用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3171 lines
112 KiB

/* Copyright (c) 2006, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include "sql/rpl_rli.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <algorithm>
#include <regex>
#include "libbinlogevents/include/binlog_event.h"
#include "m_ctype.h"
#include "mutex_lock.h" // Mutex_lock
#include "my_bitmap.h"
#include "my_dbug.h"
#include "my_dir.h" // MY_STAT
#include "my_sqlcommand.h"
#include "my_systime.h"
#include "my_thread.h"
#include "mysql/components/services/log_builtins.h"
#include "mysql/components/services/psi_stage_bits.h"
#include "mysql/plugin.h"
#include "mysql/psi/mysql_cond.h"
#include "mysql/psi/mysql_file.h"
#include "mysql/psi/psi_base.h"
#include "mysql/service_mysql_alloc.h"
#include "mysql/service_thd_wait.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "sql/auth/auth_acls.h" // SUPER_ACL
#include "sql/auth/roles.h" // Roles::Role_activation
#include "sql/auth/sql_auth_cache.h"
#include "sql/debug_sync.h"
#include "sql/derror.h"
#include "sql/log_event.h" // Log_event
#include "sql/mdl.h"
#include "sql/mysqld.h" // sync_relaylog_period ...
#include "sql/protocol.h"
#include "sql/rpl_info_factory.h" // Rpl_info_factory
#include "sql/rpl_info_handler.h"
#include "sql/rpl_mi.h" // Master_info
#include "sql/rpl_msr.h" // channel_map
#include "sql/rpl_reporting.h"
#include "sql/rpl_rli_pdb.h" // Slave_worker
#include "sql/rpl_slave.h"
#include "sql/rpl_trx_boundary_parser.h"
#include "sql/sql_base.h" // close_thread_tables
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_plugin.h"
#include "sql/strfunc.h" // strconvert
#include "sql/transaction.h" // trans_commit_stmt
#include "sql/transaction_info.h"
#include "sql/xa.h"
#include "sql_string.h"
#include "thr_mutex.h"
class Item;
using std::max;
using std::min;
/*
Please every time you add a new field to the relay log info, update
what follows. For now, this is just used to get the number of
fields.
*/
const char *info_rli_fields[] = {"number_of_lines",
"group_relay_log_name",
"group_relay_log_pos",
"group_master_log_name",
"group_master_log_pos",
"sql_delay",
"number_of_workers",
"id",
"channel_name",
"privilege_checks_user",
"privilege_checks_hostname"};
Relay_log_info::Relay_log_info(bool is_slave_recovery,
#ifdef HAVE_PSI_INTERFACE
PSI_mutex_key *param_key_info_run_lock,
PSI_mutex_key *param_key_info_data_lock,
PSI_mutex_key *param_key_info_sleep_lock,
PSI_mutex_key *param_key_info_thd_lock,
PSI_mutex_key *param_key_info_data_cond,
PSI_mutex_key *param_key_info_start_cond,
PSI_mutex_key *param_key_info_stop_cond,
PSI_mutex_key *param_key_info_sleep_cond,
#endif
uint param_id, const char *param_channel,
bool is_rli_fake)
: Rpl_info("SQL",
#ifdef HAVE_PSI_INTERFACE
param_key_info_run_lock, param_key_info_data_lock,
param_key_info_sleep_lock, param_key_info_thd_lock,
param_key_info_data_cond, param_key_info_start_cond,
param_key_info_stop_cond, param_key_info_sleep_cond,
#endif
param_id, param_channel),
replicate_same_server_id(::replicate_same_server_id),
relay_log(&sync_relaylog_period),
is_relay_log_recovery(is_slave_recovery),
save_temporary_tables(nullptr),
mi(nullptr),
error_on_rli_init_info(false),
gtid_timestamps_warning_logged(false),
group_relay_log_pos(0),
event_relay_log_number(0),
event_relay_log_pos(0),
event_start_pos(0),
group_master_log_pos(0),
gtid_set(nullptr),
rli_fake(is_rli_fake),
gtid_retrieved_initialized(false),
m_privilege_checks_username{""},
m_privilege_checks_hostname{""},
m_privilege_checks_user_corrupted{false},
is_group_master_log_pos_invalid(false),
log_space_total(0),
ignore_log_space_limit(0),
sql_force_rotate_relay(false),
last_master_timestamp(0),
slave_skip_counter(0),
abort_pos_wait(0),
until_condition(UNTIL_NONE),
trans_retries(0),
retried_trans(0),
tables_to_lock(nullptr),
tables_to_lock_count(0),
rows_query_ev(nullptr),
last_event_start_time(0),
deferred_events(nullptr),
workers(PSI_NOT_INSTRUMENTED),
workers_array_initialized(false),
curr_group_assigned_parts(PSI_NOT_INSTRUMENTED),
curr_group_da(PSI_NOT_INSTRUMENTED),
curr_group_seen_begin(false),
mts_end_group_sets_max_dbs(false),
slave_parallel_workers(0),
exit_counter(0),
max_updated_index(0),
recovery_parallel_workers(0),
rli_checkpoint_seqno(0),
checkpoint_group(opt_mts_checkpoint_group),
recovery_groups_inited(false),
mts_recovery_group_cnt(0),
mts_recovery_index(0),
mts_recovery_group_seen_begin(0),
mts_group_status(MTS_NOT_IN_GROUP),
stats_exec_time(0),
stats_read_time(0),
least_occupied_workers(PSI_NOT_INSTRUMENTED),
current_mts_submode(nullptr),
reported_unsafe_warning(false),
rli_description_event(nullptr),
commit_order_mngr(nullptr),
sql_delay(0),
sql_delay_end(0),
m_flags(0),
row_stmt_start_timestamp(0),
long_find_row_note_printed(false),
thd_tx_priority(0),
is_engine_ha_data_detached(false),
current_event(nullptr),
ddl_not_atomic(false) {
DBUG_TRACE;
#ifdef HAVE_PSI_INTERFACE
relay_log.set_psi_keys(key_RELAYLOG_LOCK_index, key_RELAYLOG_LOCK_commit,
key_RELAYLOG_LOCK_commit_queue, key_RELAYLOG_LOCK_done,
key_RELAYLOG_LOCK_flush_queue, key_RELAYLOG_LOCK_log,
key_RELAYLOG_LOCK_log_end_pos, key_RELAYLOG_LOCK_sync,
key_RELAYLOG_LOCK_sync_queue, key_RELAYLOG_LOCK_xids,
key_RELAYLOG_COND_done, key_RELAYLOG_update_cond,
key_RELAYLOG_prep_xids_cond, key_file_relaylog,
key_file_relaylog_index, key_file_relaylog_cache,
key_file_relaylog_index_cache);
#endif
group_relay_log_name[0] = event_relay_log_name[0] = group_master_log_name[0] =
0;
ign_master_log_name_end[0] = 0;
set_timespec_nsec(&last_clock, 0);
cached_charset_invalidate();
inited_hash_workers = false;
commit_timestamps_status = COMMIT_TS_UNKNOWN;
if (!rli_fake) {
mysql_mutex_init(key_relay_log_info_log_space_lock, &log_space_lock,
MY_MUTEX_INIT_FAST);
mysql_cond_init(key_relay_log_info_log_space_cond, &log_space_cond);
mysql_mutex_init(key_mutex_slave_parallel_pend_jobs, &pending_jobs_lock,
MY_MUTEX_INIT_FAST);
mysql_cond_init(key_cond_slave_parallel_pend_jobs, &pending_jobs_cond);
mysql_mutex_init(key_mutex_slave_parallel_worker_count, &exit_count_lock,
MY_MUTEX_INIT_FAST);
mysql_mutex_init(key_mts_temp_table_LOCK, &mts_temp_table_LOCK,
MY_MUTEX_INIT_FAST);
mysql_mutex_init(key_mts_gaq_LOCK, &mts_gaq_LOCK, MY_MUTEX_INIT_FAST);
mysql_cond_init(key_cond_mts_gaq, &logical_clock_cond);
relay_log.init_pthread_objects();
force_flush_postponed_due_to_split_trans = false;
Checkable_rwlock *sid_lock = new Checkable_rwlock(
#if defined(HAVE_PSI_INTERFACE)
key_rwlock_receiver_sid_lock
#endif
);
Sid_map *sid_map = new Sid_map(sid_lock);
gtid_set = new Gtid_set(sid_map, sid_lock);
}
gtid_monitoring_info = new Gtid_monitoring_info();
do_server_version_split(::server_version, slave_version_split);
until_option = nullptr;
rpl_filter = nullptr;
}
/**
The method to invoke at slave threads start
*/
void Relay_log_info::init_workers(ulong n_workers) {
/*
Parallel slave parameters initialization is done regardless
whether the feature is or going to be active or not.
*/
mts_groups_assigned = mts_events_assigned = pending_jobs = wq_size_waits_cnt =
0;
mts_wq_excess_cnt = mts_wq_no_underrun_cnt = mts_wq_overfill_cnt = 0;
mts_total_wait_overlap = 0;
mts_total_wait_worker_avail = 0;
mts_last_online_stat = 0;
workers.reserve(n_workers);
workers_array_initialized = true; // set after init
}
/**
The method to invoke at slave threads stop
*/
void Relay_log_info::deinit_workers() { workers.clear(); }
Relay_log_info::~Relay_log_info() {
DBUG_TRACE;
if (!rli_fake) {
if (recovery_groups_inited) bitmap_free(&recovery_groups);
delete current_mts_submode;
if (rpl_filter != nullptr) {
/* Remove the channel's replication filter from rpl_channel_filters. */
rpl_channel_filters.delete_filter(rpl_filter);
rpl_filter = nullptr;
}
if (workers_copy_pfs.size()) {
for (int i = static_cast<int>(workers_copy_pfs.size()) - 1; i >= 0; i--)
delete workers_copy_pfs[i];
workers_copy_pfs.clear();
}
mysql_mutex_destroy(&log_space_lock);
mysql_cond_destroy(&log_space_cond);
mysql_mutex_destroy(&pending_jobs_lock);
mysql_cond_destroy(&pending_jobs_cond);
mysql_mutex_destroy(&exit_count_lock);
mysql_mutex_destroy(&mts_temp_table_LOCK);
mysql_mutex_destroy(&mts_gaq_LOCK);
mysql_cond_destroy(&logical_clock_cond);
relay_log.cleanup();
Sid_map *sid_map = gtid_set->get_sid_map();
Checkable_rwlock *sid_lock = sid_map->get_sid_lock();
sid_lock->wrlock();
gtid_set->clear();
sid_map->clear();
delete gtid_set;
delete sid_map;
sid_lock->unlock();
delete sid_lock;
}
if (set_rli_description_event(nullptr)) {
#ifndef DBUG_OFF
bool set_rli_description_event_failed{false};
#endif
DBUG_ASSERT(set_rli_description_event_failed);
}
delete until_option;
delete gtid_monitoring_info;
}
/**
Method is called when MTS coordinator senses the relay-log name
has been changed.
It marks each Worker member with this fact to make an action
at time it will distribute a terminal event of a group to the Worker.
Worker receives the new name at the group commiting phase
@c Slave_worker::slave_worker_ends_group().
*/
void Relay_log_info::reset_notified_relay_log_change() {
if (!is_parallel_exec()) return;
for (Slave_worker **it = workers.begin(); it != workers.end(); ++it) {
Slave_worker *w = *it;
w->relay_log_change_notified = false;
}
}
/**
This method is called in mts_checkpoint_routine() to mark that each
worker is required to adapt to a new checkpoint data whose coordinates
are passed to it through GAQ index.
Worker notices the new checkpoint value at the group commit to reset
the current bitmap and starts using the clean bitmap indexed from zero
of being reset rli_checkpoint_seqno.
New seconds_behind_master timestamp is installed.
@param shift number of bits to shift by Worker due to the
current checkpoint change.
@param new_ts new seconds_behind_master timestamp value
unless zero. Zero could be due to FD event
or fake rotate event.
@param update_timestamp if true, this function will update the
rli->last_master_timestamp.
*/
void Relay_log_info::reset_notified_checkpoint(ulong shift, time_t new_ts,
bool update_timestamp) {
/*
If this is not a parallel execution we return immediately.
*/
if (!is_parallel_exec()) return;
for (Slave_worker **it = workers.begin(); it != workers.end(); ++it) {
Slave_worker *w = *it;
/*
Reseting the notification information in order to force workers to
assign jobs with the new updated information.
Notice that the bitmap_shifted is accumulated to indicate how many
consecutive jobs were successfully processed.
The worker when assigning a new job will set the value back to
zero.
*/
w->checkpoint_notified = false;
w->bitmap_shifted = w->bitmap_shifted + shift;
/*
Zero shift indicates the caller rotates the master binlog.
The new name will be passed to W through the group descriptor
during the first post-rotation time scheduling.
*/
if (shift == 0) w->master_log_change_notified = false;
DBUG_PRINT("mts", ("reset_notified_checkpoint shift --> %lu, "
"worker->bitmap_shifted --> %lu, worker --> %u.",
shift, w->bitmap_shifted,
static_cast<unsigned>(it - workers.begin())));
}
/*
There should not be a call where (shift == 0 && rli_checkpoint_seqno != 0).
Then the new checkpoint sequence is updated by subtracting the number
of consecutive jobs that were successfully processed.
