/
uint const cols_to_create = min<ulong>(target_table->s->fields, size());
// Default value : treat all values signed
bool unsigned_flag = false;
// Check if slave_type_conversions contains ALL_UNSIGNED
unsigned_flag = slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_UNSIGNED);
// Check if slave_type_conversions contains ALL_SIGNED
unsigned_flag =
unsigned_flag && !(slave_type_conversions_options &
(1ULL << SLAVE_TYPE_CONVERSIONS_ALL_SIGNED));
for (uint col = 0; col < cols_to_create; ++col) {
Create_field *field_def = new (thd->mem_root) Create_field();
if (field_list.push_back(field_def)) return nullptr;
uint decimals = 0;
TYPELIB *interval = nullptr;
uint pack_length_override = 0; // 0 => NA. Only assigned below when needed.
enum_field_types field_type = type(col);
uint32 max_length =
max_display_length_for_field(field_type, field_metadata(col));
switch (field_type) {
uint precision;
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_SET:
interval = static_cast<Field_enum *>(target_table->field[col])->typelib;
/*
Number of elements in interval on master and slave might differ.
Use pack length from binary log instead of one calculated from
number of interval elements on slave.
*/
pack_length_override = field_metadata(col) & 0x00ff;
break;
case MYSQL_TYPE_NEWDECIMAL:
/*
The display length of a DECIMAL type is not the same as the
length that should be supplied to make_field, so we correct
the length here.
*/
precision = field_metadata(col) >> 8;
decimals = field_metadata(col) & 0x00ff;
max_length = my_decimal_precision_to_length(precision, decimals, false);
break;
case MYSQL_TYPE_DECIMAL:
LogErr(ERROR_LEVEL, ER_RPL_INCOMPATIBLE_DECIMAL_IN_RBR,
target_table->s->db.str, target_table->s->table_name.str,
target_table->field[col]->field_name);
goto err;
case MYSQL_TYPE_BLOB:
/*
Blobs are binlogged as MYSQL_TYPE_BLOB, even when pack_length
!= 2. Need the exact blob type for the call to
Create_field::init_for_tmp_table() below. Note that
pack_length is NOT assigned to pack_length_override here, as
this should only be used when the pack_length cannot be
derived from the exact type, i.e. for ENUM and SET (see
above).
*/
field_type = blob_type_from_pack_length(field_metadata(col) & 0x00ff);
break;
default:
break;
}
DBUG_PRINT(
"debug",
("sql_type: %d, target_field: '%s', max_length: %d, decimals: %d,"
" maybe_null: %d, unsigned_flag: %d",
binlog_type(col), target_table->field[col]->field_name, max_length,
decimals, true, unsigned_flag));
field_def->init_for_tmp_table(field_type, max_length, decimals,
true, // maybe_null
unsigned_flag, // unsigned_flag
pack_length_override);
field_def->charset = target_table->field[col]->charset();
field_def->interval = interval;
}
conv_table = DBUG_EVALUATE_IF(
"simulate_out_of_memory_while_creating_temp_table_for_conversion",
nullptr, create_tmp_table_from_fields(thd, field_list));
err:
if (conv_table == nullptr) {
enum loglevel report_level = INFORMATION_LEVEL;
if (!ignored_error_code(ER_SLAVE_CANT_CREATE_CONVERSION)) {
report_level = ERROR_LEVEL;
thd->is_slave_error = 1;
} else if (log_error_verbosity >= 2)
report_level = WARNING_LEVEL;
if (report_level != INFORMATION_LEVEL)
rli->report(report_level, ER_SLAVE_CANT_CREATE_CONVERSION,
ER_THD(thd, ER_SLAVE_CANT_CREATE_CONVERSION),
target_table->s->db.str, target_table->s->table_name.str);
}
return conv_table;
}
#endif /* MYSQL_SERVER */
/**
Decode field metadata from a char buffer (serialized form) into an int
(packed form).
@note On little-endian platforms (e.g Intel) this function effectively
inverts order of bytes compared to what Field::save_field_metadata()
writes. E.g for MYSQL_TYPE_NEWDECIMAL save_field_metadata writes precision
into the first byte and decimals into the second, this function puts
precision into the second byte and decimals into the first. This layout
is expected by replication code that reads metadata in the uint form.
Due to this design feature show_sql_type() can't correctly print
immediate output of save_field_metadata(), this function have to be used
as translator.
@param buffer Field metadata, in the character stream form produced by
save_field_metadata.
@param binlog_type The type of the field, in the form returned by
Field::binlog_type and stored in Table_map_log_event.
@retval pair where:
- the first component is the length of the metadata within 'buffer',
i.e., how much the buffer pointer should move forward in order to skip it.
- the second component is pair containing:
- the metadata, encoded as an 'uint', in the form required by e.g.
show_sql_type.