*/
DBUG_ASSERT(current_mts_submode->get_type() != MTS_PARALLEL_TYPE_DB_NAME ||
!(shift == 0 && rli_checkpoint_seqno != 0));
rli_checkpoint_seqno = rli_checkpoint_seqno - shift;
DBUG_PRINT("mts", ("reset_notified_checkpoint shift --> %lu, "
"rli_checkpoint_seqno --> %u.",
shift, rli_checkpoint_seqno));
if (update_timestamp) {
mysql_mutex_lock(&data_lock);
last_master_timestamp = new_ts;
mysql_mutex_unlock(&data_lock);
}
}
/**
Reset recovery info from Worker info table and
mark MTS recovery is completed.
@return false on success true when @c reset_notified_checkpoint failed.
*/
bool Relay_log_info::mts_finalize_recovery() {
bool ret = false;
uint i;
uint repo_type = get_rpl_info_handler()->get_rpl_info_type();
DBUG_TRACE;
for (Slave_worker **it = workers.begin(); !ret && it != workers.end(); ++it) {
Slave_worker *w = *it;
ret = w->reset_recovery_info();
DBUG_EXECUTE_IF("mts_debug_recovery_reset_fails", ret = true;);
}
/*
The loop is traversed in the worker index descending order due
to specifics of the Worker table repository that does not like
even temporary holes. Therefore stale records are deleted
from the tail.
*/
DBUG_EXECUTE_IF("enable_mts_wokrer_failure_in_recovery_finalize",
{ DBUG_SET("+d,mts_worker_thread_init_fails"); });
for (i = recovery_parallel_workers; i > workers.size() && !ret; i--) {
Slave_worker *w =
Rpl_info_factory::create_worker(repo_type, i - 1, this, true);
/*
If an error occurs during the above create_worker call, the newly created
worker object gets deleted within the above function call itself and only
NULL is returned. Hence the following check has been added to verify
that a valid worker object exists.
*/
if (w) {
ret = w->remove_info();
delete w;
} else {
ret = true;
goto err;
}
}
recovery_parallel_workers = slave_parallel_workers;
err:
return ret;
}
static inline int add_relay_log(Relay_log_info *rli, LOG_INFO *linfo) {
MY_STAT s;
DBUG_TRACE;
mysql_mutex_assert_owner(&rli->log_space_lock);
if (!mysql_file_stat(key_file_relaylog, linfo->log_file_name, &s, MYF(0))) {
LogErr(ERROR_LEVEL, ER_RPL_FAILED_TO_STAT_LOG_IN_INDEX,
linfo->log_file_name);
return 1;
}
rli->log_space_total += s.st_size;
#ifndef DBUG_OFF
char buf[22];
DBUG_PRINT("info", ("log_space_total: %s", llstr(rli->log_space_total, buf)));
#endif
return 0;
}
int Relay_log_info::count_relay_log_space() {
LOG_INFO flinfo;
DBUG_TRACE;
MUTEX_LOCK(lock, &log_space_lock);
log_space_total = 0;
if (relay_log.find_log_pos(&flinfo, NullS, 1)) {
LogErr(ERROR_LEVEL, ER_RPL_LOG_NOT_FOUND_WHILE_COUNTING_RELAY_LOG_SPACE);
return 1;
}
do {
if (add_relay_log(this, &flinfo)) return 1;
} while (!relay_log.find_next_log(&flinfo, 1));
/*
As we have counted everything, including what may have written in a
preceding write, we must reset bytes_written, or we may count some space
twice.
*/
relay_log.reset_bytes_written();
return 0;
}
bool Relay_log_info::reset_group_relay_log_pos(const char **errmsg) {
LOG_INFO linfo;
mysql_mutex_assert_owner(&data_lock);
if (relay_log.find_log_pos(&linfo, NullS, 1)) {
*errmsg = "Could not find first log during relay log initialization";
return true;
}
set_group_relay_log_name(linfo.log_file_name);
group_relay_log_pos = BIN_LOG_HEADER_SIZE;
return false;
}
bool Relay_log_info::is_group_relay_log_name_invalid(const char **errmsg) {
DBUG_TRACE;
const char *errmsg_fmt = nullptr;
static char errmsg_buff[MYSQL_ERRMSG_SIZE + FN_REFLEN];
LOG_INFO linfo;
*errmsg = 0;
if (relay_log.find_log_pos(&linfo, group_relay_log_name, 1)) {
errmsg_fmt =
"Could not find target log file mentioned in "
"relay log info in the index file '%s' during "
"relay log initialization";
sprintf(errmsg_buff, errmsg_fmt, relay_log.get_index_fname());
*errmsg = errmsg_buff;
return true;
}
return false;
}
/**
Update the error number, message and timestamp fields. This function is
different from va_report() as va_report() also logs the error message in the
log apart from updating the error fields.
SYNOPSIS
@param[in] level specifies the level- error, warning or information,
@param[in] err_code error number,
@param[in] buff_coord error message to be used.
*/
void Relay_log_info::fill_coord_err_buf(loglevel level, int err_code,
const char *buff_coord) const {
mysql_mutex_lock(&err_lock);
if (level == ERROR_LEVEL) {
m_last_error.number = err_code;
snprintf(m_last_error.message, sizeof(m_last_error.message), "%.*s",
MAX_SLAVE_ERRMSG - 1, buff_coord);
m_last_error.update_timestamp();
}
mysql_mutex_unlock(&err_lock);
}
/**
Waits until the SQL thread reaches (has executed up to) the
log/position or timed out.
SYNOPSIS
@param[in] thd client thread that sent @c SELECT @c
MASTER_POS_WAIT,
@param[in] log_name log name to wait for,
@param[in] log_pos position to wait for,
@param[in] timeout @c timeout in seconds before giving up waiting.
@c timeout is double whereas it should be ulong;
but this is to catch if the user submitted a negative timeout.
@retval -2 improper arguments (log_pos<0)
or slave not running, or master info changed
during the function's execution,
or client thread killed. -2 is translated to NULL by caller,
@retval -1 timed out
@retval >=0 number of log events the function had to wait
before reaching the desired log/position
*/
int Relay_log_info::wait_for_pos(THD *thd, String *log_name, longlong log_pos,
double timeout) {
int event_count = 0;
ulong init_abort_pos_wait;
int error = 0;
struct timespec abstime; // for timeout checking
PSI_stage_info old_stage;
DBUG_TRACE;
if (!inited) return -2;
DBUG_PRINT("enter", ("log_name: '%s' log_pos: %lu timeout: %lu",
log_name->c_ptr_safe(), (ulong)log_pos, (ulong)timeout));
DEBUG_SYNC(thd, "begin_master_pos_wait");
set_timespec_nsec(&abstime, static_cast<ulonglong>(timeout * 1000000000ULL));
mysql_mutex_lock(&data_lock);
thd->ENTER_COND(&data_cond, &data_lock,
&stage_waiting_for_the_slave_thread_to_advance_position,
&old_stage);
/*
This function will abort when it notices that some CHANGE MASTER or
RESET MASTER has changed the master info.
To catch this, these commands modify abort_pos_wait ; We just monitor
abort_pos_wait and see if it has changed.
Why do we have this mechanism instead of simply monitoring slave_running
in the loop (we do this too), as CHANGE MASTER/RESET SLAVE require that
the SQL thread be stopped?
This is becasue if someones does:
STOP SLAVE;CHANGE MASTER/RESET SLAVE; START SLAVE;
the change may happen very quickly and we may not notice that
slave_running briefly switches between 1/0/1.
*/
init_abort_pos_wait = abort_pos_wait;
/*
We'll need to
handle all possible log names comparisons (e.g. 999 vs 1000).
We use ulong for string->number conversion ; this is no
stronger limitation than in find_uniq_filename in sql/log.cc
*/
ulong log_name_extension;
char log_name_tmp[FN_REFLEN]; // make a char[] from String
strmake(log_name_tmp, log_name->ptr(),
min<uint32>(log_name->length(), FN_REFLEN - 1));
const char *p = fn_ext(log_name_tmp);
char *p_end;
if (!*p || log_pos < 0) {
error = -2; // means improper arguments
goto err;
}
// Convert 0-3 to 4
log_pos = max(log_pos, static_cast<longlong>(BIN_LOG_HEADER_SIZE));
/* p points to '.' */
log_name_extension = strtoul(++p, &p_end, 10);
/*
p_end points to the first invalid character.
If it equals to p, no digits were found, error.
If it contains '\0' it means conversion went ok.
*/
if (p_end == p || *p_end) {
error = -2;
goto err;
}
/* The "compare and wait" main loop */
while (!thd->killed && init_abort_pos_wait == abort_pos_wait &&
slave_running) {
bool pos_reached;
int cmp_result = 0;
DBUG_PRINT("info", ("init_abort_pos_wait: %ld abort_pos_wait: %ld",
init_abort_pos_wait, abort_pos_wait));
DBUG_PRINT("info", ("group_master_log_name: '%s' pos: %lu",
group_master_log_name, (ulong)group_master_log_pos));
/*
group_master_log_name can be "", if we are just after a fresh
replication start or after a CHANGE MASTER TO MASTER_HOST/PORT
(before we have executed one Rotate event from the master) or
(rare) if the user is doing a weird slave setup (see next
paragraph). If group_master_log_name is "", we assume we don't
have enough info to do the comparison yet, so we just wait until
more data. In this case master_log_pos is always 0 except if
somebody (wrongly) sets this slave to be a slave of itself
without using --replicate-same-server-id (an unsupported
configuration which does nothing), then group_master_log_pos
will grow and group_master_log_name will stay "".
Also in case the group master log position is invalid (e.g. after
CHANGE MASTER TO RELAY_LOG_POS ), we will wait till the first event
is read and the log position is valid again.
*/
if (*group_master_log_name && !is_group_master_log_pos_invalid) {
char *basename =
(group_master_log_name + dirname_length(group_master_log_name));
/*
First compare the parts before the extension.
Find the dot in the master's log basename,
and protect against user's input error :
if the names do not match up to '.' included, return error
*/
const char *q = fn_ext(basename) + 1;
if (strncmp(basename, log_name_tmp, (int)(q - basename))) {
error = -2;
break;
}
// Now compare extensions.
char *q_end;
ulong group_master_log_name_extension = strtoul(q, &q_end, 10);
if (group_master_log_name_extension < log_name_extension)
cmp_result = -1;
else
cmp_result =
(group_master_log_name_extension > log_name_extension) ? 1 : 0;
pos_reached =
((!cmp_result && group_master_log_pos >= (ulonglong)log_pos) ||
cmp_result > 0);
if (pos_reached || thd->killed) break;
}
// wait for master update, with optional timeout.
DBUG_PRINT("info", ("Waiting for master update"));
/*
We are going to mysql_cond_(timed)wait(); if the SQL thread stops it
will wake us up.
*/
thd_wait_begin(thd, THD_WAIT_BINLOG);
if (timeout > 0) {
/*
Note that mysql_cond_timedwait checks for the timeout
before for the condition ; i.e. it returns ETIMEDOUT
if the system time equals or exceeds the time specified by abstime
before the condition variable is signaled or broadcast, _or_ if
the absolute time specified by abstime has already passed at the time
of the call.
For that reason, mysql_cond_timedwait will do the "timeoutting" job
even if its condition is always immediately signaled (case of a loaded
master).
*/
error = mysql_cond_timedwait(&data_cond, &data_lock, &abstime);
} else
mysql_cond_wait(&data_cond, &data_lock);
thd_wait_end(thd);
DBUG_PRINT("info", ("Got signal of master update or timed out"));
if (is_timeout(error)) {
#ifndef DBUG_OFF
/*
Doing this to generate a stack trace and make debugging
easier.
*/
if (DBUG_EVALUATE_IF("debug_crash_slave_time_out", 1, 0)) DBUG_ASSERT(0);
#endif
error = -1;
break;
}
error = 0;
event_count++;
DBUG_PRINT("info", ("Testing if killed or SQL thread not running"));
}
err:
mysql_mutex_unlock(&data_lock);
thd->EXIT_COND(&old_stage);
DBUG_PRINT("exit",
("killed: %d abort: %d slave_running: %d "
"improper_arguments: %d timed_out: %d",
thd->killed.load(), (int)(init_abort_pos_wait != abort_pos_wait),
(int)slave_running, (int)(error == -2), (int)(error == -1)));
if (thd->killed || init_abort_pos_wait != abort_pos_wait || !slave_running) {
error = -2;
}
return error ? error : event_count;
}
int Relay_log_info::wait_for_gtid_set(THD *thd, const char *gtid,
double timeout, bool update_THD_status) {
DBUG_TRACE;
DBUG_PRINT("info", ("Waiting for %s timeout %lf", gtid, timeout));
Gtid_set wait_gtid_set(global_sid_map);
global_sid_lock->rdlock();
enum_return_status ret = wait_gtid_set.add_gtid_text(gtid);
global_sid_lock->unlock();
if (ret != RETURN_STATUS_OK) {
DBUG_PRINT("exit", ("improper gtid argument"));
return -2;
}
return wait_for_gtid_set(thd, &wait_gtid_set, timeout, update_THD_status);
}
int Relay_log_info::wait_for_gtid_set(THD *thd, String *gtid, double timeout,
bool update_THD_status) {
DBUG_TRACE;
return wait_for_gtid_set(thd, gtid->c_ptr_safe(), timeout, update_THD_status);
}
/*
TODO: This is a duplicated code that needs to be simplified.
This will be done while developing all possible sync options.
See WL#3584's specification.