- bool indicating whether the field is array (true) or a scalar (false)
*/
std::pair<my_off_t, std::pair<uint, bool>> read_field_metadata(
const uchar *buffer, enum_field_types binlog_type) {
bool is_array = false;
uint metadata = 0;
uint index = 0;
if (binlog_type == MYSQL_TYPE_TYPED_ARRAY) {
binlog_type = static_cast<enum_field_types>(buffer[index++]);
is_array = true;
}
switch (binlog_type) {
case MYSQL_TYPE_TINY_BLOB:
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_MEDIUM_BLOB:
case MYSQL_TYPE_LONG_BLOB:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_DATETIME2:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_JSON: {
/*
These types store a single byte.
*/
metadata = buffer[index++];
break;
}
case MYSQL_TYPE_SET:
case MYSQL_TYPE_ENUM:
case MYSQL_TYPE_STRING: {
metadata = buffer[index++] << 8U; // real_type
metadata += buffer[index++]; // pack or field length
break;
}
case MYSQL_TYPE_BIT: {
metadata = buffer[index++];
metadata += (buffer[index++] << 8U);
break;
}
case MYSQL_TYPE_VARCHAR: {
/*
These types store two bytes.
*/
if (is_array) {
metadata = uint3korr(buffer + index);
index = index + 3;
} else {
metadata = uint2korr(buffer + index);
index = index + 2;
}
break;
}
case MYSQL_TYPE_NEWDECIMAL: {
metadata = buffer[index++] << 8U; // precision
metadata += buffer[index++]; // decimals
break;
}
default:
metadata = 0;
break;
}
return std::make_pair(index, std::make_pair(metadata, is_array));
}
PSI_memory_key key_memory_table_def_memory;
table_def::table_def(unsigned char *types, ulong size, uchar *field_metadata,
int metadata_size, uchar *null_bitmap, uint16 flags)
: m_size(size),
m_type(nullptr),
m_field_metadata_size(metadata_size),
m_field_metadata(nullptr),
m_null_bits(nullptr),
m_flags(flags),
m_memory(nullptr),
m_json_column_count(-1),
m_is_array(nullptr) {
m_memory = (uchar *)my_multi_malloc(
key_memory_table_def_memory, MYF(MY_WME), &m_type, size,
&m_field_metadata, size * sizeof(uint), &m_is_array, size * sizeof(bool),
&m_null_bits, (size + 7) / 8, nullptr);
memset(m_field_metadata, 0, size * sizeof(uint));
memset(m_is_array, 0, size * sizeof(bool));
if (m_type)
memcpy(m_type, types, size);
else
m_size = 0;
/*
Extract the data from the table map into the field metadata array
iff there is field metadata. The variable metadata_size will be
0 if we are replicating from an older version server since no field
metadata was written to the table map. This can also happen if
there were no fields in the master that needed extra metadata.
*/
if (m_size && metadata_size) {
int index = 0;
for (unsigned int i = 0; i < m_size; i++) {
std::pair<my_off_t, std::pair<uint, bool>> pack = read_field_metadata(
static_cast<const uchar *>(field_metadata + index), binlog_type(i));
// Update type of the typed array
if (binlog_type(i) == MYSQL_TYPE_TYPED_ARRAY)
m_type[i] = static_cast<enum_field_types>(field_metadata[index]);
// Fill in read metadata
m_field_metadata[i] = pack.second.first;
m_is_array[i] = pack.second.second;
index += pack.first;
DBUG_ASSERT(index <= metadata_size);
}
}
if (m_size && null_bitmap) memcpy(m_null_bits, null_bitmap, (m_size + 7) / 8);
}
table_def::~table_def() {
my_free(m_memory);
#ifndef DBUG_OFF
m_type = 0;
m_size = 0;
#endif
}
#ifdef MYSQL_SERVER
#define HASH_ROWS_POS_SEARCH_INVALID -1
/**
Utility methods for handling row based operations.
*/
void hash_slave_rows_free_entry::operator()(HASH_ROW_ENTRY *entry) const {
DBUG_TRACE;
if (entry) {
if (entry->preamble) {
entry->preamble->~HASH_ROW_PREAMBLE();
my_free(entry->preamble);
}
if (entry->positions) my_free(entry->positions);
my_free(entry);
}
}
bool Hash_slave_rows::is_empty(void) { return m_hash.empty(); }
/**
Hashing commodity structures and functions.
*/
bool Hash_slave_rows::init(void) { return false; }
bool Hash_slave_rows::deinit(void) {
DBUG_TRACE;
m_hash.clear();
return 0;
}
int Hash_slave_rows::size() { return m_hash.size(); }
HASH_ROW_ENTRY *Hash_slave_rows::make_entry() {
return make_entry(nullptr, nullptr);
}
HASH_ROW_ENTRY *Hash_slave_rows::make_entry(const uchar *bi_start,
const uchar *bi_ends) {
DBUG_TRACE;
HASH_ROW_ENTRY *entry = (HASH_ROW_ENTRY *)my_malloc(
key_memory_HASH_ROW_ENTRY, sizeof(HASH_ROW_ENTRY), MYF(0));
HASH_ROW_PREAMBLE *preamble = (HASH_ROW_PREAMBLE *)my_malloc(
key_memory_HASH_ROW_ENTRY, sizeof(HASH_ROW_PREAMBLE), MYF(0));
HASH_ROW_POS *pos = (HASH_ROW_POS *)my_malloc(key_memory_HASH_ROW_ENTRY,
sizeof(HASH_ROW_POS), MYF(0));
if (!entry || !preamble || !pos) goto err;
/**
Filling in the preamble.
*/
new (preamble) HASH_ROW_PREAMBLE();
preamble->hash_value = 0;
preamble->search_state = m_hash.end();
preamble->is_search_state_inited = false;
/**
Filling in the positions.
*/
pos->bi_start = bi_start;
pos->bi_ends = bi_ends;
/**
Filling in the entry
*/
entry->preamble = preamble;
entry->positions = pos;
return entry;
err:
DBUG_PRINT("info", ("Hash_slave_rows::make_entry - malloc error"));
if (entry) my_free(entry);
if (preamble) {
preamble->~HASH_ROW_PREAMBLE();
my_free(preamble);
}
if (pos) my_free(pos);
return nullptr;
}
bool Hash_slave_rows::put(TABLE *table, MY_BITMAP *cols,
HASH_ROW_ENTRY *entry) {
DBUG_TRACE;
HASH_ROW_PREAMBLE *preamble = entry->preamble;
/**
Skip blobs and BIT fields from key calculation.
Handle X bits.
Handle nulled fields.
Handled fields not signaled.
*/
preamble->hash_value = make_hash_key(table, cols);
m_hash.emplace(preamble->hash_value,
unique_ptr<HASH_ROW_ENTRY, hash_slave_rows_free_entry>(entry));
DBUG_PRINT("debug",
("Added record to hash with key=%u", preamble->hash_value));
return false;
}
HASH_ROW_ENTRY *Hash_slave_rows::get(TABLE *table, MY_BITMAP *cols) {
DBUG_TRACE;
uint key;
HASH_ROW_ENTRY *entry = nullptr;
key = make_hash_key(table, cols);
DBUG_PRINT("debug", ("Looking for record with key=%u in the hash.", key));
const auto it = m_hash.find(key);
if (it != m_hash.end()) {
DBUG_PRINT("debug", ("Found record with key=%u in the hash.", key));
/**
Save the search state in case we need to go through entries for
the given key.
*/
entry = it->second.get();
entry->preamble->search_state = it;
entry->preamble->is_search_state_inited = true;
}
return entry;
}
bool Hash_slave_rows::next(HASH_ROW_ENTRY **entry) {
DBUG_TRACE;
DBUG_ASSERT(*entry);
if (*entry == nullptr) return true;
HASH_ROW_PREAMBLE *preamble = (*entry)->preamble;
if (!preamble->is_search_state_inited) return true;
uint key = preamble->hash_value;
const auto it = std::next(preamble->search_state);
/*
Invalidate search for current preamble, because it is going to be
used in the search below (and search state is used in a
one-time-only basis).
*/
preamble->search_state = m_hash.end();
preamble->is_search_state_inited = false;
DBUG_PRINT("debug",
("Looking for record with key=%u in the hash (next).", key));
if (it != m_hash.end() && it->first == key) {
DBUG_PRINT("debug", ("Found record with key=%u in the hash (next).", key));
*entry = it->second.get();
preamble = (*entry)->preamble;
/**
Save the search state for next iteration (if any).
*/
preamble->search_state = it;
preamble->is_search_state_inited = true;
} else {
*entry = nullptr;
}
return false;
}
bool Hash_slave_rows::del(HASH_ROW_ENTRY *entry) {
DBUG_TRACE;
DBUG_ASSERT(entry);
erase_specific_element(&m_hash, entry->preamble->hash_value, entry);
return false;
}
uint Hash_slave_rows::make_hash_key(TABLE *table, MY_BITMAP *cols) {
DBUG_TRACE;
ha_checksum crc = 0L;
uchar *record = table->record[0];
uchar saved_x = 0, saved_filler = 0;
if (table->s->null_bytes > 0) {
/*
If we have an X bit then we need to take care of it.