/Alfranio
*/
int Relay_log_info::wait_for_gtid_set(THD *thd, const Gtid_set *wait_gtid_set,
double timeout, bool update_THD_status) {
int event_count = 0;
ulong init_abort_pos_wait;
int error = 0;
struct timespec abstime; // for timeout checking
PSI_stage_info old_stage;
DBUG_TRACE;
if (!inited) return -2;
DEBUG_SYNC(thd, "begin_wait_for_gtid_set");
set_timespec_nsec(&abstime, static_cast<ulonglong>(timeout * 1000000000ULL));
mysql_mutex_lock(&data_lock);
if (update_THD_status)
thd->ENTER_COND(&data_cond, &data_lock,
&stage_waiting_for_the_slave_thread_to_advance_position,
&old_stage);
/*
This function will abort when it notices that some CHANGE MASTER or
RESET MASTER has changed the master info.
To catch this, these commands modify abort_pos_wait ; We just monitor
abort_pos_wait and see if it has changed.
Why do we have this mechanism instead of simply monitoring slave_running
in the loop (we do this too), as CHANGE MASTER/RESET SLAVE require that
the SQL thread be stopped?
This is becasue if someones does:
STOP SLAVE;CHANGE MASTER/RESET SLAVE; START SLAVE;
the change may happen very quickly and we may not notice that
slave_running briefly switches between 1/0/1.
*/
init_abort_pos_wait = abort_pos_wait;
/* The "compare and wait" main loop */
while (!thd->killed && init_abort_pos_wait == abort_pos_wait &&
slave_running) {
DBUG_PRINT("info", ("init_abort_pos_wait: %ld abort_pos_wait: %ld",
init_abort_pos_wait, abort_pos_wait));
// wait for master update, with optional timeout.
DBUG_ASSERT(wait_gtid_set->get_sid_map() == nullptr ||
wait_gtid_set->get_sid_map() == global_sid_map);
global_sid_lock->wrlock();
const Gtid_set *executed_gtids = gtid_state->get_executed_gtids();
const Owned_gtids *owned_gtids = gtid_state->get_owned_gtids();
#ifndef DBUG_OFF
char *wait_gtid_set_buf;
wait_gtid_set->to_string(&wait_gtid_set_buf);
DBUG_PRINT("info",
("Waiting for '%s'. is_subset: %d and "
"!is_intersection_nonempty: %d",
wait_gtid_set_buf, wait_gtid_set->is_subset(executed_gtids),
!owned_gtids->is_intersection_nonempty(wait_gtid_set)));
my_free(wait_gtid_set_buf);
executed_gtids->dbug_print("gtid_executed:");
owned_gtids->dbug_print("owned_gtids:");
#endif
/*
Since commit is performed after log to binary log, we must also
check if any GTID of wait_gtid_set is not yet committed.
*/
if (wait_gtid_set->is_subset(executed_gtids) &&
!owned_gtids->is_intersection_nonempty(wait_gtid_set)) {
global_sid_lock->unlock();
break;
}
global_sid_lock->unlock();
DBUG_PRINT("info", ("Waiting for master update"));
/*
We are going to mysql_cond_(timed)wait(); if the SQL thread stops it
will wake us up.
*/
thd_wait_begin(thd, THD_WAIT_BINLOG);
if (timeout > 0) {
/*
Note that mysql_cond_timedwait checks for the timeout
before for the condition ; i.e. it returns ETIMEDOUT
if the system time equals or exceeds the time specified by abstime
before the condition variable is signaled or broadcast, _or_ if
the absolute time specified by abstime has already passed at the time
of the call.
For that reason, mysql_cond_timedwait will do the "timeoutting" job
even if its condition is always immediately signaled (case of a loaded
master).
*/
error = mysql_cond_timedwait(&data_cond, &data_lock, &abstime);
} else
mysql_cond_wait(&data_cond, &data_lock);
thd_wait_end(thd);
DBUG_PRINT("info", ("Got signal of master update or timed out"));
if (is_timeout(error)) {
#ifndef DBUG_OFF
/*
Doing this to generate a stack trace and make debugging
easier.
*/
if (DBUG_EVALUATE_IF("debug_crash_slave_time_out", 1, 0)) DBUG_ASSERT(0);
#endif
error = -1;
break;
}
error = 0;
event_count++;
DBUG_PRINT("info", ("Testing if killed or SQL thread not running"));
}
mysql_mutex_unlock(&data_lock);
if (update_THD_status) thd->EXIT_COND(&old_stage);
DBUG_PRINT("exit",
("killed: %d abort: %d slave_running: %d "
"improper_arguments: %d timed_out: %d",
thd->killed.load(), (int)(init_abort_pos_wait != abort_pos_wait),
(int)slave_running, (int)(error == -2), (int)(error == -1)));
if (thd->killed || init_abort_pos_wait != abort_pos_wait || !slave_running) {
error = -2;
}
return error ? error : event_count;
}
int Relay_log_info::inc_group_relay_log_pos(ulonglong log_pos,
bool need_data_lock, bool force) {
int error = 0;
DBUG_TRACE;
if (need_data_lock)
mysql_mutex_lock(&data_lock);
else
mysql_mutex_assert_owner(&data_lock);
inc_event_relay_log_pos();
group_relay_log_pos = event_relay_log_pos;
strmake(group_relay_log_name, event_relay_log_name,
sizeof(group_relay_log_name) - 1);
/*
In 4.x we used the event's len to compute the positions here. This is
wrong if the event was 3.23/4.0 and has been converted to 5.0, because
then the event's len is not what is was in the master's binlog, so this
will make a wrong group_master_log_pos (yes it's a bug in 3.23->4.0
replication: Exec_master_log_pos is wrong). Only way to solve this is to
have the original offset of the end of the event the relay log. This is
what we do in 5.0: log_pos has become "end_log_pos" (because the real use
of log_pos in 4.0 was to compute the end_log_pos; so better to store
end_log_pos instead of begin_log_pos.
If we had not done this fix here, the problem would also have appeared
when the slave and master are 5.0 but with different event length (for
example the slave is more recent than the master and features the event
UID). It would give false MASTER_POS_WAIT, false Exec_master_log_pos in
SHOW SLAVE STATUS, and so the user would do some CHANGE MASTER using this
value which would lead to badly broken replication.
Even the relay_log_pos will be corrupted in this case, because the len is
the relay log is not "val".
With the end_log_pos solution, we avoid computations involving lengthes.
*/
DBUG_PRINT("info", ("log_pos: %lu group_master_log_pos: %lu", (long)log_pos,
(long)group_master_log_pos));
if (log_pos > 0) // 3.23 binlogs don't have log_posx
group_master_log_pos = log_pos;
/*
If the master log position was invalidiated by say, "CHANGE MASTER TO
RELAY_LOG_POS=N", it is now valid,
*/
if (is_group_master_log_pos_invalid) is_group_master_log_pos_invalid = false;
/*
In MTS mode FD or Rotate event commit their solitary group to
Coordinator's info table. Callers make sure that Workers have been
executed all assignements.
Broadcast to master_pos_wait() waiters should be done after
the table is updated.
*/
DBUG_ASSERT(!is_parallel_exec() ||
mts_group_status != Relay_log_info::MTS_IN_GROUP);
/*
We do not force synchronization at this point, except for Rotate event
(see Rotate_log_event::do_update_pos), note @c force is false by default,
because a non-transactional change is being committed.
For that reason, the synchronization here is subjected to
the option sync_relay_log_info.
See sql/rpl_rli.h for further information on this behavior.
*/
error = flush_info(force);
mysql_cond_broadcast(&data_cond);
if (need_data_lock) mysql_mutex_unlock(&data_lock);
return error;
}
void Relay_log_info::close_temporary_tables() {
TABLE *table, *next;
int num_closed_temp_tables = 0;
DBUG_TRACE;
for (table = save_temporary_tables; table; table = next) {
next = table->next;
/*
Don't ask for disk deletion. For now, anyway they will be deleted when
slave restarts, but it is a better intention to not delete them.
*/
DBUG_PRINT("info", ("table: %p", table));
close_temporary(nullptr, table, true, false);
num_closed_temp_tables++;
}
save_temporary_tables = nullptr;
atomic_slave_open_temp_tables -= num_closed_temp_tables;
atomic_channel_open_temp_tables -= num_closed_temp_tables;
}
/**
Purges relay logs. It assumes to have a run lock on rli and that no
slave thread are running.
@param[in] thd connection,
@param[out] errmsg store pointer to an error message.
@param[in] delete_only If true, do not start writing to a new log file.
@retval 0 successfully executed,
@retval 1 otherwise error, where errmsg is set to point to the error message.
*/
int Relay_log_info::purge_relay_logs(THD *thd, const char **errmsg,
bool delete_only) {
int error = 0;
const char *ln;
/* name of the index file if opt_relaylog_index_name is set*/
const char *log_index_name;
/*
Buffer to add channel name suffix when relay-log-index option is
provided
*/
char relay_bin_index_channel[FN_REFLEN];
const char *ln_without_channel_name;
/*
Buffer to add channel name suffix when relay-log option is provided.
*/
char relay_bin_channel[FN_REFLEN];
char buffer[FN_REFLEN];
mysql_mutex_t *log_lock = relay_log.get_log_lock();
DBUG_TRACE;
/*
Even if inited==0, we still try to empty master_log_* variables. Indeed,
inited==0 does not imply that they already are empty.
It could be that slave's info initialization partly succeeded: for example
if relay-log.info existed but all relay logs have been manually removed,
init_info reads the old relay-log.info and fills rli->master_log_*, then
init_info checks for the existence of the relay log, this fails and
init_info leaves inited to 0.
In that pathological case, master_log_pos* will be properly reinited at
the next START SLAVE (as RESET SLAVE or CHANGE MASTER, the callers of
purge_relay_logs, will delete bogus *.info files or replace them with
correct files), however if the user does SHOW SLAVE STATUS before START
SLAVE, he will see old, confusing master_log_*. In other words, we reinit
master_log_* for SHOW SLAVE STATUS to display fine in any case.
*/
group_master_log_name[0] = 0;
group_master_log_pos = 0;
/*
Following the the relay log purge, the master_log_pos will be in sync
with relay_log_pos, so the flag should be cleared. Refer bug#11766010.
*/
is_group_master_log_pos_invalid = false;
if (!inited) {
DBUG_PRINT("info", ("inited == 0"));
if (error_on_rli_init_info ||
/*
mi->reset means that the channel was reset but still exists. Channel
shall have the index and the first relay log file.
Those files shall be remove in a following RESET SLAVE ALL (even when
channel was not inited again).
*/
(mi->reset && delete_only)) {
DBUG_ASSERT(relay_log.is_relay_log);
ln_without_channel_name =
relay_log.generate_name(opt_relay_logname, "-relay-bin", buffer);
ln = add_channel_to_relay_log_name(relay_bin_channel, FN_REFLEN,
ln_without_channel_name);
if (opt_relaylog_index_name_supplied) {
char index_file_withoutext[FN_REFLEN];
relay_log.generate_name(opt_relaylog_index_name, "",
index_file_withoutext);
log_index_name = add_channel_to_relay_log_name(
relay_bin_index_channel, FN_REFLEN, index_file_withoutext);
} else
log_index_name = 0;
if (relay_log.open_index_file(log_index_name, ln, true)) {
LogErr(ERROR_LEVEL, ER_SLAVE_RELAY_LOG_PURGE_FAILED,
"Failed to open relay log index file:",
relay_log.get_index_fname());
return 1;
}
mysql_mutex_lock(&mi->data_lock);
mysql_mutex_lock(log_lock);
if (relay_log.open_binlog(
ln, 0,
(max_relay_log_size ? max_relay_log_size : max_binlog_size), true,
true /*need_lock_index=true*/, true /*need_sid_lock=true*/,
mi->get_mi_description_event())) {
mysql_mutex_unlock(log_lock);
mysql_mutex_unlock(&mi->data_lock);
LogErr(ERROR_LEVEL, ER_SLAVE_RELAY_LOG_PURGE_FAILED,
"Failed to open relay log file:", relay_log.get_log_fname());
return 1;
}
mysql_mutex_unlock(log_lock);
mysql_mutex_unlock(&mi->data_lock);
} else
return 0;
} else {
DBUG_ASSERT(slave_running == 0);
DBUG_ASSERT(mi->slave_running == 0);
}
/* Reset the transaction boundary parser and clear the last GTID queued */
mi->transaction_parser.reset();
mysql_mutex_lock(&mi->data_lock);
mi->clear_gtid_monitoring_info();
mysql_mutex_unlock(&mi->data_lock);
slave_skip_counter = 0;
mysql_mutex_lock(&data_lock);
/**
Clear the retrieved gtid set for this channel.
*/
get_sid_lock()->wrlock();
(const_cast<Gtid_set *>(get_gtid_set()))->clear_set_and_sid_map();
get_sid_lock()->unlock();
if (relay_log.reset_logs(thd, delete_only)) {
*errmsg = "Failed during log reset";
error = 1;
goto err;
}
/* Save name of used relay log file */
set_group_relay_log_name(relay_log.get_log_fname());
group_relay_log_pos = BIN_LOG_HEADER_SIZE;
if (!delete_only && count_relay_log_space()) {
*errmsg = "Error counting relay log space";
error = 1;
goto err;
}
if (!inited && error_on_rli_init_info)
relay_log.close(LOG_CLOSE_INDEX | LOG_CLOSE_STOP_EVENT,
true /*need_lock_log=true*/, true /*need_lock_index=true*/);
err:
#ifndef DBUG_OFF
char buf[22];
#endif
DBUG_PRINT("info", ("log_space_total: %s", llstr(log_space_total, buf)));
mysql_mutex_unlock(&data_lock);
return error;
}
const char *Relay_log_info::add_channel_to_relay_log_name(
char *buff, uint buff_size, const char *base_name) {
char *ptr;
char channel_to_file[FN_REFLEN];
uint errors, length;
uint base_name_len;
uint suffix_buff_size;
DBUG_ASSERT(base_name != nullptr);
base_name_len = strlen(base_name);
suffix_buff_size = buff_size - base_name_len;
ptr = strmake(buff, base_name, buff_size - 1);
if (channel[0]) {
/* adding a "-" */
ptr = strmake(ptr, "-", suffix_buff_size - 1);
/*
Convert the channel name to the file names charset.
Channel name is in system_charset which is UTF8_general_ci
as it was defined as utf8 in the mysql.slaveinfo tables.
*/
length = strconvert(system_charset_info, channel, &my_charset_filename,
channel_to_file, NAME_LEN, &errors);
ptr = strmake(ptr, channel_to_file, suffix_buff_size - length - 1);
}
return (const char *)buff;
}
void Relay_log_info::cached_charset_invalidate() {
DBUG_TRACE;
/* Full of zeroes means uninitialized. */
memset(cached_charset, 0, sizeof(cached_charset));
}
bool Relay_log_info::cached_charset_compare(char *charset) const {
DBUG_TRACE;
if (memcmp(cached_charset, charset, sizeof(cached_charset))) {
memcpy(const_cast<char *>(cached_charset), charset, sizeof(cached_charset));
return 1;
}
return 0;
}
int Relay_log_info::stmt_done(my_off_t event_master_log_pos) {
clear_flag(IN_STMT);
DBUG_ASSERT(!belongs_to_client());
/* Worker does not execute binlog update position logics */
DBUG_ASSERT(!is_mts_worker(info_thd));
/*
Replication keeps event and group positions to specify the
set of events that were executed.
Event positions are incremented after processing each event
whereas group positions are incremented when an event or a
set of events is processed such as in a transaction and are
committed or rolled back.
A transaction can be ended with a Query Event, i.e. either
commit or rollback, or by a Xid Log Event. Query Event is
used to terminate pseudo-transactions that are executed
against non-transactional engines such as MyIsam. Xid Log
Event denotes though that a set of changes executed
against a transactional engine is about to commit.
Events' positions are incremented at stmt_done(). However,
transactions that are ended with Xid Log Event have their
group position incremented in the do_apply_event() and in
the do_apply_event_work().
Notice that the type of the engine, i.e. where data and
positions are stored, against what events are being applied
are not considered in this logic.
Regarding the code that follows, notice that the executed
group coordinates don't change if the current event is internal
to the group. The same applies to MTS Coordinator when it
handles a Format Descriptor event that appears in the middle
of a group that is about to be assigned.
*/
if ((!is_parallel_exec() && is_in_group()) ||
mts_group_status != MTS_NOT_IN_GROUP) {
inc_event_relay_log_pos();
} else {
return inc_group_relay_log_pos(event_master_log_pos,
true /*need_data_lock*/);
}
return 0;
}
void Relay_log_info::cleanup_context(THD *thd, bool error) {
DBUG_TRACE;
DBUG_ASSERT(info_thd == thd);
/*
1) Instances of Table_map_log_event, if ::do_apply_event() was called on
them, may have opened tables, which we cannot be sure have been closed
(because maybe the Rows_log_event have not been found or will not be,
because slave SQL thread is stopping, or relay log has a missing tail etc).
So we close all thread's tables. And so the table mappings have to be
cancelled. 2) Rows_log_event::do_apply_event() may even have started
statements or transactions on them, which we need to rollback in case of
error. 3) If finding a Format_description_log_event after a BEGIN, we also
need to rollback before continuing with the next events. 4) so we need this
"context cleanup" function.
*/
if (error) {
trans_rollback_stmt(thd); // if a "statement transaction"
trans_rollback(thd); // if a "real transaction"
thd->variables.original_commit_timestamp = UNDEFINED_COMMIT_TIMESTAMP;
}
if (rows_query_ev) {
/*
In order to avoid invalid memory access, THD::reset_query() should be
called before deleting the rows_query event.
*/
info_thd->reset_query();
info_thd->reset_query_for_display();
delete rows_query_ev;
rows_query_ev = nullptr;
DBUG_EXECUTE_IF("after_deleting_the_rows_query_ev", {
const char action[] =
"now SIGNAL deleted_rows_query_ev WAIT_FOR go_ahead";
DBUG_ASSERT(!debug_sync_set_action(info_thd, STRING_WITH_LEN(action)));
};);
}
m_table_map.clear_tables();
slave_close_thread_tables(thd);
if (error) {
/*
trans_rollback above does not rollback XA transactions.
It could be done only after necessarily closing tables which dictates
the following placement.
*/
XID_STATE *xid_state = thd->get_transaction()->xid_state();
if (!xid_state->has_state(XID_STATE::XA_NOTR)) {
DBUG_ASSERT(
DBUG_EVALUATE_IF("simulate_commit_failure", 1,
xid_state->has_state(XID_STATE::XA_ACTIVE) ||
xid_state->has_state(XID_STATE::XA_IDLE)));
xa_trans_force_rollback(thd);
xid_state->reset();
cleanup_trans_state(thd);
thd->rpl_unflag_detached_engine_ha_data();
}
thd->mdl_context.release_transactional_locks();
}
clear_flag(IN_STMT);
/*
Cleanup for the flags that have been set at do_apply_event.
*/
thd->variables.option_bits &= ~OPTION_NO_FOREIGN_KEY_CHECKS;
thd->variables.option_bits &= ~OPTION_RELAXED_UNIQUE_CHECKS;
/*
Reset state related to long_find_row notes in the error log:
- timestamp
- flag that decides whether the slave prints or not
*/
reset_row_stmt_start_timestamp();
unset_long_find_row_note_printed();
/*
If the slave applier changed the current transaction isolation level,
it need to be restored to the session default value once having the
current transaction cleared.
We should call "trans_reset_one_shot_chistics()" only if the "error"
flag is "true", because "cleanup_context()" is called at the end of each
set of Table_maps/Rows representing a statement (when the rows event
is tagged with the STMT_END_F) with the "error" flag as "false".
So, without the "if (error)" below, the isolation level might be reset
in the middle of a pure row based transaction.
*/
if (error) trans_reset_one_shot_chistics(thd);
}
void Relay_log_info::clear_tables_to_lock() {
DBUG_TRACE;
#ifndef DBUG_OFF
/**
When replicating in RBR and MyISAM Merge tables are involved
open_and_lock_tables (called in do_apply_event) appends the
base tables to the list of tables_to_lock. Then these are
removed from the list in close_thread_tables (which is called
before we reach this point).
This assertion just confirms that we get no surprises at this
point.
*/
uint i = 0;
for (TABLE_LIST *ptr = tables_to_lock; ptr; ptr = ptr->next_global, i++)
;
DBUG_ASSERT(i == tables_to_lock_count);
#endif
while (tables_to_lock) {
uchar *to_free = reinterpret_cast<uchar *>(tables_to_lock);
if (tables_to_lock->m_tabledef_valid) {
tables_to_lock->m_tabledef.table_def::~table_def();
tables_to_lock->m_tabledef_valid = false;
}
/*
If blob fields were used during conversion of field values
from the master table into the slave table, then we need to
free the memory used temporarily to store their values before
copying into the slave's table.
*/
if (tables_to_lock->m_conv_table) free_blobs(tables_to_lock->m_conv_table);
tables_to_lock = static_cast<RPL_TABLE_LIST *>(tables_to_lock->next_global);
tables_to_lock_count--;
my_free(to_free);
}
DBUG_ASSERT(tables_to_lock == nullptr && tables_to_lock_count == 0);
}
void Relay_log_info::slave_close_thread_tables(THD *thd) {
thd->get_stmt_da()->set_overwrite_status(true);
DBUG_TRACE;
thd->is_error() ? trans_rollback_stmt(thd) : trans_commit_stmt(thd);
thd->get_stmt_da()->set_overwrite_status(false);
close_thread_tables(thd);
/*
- If transaction rollback was requested due to deadlock
perform it and release metadata locks.
- If inside a multi-statement transaction,
defer the release of metadata locks until the current
transaction is either committed or rolled back. This prevents
other statements from modifying the table for the entire
duration of this transaction. This provides commit ordering
and guarantees serializability across multiple transactions.
- If in autocommit mode, or outside a transactional context,
automatically release metadata locks of the current statement.
*/
if (thd->transaction_rollback_request) {
trans_rollback_implicit(thd);
thd->mdl_context.release_transactional_locks();
} else if (!thd->in_multi_stmt_transaction_mode())
thd->mdl_context.release_transactional_locks();
else
thd->mdl_context.release_statement_locks();
clear_tables_to_lock();
}
/**
Execute a SHOW RELAYLOG EVENTS statement.
When multiple replication channels exist on this slave
and no channel name is specified through FOR CHANNEL clause
this function errors out and exits.
@param thd Pointer to THD object for the client thread executing the
statement.
@retval false success
@retval true failure
*/
bool mysql_show_relaylog_events(THD *thd) {
Master_info *mi = nullptr;
List<Item> field_list;
bool res;
DBUG_TRACE;
DBUG_ASSERT(thd->lex->sql_command == SQLCOM_SHOW_RELAYLOG_EVENTS);
channel_map.wrlock();
if (!thd->lex->mi.for_channel && channel_map.get_num_instances() > 1) {
my_error(ER_SLAVE_MULTIPLE_CHANNELS_CMD, MYF(0));
res = true;
goto err;
}
Log_event::init_show_field_list(&field_list);
if (thd->send_result_metadata(&field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF)) {
res = true;
goto err;
}
mi = channel_map.get_mi(thd->lex->mi.channel);
if (!mi && strcmp(thd->lex->mi.channel, channel_map.get_default_channel())) {
my_error(ER_SLAVE_CHANNEL_DOES_NOT_EXIST, MYF(0), thd->lex->mi.channel);
res = true;
goto err;
}
if (mi == nullptr) {
my_error(ER_SLAVE_CONFIGURATION, MYF(0));
res = true;
goto err;
}
res = show_binlog_events(thd, &mi->rli->relay_log);
err:
channel_map.unlock();
return res;
}
int Relay_log_info::rli_init_info(bool skip_received_gtid_set_recovery) {
int error = 0;
enum_return_check check_return = ERROR_CHECKING_REPOSITORY;
const char *msg = nullptr;
DBUG_TRACE;
mysql_mutex_assert_owner(&data_lock);
/*
If Relay_log_info is issued again after a failed init_info(), for
instance because of missing relay log files, it will generate new
files and ignore the previous failure, to avoid that we set
error_on_rli_init_info as true.
This a consequence of the behaviour change, in the past server was
stopped when there were replication initialization errors, now it is
not and so init_info() must be aware of previous failures.
*/
if (error_on_rli_init_info) goto err;
if (inited) {
return recovery_parallel_workers ? mts_recovery_groups(this) : 0;
}
slave_skip_counter = 0;
abort_pos_wait = 0;
log_space_limit = relay_log_space_limit;
log_space_total = 0;
tables_to_lock = 0;
tables_to_lock_count = 0;
char pattern[FN_REFLEN];
(void)my_realpath(pattern, slave_load_tmpdir, 0);
/*
@TODO:
In MSR, sometimes slave fail with the following error:
Unable to use slave's temporary directory /tmp -
Can't create/write to file
'/tmp/SQL_LOAD-92d1eee0-9de4-11e3-8874-68730ad50fcb' (Errcode: 17 - File
exists), Error_code: 1
*/
if (fn_format(pattern, PREFIX_SQL_LOAD, pattern, "",
MY_SAFE_PATH | MY_RETURN_REAL_PATH) == NullS) {
LogErr(ERROR_LEVEL, ER_SLAVE_CANT_USE_TEMPDIR, slave_load_tmpdir);
return 1;
}
unpack_filename(slave_patternload_file, pattern);
slave_patternload_file_size = strlen(slave_patternload_file);
/*
The relay log will now be opened, as a WRITE_CACHE IO_CACHE.
Note that the I/O thread flushes it to disk after writing every
event, in flush_info within the master info.
*/
/*
For the maximum log size, we choose max_relay_log_size if it is
non-zero, max_binlog_size otherwise. If later the user does SET
GLOBAL on one of these variables, fix_max_binlog_size and
fix_max_relay_log_size will reconsider the choice (for example
if the user changes max_relay_log_size to zero, we have to
switch to using max_binlog_size for the relay log) and update
relay_log.max_size (and mysql_bin_log.max_size).
*/
{
/* Reports an error and returns, if the --relay-log's path
is a directory.*/
if (opt_relay_logname &&
opt_relay_logname[strlen(opt_relay_logname) - 1] == FN_LIBCHAR) {
LogErr(ERROR_LEVEL, ER_RPL_RELAY_LOG_NEEDS_FILE_NOT_DIRECTORY,
opt_relay_logname);
return 1;
}
/* Reports an error and returns, if the --relay-log-index's path
is a directory.*/
if (opt_relaylog_index_name &&
opt_relaylog_index_name[strlen(opt_relaylog_index_name) - 1] ==
FN_LIBCHAR) {
LogErr(ERROR_LEVEL, ER_RPL_RELAY_LOG_INDEX_NEEDS_FILE_NOT_DIRECTORY,
opt_relaylog_index_name);
return 1;
}
char buf[FN_REFLEN];
/* The base name of the relay log file considering multisource rep */
const char *ln;
/*
relay log name without channel prefix taking into account
--relay-log option.
*/
const char *ln_without_channel_name;
static bool name_warning_sent = 0;
/*
Buffer to add channel name suffix when relay-log option is provided.