*/
if (!(table->s->db_options_in_use & HA_OPTION_PACK_RECORD)) {
saved_x = record[0];
record[0] |= 1U;
}
/*
If (last_null_bit_pos == 0 && null_bytes > 1), then:
X bit (if any) + N nullable fields + M Field_bit fields = 8 bits
Ie, the entire byte is used.
*/
if (table->s->last_null_bit_pos > 0) {
saved_filler = record[table->s->null_bytes - 1];
record[table->s->null_bytes - 1] |=
256U - (1U << table->s->last_null_bit_pos);
}
}
/*
We can only checksum the bytes if all fields have been signaled
in the before image. Otherwise, unpack_row will not have set the
null_flags correctly (because it only unpacks those fields and
their flags that were actually in the before image).
@c record_compare, as it also skips null_flags if the read_set
was not marked completely.
*/
if (bitmap_is_set_all(cols)) {
crc = checksum_crc32(crc, table->null_flags, table->s->null_bytes);
DBUG_PRINT("debug", ("make_hash_entry: hash after null_flags: %u", crc));
}
for (Field **ptr = table->field; *ptr && ((*ptr)->field_index < cols->n_bits);
ptr++) {
Field *f = (*ptr);
/*
Field is set in the read_set and is isn't NULL.
*/
if (bitmap_is_set(cols, f->field_index) &&
!f->is_virtual_gcol() && // Avoid virtual generated columns on hashes
!f->is_null()) {
/*
BLOB and VARCHAR have pointers in their field, we must convert
to string; GEOMETRY and JSON are implemented on top of BLOB.
BIT may store its data among NULL bits, convert as well.
*/
switch (f->type()) {
case MYSQL_TYPE_BLOB:
case MYSQL_TYPE_VARCHAR:
case MYSQL_TYPE_GEOMETRY:
case MYSQL_TYPE_JSON:
case MYSQL_TYPE_BIT: {
String tmp;
f->val_str(&tmp);
crc = checksum_crc32(crc, pointer_cast<const uchar *>(tmp.ptr()),
tmp.length());
break;
}
default:
crc = checksum_crc32(crc, f->ptr, f->data_length());
break;
}
#ifndef DBUG_OFF
String tmp;
f->val_str(&tmp);
DBUG_PRINT("debug", ("make_hash_entry: hash after field %s=%s: %u",
f->field_name, tmp.c_ptr_safe(), crc));
#endif
}
}
/*
Restore the saved bytes.
TODO[record format ndb]: Remove this code once NDB returns the
correct record format.
*/
if (table->s->null_bytes > 0) {
if (!(table->s->db_options_in_use & HA_OPTION_PACK_RECORD))
record[0] = saved_x;
if (table->s->last_null_bit_pos)
record[table->s->null_bytes - 1] = saved_filler;
}
DBUG_PRINT("debug", ("Created key=%u", crc));
return crc;
}
#endif
#if defined(MYSQL_SERVER)
Deferred_log_events::Deferred_log_events()
: m_array(key_memory_table_def_memory) {}
Deferred_log_events::~Deferred_log_events() { m_array.clear(); }
int Deferred_log_events::add(Log_event *ev) {
m_array.push_back(ev);
ev->worker = nullptr; // to mark event busy avoiding deletion
return 0;
}
bool Deferred_log_events::is_empty() { return m_array.empty(); }
bool Deferred_log_events::execute(Relay_log_info *rli) {
bool res = false;
DBUG_ASSERT(rli->deferred_events_collecting);
rli->deferred_events_collecting = false;
for (Log_event **it = m_array.begin(); !res && it != m_array.end(); ++it) {
Log_event *ev = *it;
res = ev->apply_event(rli);
}
rli->deferred_events_collecting = true;
return res;
}
void Deferred_log_events::rewind() {
/*
Reset preceding Query log event events which execution was
deferred because of slave side filtering.
*/
delete_container_pointers(m_array);
m_array.shrink_to_fit();
}
std::string replace_all_in_str(std::string from, std::string find,
std::string replace) {
std::string to{from.data()};
if (to.length() == 0) {
return to;
}
size_t start{0};
while ((start = to.find(find, start)) != std::string::npos) {
to.replace(start, find.size(), replace);
start += replace.length();
}
return to;
}
#endif
#ifdef MYSQL_SERVER
THD_instance_guard::THD_instance_guard(THD *thd)
: m_is_locally_initialized{thd == nullptr} {
if (this->m_is_locally_initialized) {
this->m_target = new THD;
this->m_target->thread_stack = (char *)&this->m_target;
this->m_target->store_globals();
this->m_target->security_context()->skip_grants();
} else {
this->m_target = thd;
}
}
THD_instance_guard::~THD_instance_guard() {
if (this->m_is_locally_initialized) {
delete this->m_target;
}
}
THD_instance_guard::operator THD *() { return this->m_target; }
#endif // MYSQL_SERVER