*/
char relay_bin_channel[FN_REFLEN];
/*
Buffer to add channel name suffix when relay-log-index option is provided
*/
char relay_bin_index_channel[FN_REFLEN];
/* name of the index file if opt_relaylog_index_name is set*/
const char *log_index_name;
relay_log.is_relay_log = true;
ln_without_channel_name =
relay_log.generate_name(opt_relay_logname, "-relay-bin", buf);
ln = add_channel_to_relay_log_name(relay_bin_channel, FN_REFLEN,
ln_without_channel_name);
/* We send the warning only at startup, not after every RESET SLAVE */
if (!opt_relay_logname_supplied && !opt_relaylog_index_name_supplied &&
!name_warning_sent) {
/*
User didn't give us info to name the relay log index file.
Picking `hostname`-relay-bin.index like we do, causes replication to
fail if this slave's hostname is changed later. So, we would like to
instead require a name. But as we don't want to break many existing
setups, we only give warning, not error.
*/
LogErr(WARNING_LEVEL, ER_RPL_PLEASE_USE_OPTION_RELAY_LOG,
ln_without_channel_name);
name_warning_sent = 1;
}
/*
If relay log index option is set, convert into channel specific
index file. If the opt_relaylog_index has an extension, we strip
it too. This is inconsistent to relay log names.
*/
if (opt_relaylog_index_name_supplied) {
char index_file_withoutext[FN_REFLEN];
relay_log.generate_name(opt_relaylog_index_name, "",
index_file_withoutext);
log_index_name = add_channel_to_relay_log_name(
relay_bin_index_channel, FN_REFLEN, index_file_withoutext);
} else
log_index_name = 0;
if (relay_log.open_index_file(log_index_name, ln, true)) {
LogErr(ERROR_LEVEL, ER_RPL_OPEN_INDEX_FILE_FAILED);
return 1;
}
if (!gtid_retrieved_initialized) {
/* Store the GTID of a transaction spanned in multiple relay log files */
Gtid_monitoring_info *partial_trx = mi->get_gtid_monitoring_info();
partial_trx->clear();
#ifndef DBUG_OFF
get_sid_lock()->wrlock();
gtid_set->dbug_print("set of GTIDs in relay log before initialization");
get_sid_lock()->unlock();
#endif
/*
In the init_gtid_set below we pass the mi->transaction_parser.
This will be useful to ensure that we only add a GTID to
the Retrieved_Gtid_Set for fully retrieved transactions. Also, it will
be useful to ensure the Retrieved_Gtid_Set behavior when auto
positioning is disabled (we could have transactions spanning multiple
relay log files in this case).
We will skip this initialization if relay_log_recovery is set in order
to save time, as neither the GTIDs nor the transaction_parser state
would be useful when the relay log will be cleaned up later when calling
init_recovery.
*/
if (!is_relay_log_recovery && !gtid_retrieved_initialized &&
!skip_received_gtid_set_recovery &&
relay_log.init_gtid_sets(
gtid_set, nullptr, opt_slave_sql_verify_checksum,
true /*true=need lock*/, &mi->transaction_parser, partial_trx)) {
LogErr(ERROR_LEVEL, ER_RPL_CANT_INITIALIZE_GTID_SETS_IN_RLI_INIT_INFO);
return 1;
}
gtid_retrieved_initialized = true;
#ifndef DBUG_OFF
get_sid_lock()->wrlock();
gtid_set->dbug_print("set of GTIDs in relay log after initialization");
get_sid_lock()->unlock();
#endif
}
/*
Configures what object is used by the current log to store processed
gtid(s). This is necessary in the MYSQL_BIN_LOG::MYSQL_BIN_LOG to
correctly compute the set of previous gtids.
*/
relay_log.set_previous_gtid_set_relaylog(gtid_set);
/*
note, that if open() fails, we'll still have index file open
but a destructor will take care of that
*/
mysql_mutex_t *log_lock = relay_log.get_log_lock();
mysql_mutex_lock(log_lock);
if (relay_log.open_binlog(
ln, 0, (max_relay_log_size ? max_relay_log_size : max_binlog_size),
true, true /*need_lock_index=true*/, true /*need_sid_lock=true*/,
mi->get_mi_description_event())) {
mysql_mutex_unlock(log_lock);
LogErr(ERROR_LEVEL, ER_RPL_CANT_OPEN_LOG_IN_RLI_INIT_INFO);
return 1;
}
mysql_mutex_unlock(log_lock);
}
/*
This checks if the repository was created before and thus there
will be values to be read. Please, do not move this call after
the handler->init_info().
*/
if ((check_return = check_info()) == ERROR_CHECKING_REPOSITORY) {
msg = "Error checking relay log repository";
error = 1;
goto err;
}
if (handler->init_info()) {
msg = "Error reading relay log configuration";
error = 1;
goto err;
}
if (check_return == REPOSITORY_DOES_NOT_EXIST) {
/* Init relay log with first entry in the relay index file */
if (reset_group_relay_log_pos(&msg)) {
error = 1;
goto err;
}
group_master_log_name[0] = 0;
group_master_log_pos = 0;
} else {
if (read_info(handler)) {
msg = "Error reading relay log configuration";
error = 1;
goto err;
}
if (is_relay_log_recovery && init_recovery(mi)) {
error = 1;
goto err;
}
if (is_group_relay_log_name_invalid(&msg)) {
LogErr(ERROR_LEVEL, ER_RPL_MTS_RECOVERY_CANT_OPEN_RELAY_LOG,
group_relay_log_name, std::to_string(group_relay_log_pos).c_str());
error = 1;
goto err;
}
}
inited = 1;
error_on_rli_init_info = false;
if (flush_info(true)) {
msg = "Error reading relay log configuration";
error = 1;
goto err;
}
if (count_relay_log_space()) {
msg = "Error counting relay log space";
error = 1;
goto err;
}
/*
In case of MTS the recovery is deferred until the end of
load_mi_and_rli_from_repositories.
*/
if (!mi->rli->mts_recovery_group_cnt) is_relay_log_recovery = false;
return error;
err:
handler->end_info();
inited = 0;
error_on_rli_init_info = true;
if (msg) LogErr(ERROR_LEVEL, ER_RPL_RLI_INIT_INFO_MSG, msg);
relay_log.close(LOG_CLOSE_INDEX | LOG_CLOSE_STOP_EVENT,
true /*need_lock_log=true*/, true /*need_lock_index=true*/);
return error;
}
void Relay_log_info::end_info() {
DBUG_TRACE;
error_on_rli_init_info = false;
if (!inited) return;
handler->end_info();
inited = 0;
relay_log.close(LOG_CLOSE_INDEX | LOG_CLOSE_STOP_EVENT,
true /*need_lock_log=true*/, true /*need_lock_index=true*/);
relay_log.harvest_bytes_written(this, true /*need_log_space_lock=true*/);
/*
Delete the slave's temporary tables from memory.
In the future there will be other actions than this, to ensure persistance
of slave's temp tables after shutdown.
*/
close_temporary_tables();
}
int Relay_log_info::flush_current_log() {
DBUG_TRACE;
/* When we come to this place in code, relay log may or not be initialized; */
if (relay_log.flush()) return 2;
return 0;
}
void Relay_log_info::set_master_info(Master_info *info) { mi = info; }
/**
Stores the file and position where the execute-slave thread are in the
relay log:
- As this is only called by the slave thread or on STOP SLAVE, with the
log_lock grabbed and the slave thread stopped, we don't need to have
a lock here.
- If there is an active transaction, then we don't update the position
in the relay log. This is to ensure that we re-execute statements
if we die in the middle of an transaction that was rolled back.
- As a transaction never spans binary logs, we don't have to handle the
case where we do a relay-log-rotation in the middle of the transaction.
If this would not be the case, we would have to ensure that we
don't delete the relay log file where the transaction started when
we switch to a new relay log file.
@retval 0 ok,
@retval 1 write error, otherwise.
*/
/**
Store the file and position where the slave's SQL thread are in the
relay log.
Notes:
- This function should be called either from the slave SQL thread,
or when the slave thread is not running. (It reads the
group_{relay|master}_log_{pos|name} and delay fields in the rli
object. These may only be modified by the slave SQL thread or by
a client thread when the slave SQL thread is not running.)
- If there is an active transaction, then we do not update the
position in the relay log. This is to ensure that we re-execute
statements if we die in the middle of an transaction that was
rolled back.
- As a transaction never spans binary logs, we don't have to handle
the case where we do a relay-log-rotation in the middle of the
transaction. If transactions could span several binlogs, we would
have to ensure that we do not delete the relay log file where the
transaction started before switching to a new relay log file.
- Error can happen if writing to file fails or if flushing the file
fails.
@todo Change the log file information to a binary format to avoid
calling longlong2str.
@return 0 on success, 1 on error.
*/
int Relay_log_info::flush_info(const bool force) {
DBUG_TRACE;
if (!inited) return 0;
/*
We update the sync_period at this point because only here we
now that we are handling a relay log info. This needs to be
update every time we call flush because the option maybe
dinamically set.
*/
mysql_mutex_lock(&mts_temp_table_LOCK);
handler->set_sync_period(sync_relayloginfo_period);
if (write_info(handler)) goto err;
if (handler->flush_info(force || force_flush_postponed_due_to_split_trans))
goto err;
force_flush_postponed_due_to_split_trans = false;
mysql_mutex_unlock(&mts_temp_table_LOCK);
return 0;
err:
LogErr(ERROR_LEVEL, ER_RPL_ERROR_WRITING_RELAY_LOG_CONFIGURATION);
mysql_mutex_unlock(&mts_temp_table_LOCK);
return 1;
}
size_t Relay_log_info::get_number_info_rli_fields() {
return sizeof(info_rli_fields) / sizeof(info_rli_fields[0]);
}
void Relay_log_info::set_nullable_fields(MY_BITMAP *nullable_fields) {
bitmap_init(nullable_fields, nullptr,
Relay_log_info::get_number_info_rli_fields(), false);
bitmap_clear_all(nullable_fields);
bitmap_set_bit(nullable_fields, 9);
bitmap_set_bit(nullable_fields, 10);
}
void Relay_log_info::start_sql_delay(time_t delay_end) {
mysql_mutex_assert_owner(&data_lock);
sql_delay_end = delay_end;
THD_STAGE_INFO(info_thd, stage_sql_thd_waiting_until_delay);
}
bool Relay_log_info::read_info(Rpl_info_handler *from) {
int lines = 0;
char *first_non_digit = nullptr;
ulong temp_group_relay_log_pos = 0;
ulong temp_group_master_log_pos = 0;
int temp_sql_delay = 0;
int temp_internal_id = internal_id;
DBUG_TRACE;
/*
Should not read RLI from file in client threads. Client threads
only use RLI to execute BINLOG statements.
@todo Uncomment the following assertion. Currently,
Relay_log_info::init() is called from init_master_info() before
the THD object Relay_log_info::sql_thd is created. That means we
cannot call belongs_to_client() since belongs_to_client()
dereferences Relay_log_info::sql_thd. So we need to refactor
slightly: the THD object should be created by Relay_log_info
constructor (or passed to it), so that we are guaranteed that it
exists at this point. /Sven
*/
// DBUG_ASSERT(!belongs_to_client());
/*
Starting from 5.1.x, relay-log.info has a new format. Now, its
first line contains the number of lines in the file. By reading
this number we can determine which version our master.info comes
from. We can't simply count the lines in the file, since
versions before 5.1.x could generate files with more lines than
needed. If first line doesn't contain a number, or if it
contains a number less than LINES_IN_RELAY_LOG_INFO_WITH_DELAY,
then the file is treated like a file from pre-5.1.x version.
There is no ambiguity when reading an old master.info: before
5.1.x, the first line contained the binlog's name, which is
either empty or has an extension (contains a '.'), so can't be
confused with an integer.
So we're just reading first line and trying to figure which
version is this.
*/
/*
The first row is temporarily stored in mi->master_log_name, if
it is line count and not binlog name (new format) it will be
overwritten by the second row later.
*/
if (from->prepare_info_for_read() ||
!!from->get_info(group_relay_log_name, sizeof(group_relay_log_name), ""))
return true;
lines = strtoul(group_relay_log_name, &first_non_digit, 10);
if (group_relay_log_name[0] != '\0' && *first_non_digit == '\0' &&
lines >= LINES_IN_RELAY_LOG_INFO_WITH_DELAY) {
/* Seems to be new format => read group relay log name */
if (!!from->get_info(group_relay_log_name, sizeof(group_relay_log_name),
""))
return true;
} else
DBUG_PRINT("info", ("relay_log_info file is in old format."));
if (!!from->get_info(&temp_group_relay_log_pos, (ulong)BIN_LOG_HEADER_SIZE) ||
!!from->get_info(group_master_log_name, sizeof(group_relay_log_name),
"") ||
!!from->get_info(&temp_group_master_log_pos, 0UL))
return true;
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_DELAY) {
if (!!from->get_info(&temp_sql_delay, 0)) return true;
}
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_WORKERS) {
if (!!from->get_info(&recovery_parallel_workers, 0UL)) return true;
}
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_ID) {
if (!!from->get_info(&temp_internal_id, 1)) return true;
}
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_CHANNEL) {
/* the default value is empty string"" */
if (!!from->get_info(channel, sizeof(channel), "")) return true;
}
/*
* Here +4 is used to accomodate string if debug point
* `simulate_priv_check_username_above_limit` is set in test.
*/
char temp_privilege_checks_username[PRIV_CHECKS_USERNAME_LENGTH + 4] = {0};
char *username = nullptr;
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_PRIV_CHECKS_USERNAME) {
Rpl_info_handler::enum_field_get_status status =
from->get_info(temp_privilege_checks_username,
PRIV_CHECKS_USERNAME_LENGTH + 1, nullptr);
if (status == Rpl_info_handler::enum_field_get_status::FAILURE) return true;
if (status == Rpl_info_handler::enum_field_get_status::FIELD_VALUE_NOT_NULL)
username = temp_privilege_checks_username;
}
/*
* Here +4 is used to accomodate string if debug point
* `simulate_priv_check_hostname_above_limit` is set in test.
*/
char temp_privilege_checks_hostname[PRIV_CHECKS_HOSTNAME_LENGTH + 4] = {0};
char *hostname = nullptr;
if (lines >= LINES_IN_RELAY_LOG_INFO_WITH_PRIV_CHECKS_HOSTNAME) {
Rpl_info_handler::enum_field_get_status status =
from->get_info(temp_privilege_checks_hostname,
PRIV_CHECKS_HOSTNAME_LENGTH + 1, nullptr);
if (status == Rpl_info_handler::enum_field_get_status::FAILURE) return true;
if (status == Rpl_info_handler::enum_field_get_status::FIELD_VALUE_NOT_NULL)
hostname = temp_privilege_checks_hostname;
}
group_relay_log_pos = temp_group_relay_log_pos;
group_master_log_pos = temp_group_master_log_pos;
sql_delay = (int32)temp_sql_delay;
internal_id = (uint)temp_internal_id;
DBUG_EXECUTE_IF("simulate_priv_check_username_above_limit", {
strcpy(temp_privilege_checks_username,
"repli_priv_checks_user_more_than_32");
username = temp_privilege_checks_username;
});
DBUG_EXECUTE_IF("simulate_priv_check_hostname_above_limit", {
strcpy(
temp_privilege_checks_hostname,
"replication_privilege_checks_hostname_more_than_255_replication_"
"privilege_checks_hostname_more_than_255_replication_privilege_checks_"
"hostname_more_than_255_replication_privilege_checks_hostname_more_"
"than_255_replication_privilege_checks_hostname_more_than255");
hostname = temp_privilege_checks_hostname;
});
enum_priv_checks_status error = set_privilege_checks_user(username, hostname);
if (!!error) {
set_privilege_checks_user_corrupted(true);
report_privilege_check_error(WARNING_LEVEL, error, false, channel, username,
hostname);
return true;
}
return false;
}
bool Relay_log_info::set_info_search_keys(Rpl_info_handler *to) {
DBUG_TRACE;
if (to->set_info(LINES_IN_RELAY_LOG_INFO_WITH_CHANNEL, channel)) return true;
return false;
}
bool Relay_log_info::write_info(Rpl_info_handler *to) {
DBUG_TRACE;
/*
@todo Uncomment the following assertion. See todo in
Relay_log_info::read_info() for details. /Sven
*/
// DBUG_ASSERT(!belongs_to_client());
if (to->prepare_info_for_write() ||
to->set_info((int)MAXIMUM_LINES_IN_RELAY_LOG_INFO_FILE) ||
to->set_info(group_relay_log_name) ||
to->set_info((ulong)group_relay_log_pos) ||
to->set_info(group_master_log_name) ||
to->set_info((ulong)group_master_log_pos) ||
to->set_info((int)sql_delay) || to->set_info(recovery_parallel_workers) ||
to->set_info((int)internal_id) || to->set_info(channel))
return true;
if (m_privilege_checks_username.length()) {
if (to->set_info(m_privilege_checks_username.c_str())) return true;
} else {
#ifndef DBUG_OFF
if (DBUG_EVALUATE_IF("simulate_priv_check_user_nullptr_t", true, false)) {
const char *null_char{nullptr};
if (to->set_info(null_char)) return true;
} else
#endif
if (to->set_info(nullptr)) {
return true;
}
}
if (m_privilege_checks_hostname.length()) {
if (to->set_info(m_privilege_checks_hostname.c_str())) return true;
} else {
#ifndef DBUG_OFF
if (DBUG_EVALUATE_IF("simulate_priv_check_user_nullptr_t", true, false)) {
const uchar *null_char{nullptr};
if (to->set_info(null_char, 0)) return true;
} else
#endif
if (to->set_info(nullptr))
return true;
}
return false;
}
/**
The method is run by SQL thread/MTS Coordinator.
It replaces the current FD event with a new one.
A version adaptation routine is invoked for the new FD
to align the slave applier execution context with the master version.
Since FD are shared by Coordinator and Workers in the MTS mode,
deletion of the old FD is done through decrementing its usage counter.
The destructor runs when the later drops to zero,
also see @c Slave_worker::set_rli_description_event().
The usage counter of the new FD is incremented.
Although notice that MTS worker runs it, inefficiently (see assert),
once at its destruction time.
@param fe Pointer to be installed into execution context
FormatDescriptor event
@return 1 if an error was encountered, 0 otherwise.
*/
int Relay_log_info::set_rli_description_event(
Format_description_log_event *fe) {
DBUG_TRACE;
DBUG_ASSERT(!info_thd || !is_mts_worker(info_thd) || !fe);
if (fe) {
ulong fe_version = adapt_to_master_version(fe);
if (info_thd) {
/* @see rpl_rli_pdb.h:Slave_worker::set_rli_description_event for a
detailed explanation on the following code block's logic. */
if (info_thd->variables.gtid_next.type == AUTOMATIC_GTID ||
info_thd->variables.gtid_next.type == UNDEFINED_GTID) {
bool in_active_multi_stmt =
info_thd->in_active_multi_stmt_transaction();
if (!is_in_group() && !in_active_multi_stmt) {
DBUG_PRINT("info",
("Setting gtid_next.type to NOT_YET_DETERMINED_GTID"));
info_thd->variables.gtid_next.set_not_yet_determined();
} else if (in_active_multi_stmt) {
my_error(ER_VARIABLE_NOT_SETTABLE_IN_TRANSACTION, MYF(0),
"gtid_next");
return 1;
}
}
if (is_parallel_exec() && fe_version > 0) {
/*
Prepare for workers' adaption to a new FD version. Workers
will see notification through scheduling of a first event of
a new post-new-FD.
*/
for (Slave_worker **it = workers.begin(); it != workers.end(); ++it)
(*it)->fd_change_notified = false;
}
}
}
if (rli_description_event &&
--rli_description_event->atomic_usage_counter == 0)
delete rli_description_event;
#ifndef DBUG_OFF
else
/* It must be MTS mode when the usage counter greater than 1. */
DBUG_ASSERT(!rli_description_event || is_parallel_exec());
#endif
rli_description_event = fe;
if (rli_description_event) ++rli_description_event->atomic_usage_counter;
return 0;
}
struct st_feature_version {
/*
The enum must be in the version non-descending top-down order,
the last item formally corresponds to highest possible server
version (never reached, thereby no adapting actions here);
enumeration starts from zero.
*/
enum {
WL6292_TIMESTAMP_EXPLICIT_DEFAULT = 0,
_END_OF_LIST // always last
} item;
/*
Version where the feature is introduced.
*/
uchar version_split[3];
/*
Action to perform when according to FormatDescriptor event Master
is found to be feature-aware while previously it has *not* been.
*/
void (*upgrade)(THD *);
/*
Action to perform when according to FormatDescriptor event Master
is found to be feature-*un*aware while previously it has been.
*/
void (*downgrade)(THD *);
};
static void wl6292_upgrade_func(THD *thd) {
thd->variables.explicit_defaults_for_timestamp = false;
if (global_system_variables.explicit_defaults_for_timestamp)
thd->variables.explicit_defaults_for_timestamp = true;
return;
}
static void wl6292_downgrade_func(THD *thd) {
if (global_system_variables.explicit_defaults_for_timestamp)
thd->variables.explicit_defaults_for_timestamp = false;
return;
}
/**
Sensitive to Master-vs-Slave version difference features
should be listed in the version non-descending order.
*/
static st_feature_version s_features[] = {
// order is the same as in the enum
{st_feature_version::WL6292_TIMESTAMP_EXPLICIT_DEFAULT,
{5, 6, 6},
wl6292_upgrade_func,
wl6292_downgrade_func},
{st_feature_version::_END_OF_LIST, {255, 255, 255}, nullptr, nullptr}};
/**
The method computes the incoming "master"'s FD server version and that
of the currently installed (if ever) rli_description_event, to
invoke more specific method to compare the two and adapt slave applier
execution context to the new incoming master's version.
This method is specifically for STS applier/MTS Coordinator as well as
for a user thread applying binlog events.
@param fdle a pointer to new Format Description event that is being
set up a new execution context.
@return 0 when the versions are equal,
master_version otherwise
*/
ulong Relay_log_info::adapt_to_master_version(
Format_description_log_event *fdle) {
ulong master_version, current_version, slave_version;
slave_version = version_product(slave_version_split);
/* When rli_description_event is uninitialized yet take the slave's version */
master_version = !fdle ? slave_version : fdle->get_product_version();
current_version = !rli_description_event
? slave_version
: rli_description_event->get_product_version();
return adapt_to_master_version_updown(master_version, current_version);
}
/**
The method compares two supplied versions and carries out down- or
up- grade customization of execution context of the slave applier
(thd).
The method is invoked in the STS case through
Relay_log_info::adapt_to_master_version() right before a new master
FD is installed into the applier execution context; in the MTS
case it's done by the Worker when it's assigned with a first event
after the latest new FD has been installed.
Comparison of the current (old, existing) and the master (new,
incoming) versions yields adaptive actions.
To explain that, let's denote V_0 as the current, and the master's
one as V_1.
In the downgrade case (V_1 < V_0) a server feature that is undefined
in V_1 but is defined starting from some V_f of [V_1 + 1, V_0] range
(+1 to mean V_1 excluded) are invalidated ("removed" from execution context)
by running so called here downgrade action.
Conversely in the upgrade case a feature defined in [V_0 + 1, V_1] range
is validated ("added" to execution context) by running its upgrade action.
A typical use case showing how adaptive actions are necessary for the slave
applier is when the master version is lesser than the slave's one.
In such case events generated on the "older" master may need to be applied
in their native server context. And such context can be provided by downgrade
actions.
Conversely, when the old master events are run out and a newer master's events
show up for applying, the execution context will be upgraded through
the namesake actions.
Notice that a relay log may have two FD events, one the slave local
and the other from the Master. As there's no concern for the FD
originator this leads to two adapt_to_master_version() calls.
It's not harmful as can be seen from the following example.
Say the currently installed FD's version is
V_m, then at relay-log rotation the following transition takes
place:
V_m -adapt-> V_s -adapt-> V_m.
here and further `m' subscript stands for the master, `s' for the slave.
It's clear that in this case an ineffective V_m -> V_m transition occurs.
At composing downgrade/upgrade actions keep in mind that the slave applier
version transition goes the following route:
The initial version is that of the slave server (V_ss).
It changes to a magic 4.0 at the slave relay log initialization.
In the following course versions are extracted from each FD read out,
regardless of what server generated it. Here is a typical version
transition sequence underscored with annotation:
V_ss -> 4.0 -> V(FD_s^1) -> V(FD_m^2) ---> V(FD_s^3) -> V(FD_m^4) ...
---------- ----------------- -------- ------------------ ---
bootstrap 1st relay log rotation 2nd log etc
The upper (^) subscipt enumerates Format Description events, V(FD^i) stands
for a function extrating the version data from the i:th FD.
There won't be any action to execute when info_thd is undefined,
e.g at bootstrap.
@param master_version an upcoming new version
@param current_version the current version
@return 0 when the new version is equal to the current one,
master_version otherwise
*/
ulong Relay_log_info::adapt_to_master_version_updown(ulong master_version,
ulong current_version) {
THD *thd = info_thd;
/*
When the SQL thread or MTS Coordinator executes this method
there's a constraint on current_version argument.
*/
DBUG_ASSERT(
!thd || thd->rli_fake != nullptr ||
thd->system_thread == SYSTEM_THREAD_SLAVE_WORKER ||
(thd->system_thread == SYSTEM_THREAD_SLAVE_SQL &&
(!rli_description_event ||
current_version == rli_description_event->get_product_version())));
if (master_version == current_version)
return 0;
else if (!thd)
return master_version;
bool downgrade = master_version < current_version;
/*
find item starting from and ending at for which adaptive actions run
for downgrade or upgrade branches.
(todo: convert into bsearch when number of features will grow significantly)
*/
long i, i_first = st_feature_version::_END_OF_LIST, i_last = i_first;
for (i = 0; i < st_feature_version::_END_OF_LIST; i++) {
ulong ver_f = version_product(s_features[i].version_split);
if ((downgrade ? master_version : current_version) < ver_f &&
i_first == st_feature_version::_END_OF_LIST)
i_first = i;
if ((downgrade ? current_version : master_version) < ver_f) {
i_last = i;
DBUG_ASSERT(i_last >= i_first);
break;
}
}
/*
actions, executed in version non-descending st_feature_version order
*/
for (i = i_first; i < i_last; i++) {
/* Run time check of the st_feature_version items ordering */
DBUG_ASSERT(!i || version_product(s_features[i - 1].version_split) <=
version_product(s_features[i].version_split));
DBUG_ASSERT((downgrade ? master_version : current_version) <
version_product(s_features[i].version_split) &&
(downgrade ? current_version
: master_version >=
version_product(s_features[i].version_split)));
if (downgrade && s_features[i].downgrade) {
s_features[i].downgrade(thd);
} else if (s_features[i].upgrade) {
s_features[i].upgrade(thd);
}
}
return master_version;
}
void Relay_log_info::relay_log_number_to_name(uint number,
char name[FN_REFLEN + 1]) {
char *str = nullptr;
char relay_bin_channel[FN_REFLEN + 1];
const char *relay_log_basename_channel = add_channel_to_relay_log_name(
relay_bin_channel, FN_REFLEN + 1, relay_log_basename);
/* str points to closing null of relay log basename channel */
str = strmake(name, relay_log_basename_channel, FN_REFLEN + 1);
*str++ = '.';
sprintf(str, "%06u", number);
}
uint Relay_log_info::relay_log_name_to_number(const char *name) {
return static_cast<uint>(atoi(fn_ext(name) + 1));
}
bool is_mts_db_partitioned(Relay_log_info *rli) {
return (rli->current_mts_submode->get_type() == MTS_PARALLEL_TYPE_DB_NAME);
}
const char *Relay_log_info::get_for_channel_str(bool upper_case) const {
if (rli_fake || mi == nullptr)
return "";
else
return mi->get_for_channel_str(upper_case);
}
enum_return_status Relay_log_info::add_gtid_set(const Gtid_set *gtid_set) {
DBUG_TRACE;
get_sid_lock()->wrlock();
enum_return_status return_status = this->gtid_set->add_gtid_set(gtid_set);
get_sid_lock()->unlock();
return return_status;
}
const char *Relay_log_info::get_until_log_name() {
if (until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS) {
DBUG_ASSERT(until_option != nullptr);
return ((Until_position *)until_option)->get_until_log_name();
}
return "";
}
my_off_t Relay_log_info::get_until_log_pos() {
if (until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS) {
DBUG_ASSERT(until_option != nullptr);
return ((Until_position *)until_option)->get_until_log_pos();
}
return 0;
}
int Relay_log_info::init_until_option(THD *thd,
const LEX_MASTER_INFO *master_param) {
DBUG_TRACE;
int ret = 0;
Until_option *option = nullptr;
until_condition = UNTIL_NONE;
clear_until_option();
try {
if (master_param->pos) {
Until_master_position *until_mp = nullptr;
if (master_param->relay_log_pos) return ER_BAD_SLAVE_UNTIL_COND;
option = until_mp = new Until_master_position(this);
until_condition = UNTIL_MASTER_POS;
ret = until_mp->init(master_param->log_file_name, master_param->pos);
} else if (master_param->relay_log_pos) {
Until_relay_position *until_rp = nullptr;
if (master_param->pos) return ER_BAD_SLAVE_UNTIL_COND;
option = until_rp = new Until_relay_position(this);
until_condition = UNTIL_RELAY_POS;
ret = until_rp->init(master_param->relay_log_name,
master_param->relay_log_pos);
} else if (master_param->gtid) {
Until_gtids *until_g = nullptr;
if (LEX_MASTER_INFO::UNTIL_SQL_BEFORE_GTIDS ==
master_param->gtid_until_condition) {
option = until_g = new Until_before_gtids(this);
until_condition = UNTIL_SQL_BEFORE_GTIDS;
} else {
DBUG_ASSERT(LEX_MASTER_INFO::UNTIL_SQL_AFTER_GTIDS ==
master_param->gtid_until_condition);
option = until_g = new Until_after_gtids(this);
until_condition = UNTIL_SQL_AFTER_GTIDS;
if (opt_slave_parallel_workers != 0) {
opt_slave_parallel_workers = 0;
push_warning_printf(
thd, Sql_condition::SL_NOTE, ER_MTS_FEATURE_IS_NOT_SUPPORTED,
ER_THD(thd, ER_MTS_FEATURE_IS_NOT_SUPPORTED), "UNTIL condtion",
"Slave is started in the sequential execution mode.");
}
}
ret = until_g->init(master_param->gtid);
} else if (master_param->until_after_gaps) {
Until_mts_gap *until_mg = nullptr;
option = until_mg = new Until_mts_gap(this);
until_condition = UNTIL_SQL_AFTER_MTS_GAPS;
until_mg->init();
} else if (master_param->view_id) {
Until_view_id *until_vi = nullptr;
option = until_vi = new Until_view_id(this);
until_condition = UNTIL_SQL_VIEW_ID;
ret = until_vi->init(master_param->view_id);
}
} catch (...) {
return ER_OUTOFMEMORY;
}
if (until_condition == UNTIL_MASTER_POS ||
until_condition == UNTIL_RELAY_POS) {
/* Issuing warning then started without --skip-slave-start */
if (!opt_skip_slave_start)
push_warning(thd, Sql_condition::SL_NOTE, ER_MISSING_SKIP_SLAVE,
ER_THD(thd, ER_MISSING_SKIP_SLAVE));
}
mysql_mutex_lock(&data_lock);
until_option = option;
mysql_mutex_unlock(&data_lock);
return ret;
}
void Relay_log_info::detach_engine_ha_data(THD *thd) {
is_engine_ha_data_detached = true;
/*
In case of slave thread applier or processing binlog by client,
detach the engine ha_data ("native" engine transaction)
in favor of dynamically created.
*/
plugin_foreach(thd, detach_native_trx, MYSQL_STORAGE_ENGINE_PLUGIN, nullptr);
}
void Relay_log_info::reattach_engine_ha_data(THD *thd) {
is_engine_ha_data_detached = false;
/*
In case of slave thread applier or processing binlog by client,
reattach the engine ha_data ("native" engine transaction)
in favor of dynamically created.
*/
plugin_foreach(thd, reattach_native_trx, MYSQL_STORAGE_ENGINE_PLUGIN,
nullptr);
}
bool Relay_log_info::commit_positions() {
int error = 0;
char saved_group_master_log_name[FN_REFLEN];
my_off_t saved_group_master_log_pos;
char saved_group_relay_log_name[FN_REFLEN];
my_off_t saved_group_relay_log_pos;
/*
In FILE case Query_log_event::update_pos(), called after commit,
updates the info object.
*/
if (!is_transactional()) return false;
mysql_mutex_lock(&data_lock);
/* save the rli positions to restore after flush_info() */
strmake(saved_group_master_log_name, get_group_master_log_name(),
FN_REFLEN - 1);
saved_group_master_log_pos = get_group_master_log_pos();
strmake(saved_group_relay_log_name, get_group_relay_log_name(),
FN_REFLEN - 1);
saved_group_relay_log_pos = get_group_relay_log_pos();
/* Update to new values just for the sake of flush_info */
inc_event_relay_log_pos();
set_group_relay_log_pos(get_event_relay_log_pos());
set_group_relay_log_name(get_event_relay_log_name());
set_group_master_log_pos(current_event->common_header->log_pos);
/* save them too, but now for post_commit() time */
strmake(new_group_master_log_name, get_group_master_log_name(),
FN_REFLEN - 1);
new_group_master_log_pos = get_group_master_log_pos();
strmake(new_group_relay_log_name, get_group_relay_log_name(), FN_REFLEN - 1);
new_group_relay_log_pos = get_group_relay_log_pos();
error = flush_info(true);
/*
Restore the saved ones so they remain actual until the replicated
statement commits.
*/
set_group_master_log_name(saved_group_master_log_name);
set_group_master_log_pos(saved_group_master_log_pos);
set_group_relay_log_name(saved_group_relay_log_name);
set_group_relay_log_pos(saved_group_relay_log_pos);
mysql_mutex_unlock(&data_lock);
return error != 0;
}
void Relay_log_info::post_commit(bool on_rollback) {
THD *thd = info_thd;
if (on_rollback) {
if (thd->owned_gtid_is_empty()) gtid_state->update_on_rollback(thd);
} else {
/*
New executed coordinates prepared in pre_commit() are
finally installed.
*/
mysql_mutex_lock(&data_lock);
set_group_master_log_name(new_group_master_log_name);
set_group_master_log_pos(new_group_master_log_pos);
set_group_relay_log_name(new_group_relay_log_name);
set_group_relay_log_pos(new_group_relay_log_pos);
mysql_mutex_unlock(&data_lock);
if (is_transactional()) {
/* DDL's commit has been completed */
DBUG_ASSERT(
!current_event || !is_atomic_ddl_event(current_event) ||
static_cast<Query_log_event *>(current_event)->has_ddl_committed);
/*
Marked as already-committed DDL may have not updated the GTID
executed state, which is the case when slave filters it out.
on slave side with binlog filtering out.
When this is detected now the gtid state will be sorted later,
and the gtid-executed based signaling will be done in the
"last-chance-to-commit" branch of Log_event::do_update_pos().
However in order to enter the branch has_ddl_committed needs false.
*/
if (!thd->owned_gtid_is_empty())
static_cast<Query_log_event *>(current_event)->has_ddl_committed =
false;
mysql_mutex_lock(&data_lock);
/* Post-commit cleanup for Relay_log_info::wait_for_pos() */
if (is_group_master_log_pos_invalid)
is_group_master_log_pos_invalid = false;
notify_group_master_log_name_update();
mysql_cond_broadcast(&data_cond);
mysql_mutex_unlock(&data_lock);
} else {
/*
In the non-transactional slave info repository case should the
current event be DDL it would still have to finalize commit.
*/
DBUG_ASSERT(
!current_event || !is_atomic_ddl_event(current_event) ||
!static_cast<Query_log_event *>(current_event)->has_ddl_committed);
}
}
}
void Relay_log_info::notify_relay_log_truncated() {
mysql_mutex_lock(&data_lock);
m_relay_log_truncated = true;
mysql_mutex_unlock(&data_lock);
}
void Relay_log_info::clear_relay_log_truncated() {
mysql_mutex_assert_owner(&data_lock);
m_relay_log_truncated = false;
}
bool Relay_log_info::is_time_for_mts_checkpoint() {
if (is_parallel_exec() && opt_mts_checkpoint_period != 0) {
struct timespec curr_clock;
set_timespec_nsec(&curr_clock, 0);
return diff_timespec(&curr_clock, &last_clock) >=
opt_mts_checkpoint_period * 1000000ULL;
}
return false;
}
bool operator!(Relay_log_info::enum_priv_checks_status status) {
return status == Relay_log_info::enum_priv_checks_status::SUCCESS;
}
std::string Relay_log_info::get_privilege_checks_username() const {
return this->m_privilege_checks_username;
}
std::string Relay_log_info::get_privilege_checks_hostname() const {
return this->m_privilege_checks_hostname;
}
bool Relay_log_info::is_privilege_checks_user_null() const {
DBUG_ASSERT(this->m_privilege_checks_username.length() != 0 ||
(this->m_privilege_checks_username.length() == 0 &&
this->m_privilege_checks_hostname.length() == 0));
return this->m_privilege_checks_username.length() == 0;
}
bool Relay_log_info::is_privilege_checks_user_corrupted() const {
return this->m_privilege_checks_user_corrupted;
}
void Relay_log_info::clear_privilege_checks_user() {
DBUG_TRACE;
this->m_privilege_checks_username.clear();
this->m_privilege_checks_hostname.clear();
this->m_privilege_checks_user_corrupted = false;
}
void Relay_log_info::set_privilege_checks_user_corrupted(bool is_corrupted) {
DBUG_TRACE;
this->m_privilege_checks_user_corrupted = is_corrupted;
}
Relay_log_info::enum_priv_checks_status
Relay_log_info::set_privilege_checks_user(
char const *param_privilege_checks_username,
char const *param_privilege_checks_hostname) {
DBUG_TRACE;
enum_priv_checks_status error = this->check_privilege_checks_user(
param_privilege_checks_username, param_privilege_checks_hostname);
if (!!error) return error;
if (param_privilege_checks_username == nullptr) {
this->clear_privilege_checks_user();
return enum_priv_checks_status::SUCCESS;
}
this->m_privilege_checks_user_corrupted = false;
this->m_privilege_checks_username =
static_cast<std::string>(param_privilege_checks_username);
if (param_privilege_checks_hostname != nullptr) {
this->m_privilege_checks_hostname =
static_cast<std::string>(param_privilege_checks_hostname);
std::transform(this->m_privilege_checks_hostname.begin(),
this->m_privilege_checks_hostname.end(),
this->m_privilege_checks_hostname.begin(), ::tolower);
}
return enum_priv_checks_status::SUCCESS;
}
Relay_log_info::enum_priv_checks_status
Relay_log_info::check_privilege_checks_user() {
DBUG_TRACE;
DBUG_ASSERT(this->m_privilege_checks_username.length() != 0 ||
(this->m_privilege_checks_username.length() == 0 &&
this->m_privilege_checks_hostname.length() == 0));
return this->check_privilege_checks_user(
this->m_privilege_checks_username.length() != 0
? this->m_privilege_checks_username.data()
: nullptr,
this->m_privilege_checks_hostname.length() != 0
? this->m_privilege_checks_hostname.data()
: nullptr);
}
Relay_log_info::enum_priv_checks_status
Relay_log_info::check_privilege_checks_user(
char const *param_privilege_checks_username,
char const *param_privilege_checks_hostname) {
DBUG_TRACE;
if (param_privilege_checks_username == nullptr) {
if (param_privilege_checks_hostname != nullptr)
return enum_priv_checks_status::USERNAME_NULL_HOSTNAME_NOT_NULL;
return enum_priv_checks_status::SUCCESS;
}
if (strlen(param_privilege_checks_username) == 0)
return enum_priv_checks_status::USER_ANONYMOUS;
if (strlen(param_privilege_checks_username) > 32)
return enum_priv_checks_status::USERNAME_TOO_LONG;
if (param_privilege_checks_hostname != nullptr &&
strlen(param_privilege_checks_hostname) > 255)
return enum_priv_checks_status::HOSTNAME_TOO_LONG;
if (param_privilege_checks_hostname != nullptr) {
std::regex static const hostname_regex{"^((?![@])[\\x20-\\x7e])+$",
std::regex_constants::ECMAScript};
if (!std::regex_match(param_privilege_checks_hostname, hostname_regex))
return enum_priv_checks_status::HOSTNAME_SYNTAX_ERROR;
}
enum_priv_checks_status error = this->check_applier_acl_user(
param_privilege_checks_username, param_privilege_checks_hostname);
if (!!error) return error;
return enum_priv_checks_status::SUCCESS;
}
Relay_log_info::enum_priv_checks_status Relay_log_info::check_applier_acl_user(
char const *param_privilege_checks_username,
char const *param_privilege_checks_hostname) {
DBUG_TRACE;
DBUG_ASSERT(param_privilege_checks_username != nullptr &&
strlen(param_privilege_checks_username) != 0);
THD_instance_guard thd{current_thd != nullptr ? current_thd : this->info_thd};
Acl_cache_lock_guard acl_cache_lock{thd, Acl_cache_lock_mode::READ_MODE};
if (!acl_cache_lock.lock()) { // If we're unable to acquire the lock we're
// unable to check if the user exists
return enum_priv_checks_status::USER_DOES_NOT_EXIST; // so, return
// accordingly.
}
ACL_USER *applier_acl_user = find_acl_user(
param_privilege_checks_hostname, param_privilege_checks_username, false);
if (applier_acl_user == nullptr) {
return enum_priv_checks_status::USER_DOES_NOT_EXIST;
}
return enum_priv_checks_status::SUCCESS;
}
std::pair<const char *, const char *>
Relay_log_info::print_applier_security_context_user_host() const {
if (this->m_privilege_checks_username.length() != 0) {
return {this->m_privilege_checks_username.data(),
this->m_privilege_checks_hostname.length() == 0
? "%"
: this->m_privilege_checks_hostname.data()};
} else if (this->info_thd != nullptr &&
this->info_thd->security_context() != nullptr) {
return {this->info_thd->security_context()->user().str != nullptr
? this->info_thd->security_context()->user().str
: "",
this->info_thd->security_context()->host().str != nullptr
? this->info_thd->security_context()->host().str
: ""};
}
return {"", ""};
}
void Relay_log_info::report_privilege_check_error(
enum loglevel level, enum_priv_checks_status status_code, bool to_client,
char const *channel_name_arg, char const *user_name_arg,
char const *host_name_arg) const {
DBUG_TRACE;
char const *channel_name{channel_name_arg != nullptr ? channel_name_arg
: get_channel()};
char const *user_name{user_name_arg};
char const *host_name{host_name_arg};
if (user_name == nullptr) {
std::tie(user_name, host_name) =
this->print_applier_security_context_user_host();
}
switch (status_code) {
case enum_priv_checks_status::SUCCESS: {
DBUG_ASSERT(false);
break;
}
case enum_priv_checks_status::USER_ANONYMOUS: {
if (to_client)
my_error(ER_CLIENT_PRIVILEGE_CHECKS_USER_CANNOT_BE_ANONYMOUS, MYF(0),
channel_name, host_name);
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT),
channel_name);
}
break;
}
case enum_priv_checks_status::USERNAME_TOO_LONG: {
if (to_client)
my_error(ER_WRONG_STRING_LENGTH, MYF(0), user_name, "user name", 32);
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT),
channel_name);
}
break;
}
case enum_priv_checks_status::HOSTNAME_TOO_LONG: {
if (to_client)
my_error(ER_WRONG_STRING_LENGTH, MYF(0), user_name, "host name", 255);
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT),
channel_name);
}
break;
}
case enum_priv_checks_status::HOSTNAME_SYNTAX_ERROR: {
if (to_client)
my_printf_error(ER_UNKNOWN_ERROR, "Malformed hostname (illegal symbol)",
MYF(0));
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT),
channel_name);
}
break;
}
case enum_priv_checks_status::USER_DATA_CORRUPTED:
case enum_priv_checks_status::USERNAME_NULL_HOSTNAME_NOT_NULL: {
if (to_client)
my_error(ER_CLIENT_PRIVILEGE_CHECKS_USER_CORRUPT, MYF(0), channel_name);
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_CORRUPT),
channel_name);
}
break;
}
case enum_priv_checks_status::USER_DOES_NOT_EXIST: {
if (to_client)
my_error(ER_CLIENT_PRIVILEGE_CHECKS_USER_DOES_NOT_EXIST, MYF(0),
channel_name, user_name, host_name);
else {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(
level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_DOES_NOT_EXIST,
ER_THD(thd, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_DOES_NOT_EXIST),
channel_name, user_name, host_name);
}
break;
}
case enum_priv_checks_status::USER_DOES_NOT_HAVE_PRIVILEGES: {
if (!to_client) {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(
level, ER_WARN_LOG_PRIVILEGE_CHECKS_USER_NEEDS_RPL_APPLIER_PRIV,
ER_THD(thd,
ER_WARN_LOG_PRIVILEGE_CHECKS_USER_NEEDS_RPL_APPLIER_PRIV),
channel_name, user_name, host_name);
}
break;
}
case enum_priv_checks_status::LOAD_DATA_EVENT_NOT_ALLOWED: {
if (!to_client) {
THD_instance_guard thd{current_thd != nullptr ? current_thd
: this->info_thd};
this->report(level, ER_FILE_PRIVILEGE_FOR_REPLICATION_CHECKS,
ER_THD(thd, ER_FILE_PRIVILEGE_FOR_REPLICATION_CHECKS),
channel_name);
}
break;
}
}
}
Relay_log_info::enum_priv_checks_status
Relay_log_info::initialize_security_context(THD *thd) {
DBUG_TRACE;
if (this->m_privilege_checks_user_corrupted)
return enum_priv_checks_status::USER_DATA_CORRUPTED;
if (this->m_privilege_checks_username.length() != 0) {
if (acl_getroot(thd, &thd->m_main_security_ctx,
this->m_privilege_checks_username.data(),
this->m_privilege_checks_hostname.data(), nullptr,
nullptr)) {
return enum_priv_checks_status::USER_DOES_NOT_EXIST;
}
Roles::Role_activation role_activation{
thd, thd->security_context(),
opt_always_activate_granted_roles == 0 ? role_enum::ROLE_DEFAULT
: role_enum::ROLE_ALL,
nullptr, true};
if (role_activation.activate())
return enum_priv_checks_status::USER_DOES_NOT_HAVE_PRIVILEGES;
bool has_grant{false};
std::tie(has_grant, std::ignore) =
thd->m_main_security_ctx.has_global_grant(
STRING_WITH_LEN("REPLICATION_APPLIER"));
if (!has_grant) {
return enum_priv_checks_status::USER_DOES_NOT_HAVE_PRIVILEGES;
}
} else
thd->security_context()->skip_grants();
return enum_priv_checks_status::SUCCESS;
}
Relay_log_info::enum_priv_checks_status
Relay_log_info::initialize_applier_security_context() {
DBUG_TRACE;
return this->initialize_security_context(this->info_thd);
}
MDL_lock_guard::MDL_lock_guard(THD *target) : m_target{target} { DBUG_TRACE; }
MDL_lock_guard::MDL_lock_guard(THD *target,
MDL_key::enum_mdl_namespace namespace_arg,
enum_mdl_type mdl_type_arg, bool blocking)
: m_target{target} {
DBUG_TRACE;
this->lock(namespace_arg, mdl_type_arg, blocking);
}
bool MDL_lock_guard::lock(MDL_key::enum_mdl_namespace namespace_arg,
enum_mdl_type mdl_type_arg, bool blocking) {
DBUG_TRACE;
if (this->m_target != nullptr &&
!this->m_target->mdl_context.has_locks(namespace_arg)) {
MDL_REQUEST_INIT(&this->m_request, namespace_arg, "", "", mdl_type_arg,
MDL_EXPLICIT);
if (blocking)
this->m_target->mdl_context.acquire_lock(
&this->m_request, this->m_target->variables.lock_wait_timeout);
else
this->m_target->mdl_context.try_acquire_lock(&this->m_request);
return !this->is_locked();
}
return true;
}
MDL_lock_guard::~MDL_lock_guard() {
DBUG_TRACE;
if (this->m_request.ticket != nullptr) {
this->m_target->mdl_context.release_lock(this->m_request.ticket);
}
}
bool MDL_lock_guard::is_locked() { return this->m_request.ticket != nullptr; }
Applier_security_context_guard::Applier_security_context_guard(
Relay_log_info const *rli, THD const *thd)
: m_target{rli},
m_thd{thd},
m_current{nullptr},
m_previous{nullptr},
m_privilege_checks_none{
this->m_target->get_privilege_checks_username().length() == 0 &&
(this->m_thd->lex == nullptr ||
this->m_thd->lex->binlog_stmt_arg.length == 0 ||
this->m_thd->lex->binlog_stmt_arg.length >= 2048 ||
this->m_thd->lex->binlog_stmt_arg.str == nullptr)} {
DBUG_TRACE;
if (this->m_thd->lex != nullptr &&
this->m_thd->lex->binlog_stmt_arg.length != 0 &&
this->m_thd->lex->binlog_stmt_arg.length < 2048 &&
this->m_thd->lex->binlog_stmt_arg.str != nullptr) {
Security_context *standing_ctx = this->m_thd->security_context();
if (standing_ctx != nullptr &&
(standing_ctx->check_access(SUPER_ACL) ||
standing_ctx->has_global_grant(STRING_WITH_LEN("BINLOG_ADMIN")).first))
this->m_privilege_checks_none = true;
}
if (this->m_privilege_checks_none) return;
if (this->m_target->get_privilege_checks_username().length() != 0) {
std::string user = this->m_target->get_privilege_checks_username();
std::string host = this->m_target->get_privilege_checks_hostname();
LEX_CSTRING username{user.c_str(), user.length()};
LEX_CSTRING hostname{host.c_str(), host.length()};
if (this->m_applier_security_ctx.change_security_context(
const_cast<THD *>(this->m_thd), username, hostname, nullptr,
&this->m_previous)) {
return;
}
}
if (this->m_previous != nullptr) {
Roles::Role_activation role_activation{
const_cast<THD *>(this->m_thd), this->m_thd->security_context(),
opt_always_activate_granted_roles == 0 ? role_enum::ROLE_DEFAULT
: role_enum::ROLE_ALL,
nullptr, true};
if (role_activation.activate()) return;
}
this->m_current = this->m_thd->security_context();
}
Applier_security_context_guard::~Applier_security_context_guard() {
if (this->m_privilege_checks_none) return;
if (this->m_previous != nullptr && this->m_previous != this->m_current)
this->m_applier_security_ctx.restore_security_context(
const_cast<THD *>(this->m_thd), this->m_previous);
}
bool Applier_security_context_guard::skip_priv_checks() const {
return this->m_privilege_checks_none;
}
bool Applier_security_context_guard::has_access(
std::initializer_list<ulong> extra_privileges) const {
if (this->m_privilege_checks_none) return true;
if (this->m_current == nullptr) return false;
for (auto privilege : extra_privileges)
if (!this->m_current->check_access(privilege, "", true)) return false;
return true;
}
bool Applier_security_context_guard::has_access(
std::initializer_list<std::string> extra_privileges) const {
if (this->m_privilege_checks_none) return true;
if (this->m_current == nullptr) return false;
for (auto privilege : extra_privileges) {
if (!this->m_current->has_global_grant(privilege.data(), privilege.length())
.first)
return false;
}
return true;
}
bool Applier_security_context_guard::has_access(
std::vector<std::tuple<ulong, TABLE const *, Rows_log_event *>>
&extra_privileges) const {
if (this->m_privilege_checks_none) return true;
if (this->m_current == nullptr) return false;
ulong priv{0};
TABLE const *table{nullptr};
if (this->m_thd->variables.binlog_row_image == BINLOG_ROW_IMAGE_FULL) {
for (auto tpl : extra_privileges) {
std::tie(priv, table, std::ignore) = tpl;
if (this->m_current->is_table_blocked(priv, table)) return false;
}
} else {
Rows_log_event *event{nullptr};
for (auto tpl : extra_privileges) {
std::tie(priv, table, event) = tpl;
if (event->get_general_type_code() == binary_log::DELETE_ROWS_EVENT) {
if (this->m_current->is_table_blocked(priv, table)) return false;
} else {
std::vector<std::string> columns;
this->extract_columns_to_check(table, event, columns);
if (!this->m_current->has_column_access(priv, table, columns))
return false;
}
}
}
return true;
}
std::string Applier_security_context_guard::get_username() const {
if (this->m_privilege_checks_none || this->m_current == nullptr) return "";
return std::string(this->m_current->user().str,
this->m_current->user().length);
}
std::string Applier_security_context_guard::get_hostname() const {
if (this->m_privilege_checks_none || this->m_current == nullptr) return "";
return std::string(this->m_current->host().str,
this->m_current->host().length);
}
void Applier_security_context_guard::extract_columns_to_check(
TABLE const *table, Rows_log_event *event,
std::vector<std::string> &columns) const {
MY_BITMAP const *bitmap{nullptr};
if (event->get_general_type_code() == binary_log::WRITE_ROWS_EVENT)
bitmap = event->get_cols();
else if (event->get_general_type_code() == binary_log::UPDATE_ROWS_EVENT)
bitmap = event->get_cols_ai();
else
return;
for (size_t idx = 0; idx != table->s->fields; ++idx) {
if (bitmap_is_set(bitmap, idx)) {
columns.push_back(table->field[idx]->field_name);
}
}
}