用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1140 lines
38 KiB

/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/* classes to use when handling where clause */
#ifndef _opt_range_h
#define _opt_range_h
#include <stddef.h>
#include <sys/types.h>
#include <algorithm>
#include <memory>
#include <vector>
#include "m_string.h"
#include "my_alloc.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_table_map.h"
#include "prealloced_array.h" // Prealloced_array
#include "priority_queue.h" // Priority_queue
#include "sql/field.h" // Field
#include "sql/handler.h"
#include "sql/key.h"
#include "sql/key_spec.h"
#include "sql/malloc_allocator.h" // IWYU pragma: keep
#include "sql/records.h" // unique_ptr_destroy_only<RowIterator>
#include "sql/sql_bitmap.h"
#include "sql/sql_const.h"
#include "sql/sql_list.h"
#include "sql/table.h"
#include "sql_string.h"
class Item;
class Item_sum;
class JOIN;
class Opt_trace_context;
class THD;
class Unique;
struct TABLE_REF;
struct KEY_PART {
uint16 key, part;
/* See KEY_PART_INFO for meaning of the next two: */
uint16 store_length, length;
uint8 null_bit;
/*
Keypart flags (0 when this structure is used by partition pruning code
for fake partitioning index description)
*/
uint16 flag;
Field *field;
Field::imagetype image_type;
};
class QUICK_RANGE {
public:
uchar *min_key, *max_key;
uint16 min_length, max_length;
/// Stores bitwise-or'ed bits defined in enum key_range_flags.
uint16 flag;
/**
Stores one of the HA_READ_MBR_XXX items in enum ha_rkey_function, only
effective when flag has a GEOM_FLAG bit.
*/
enum ha_rkey_function rkey_func_flag;
key_part_map min_keypart_map, // bitmap of used keyparts in min_key
max_keypart_map; // bitmap of used keyparts in max_key
QUICK_RANGE(); /* Full range */
QUICK_RANGE(const uchar *min_key_arg, uint min_length_arg,
key_part_map min_keypart_map_arg, const uchar *max_key_arg,
uint max_length_arg, key_part_map max_keypart_map_arg,
uint flag_arg, enum ha_rkey_function rkey_func);
/**
Initalizes a key_range object for communication with storage engine.
This function facilitates communication with the Storage Engine API by
translating the minimum endpoint of the interval represented by this
QUICK_RANGE into an index range endpoint specifier for the engine.
@param kr Pointer to an uninitialized key_range C struct.
@param prefix_length The length of the search key prefix to be used for
lookup.
@param keypart_map A set (bitmap) of keyparts to be used.
*/
void make_min_endpoint(key_range *kr, uint prefix_length,
key_part_map keypart_map) {
make_min_endpoint(kr);
kr->length = std::min(kr->length, prefix_length);
kr->keypart_map &= keypart_map;
}
/**
Initalizes a key_range object for communication with storage engine.
This function facilitates communication with the Storage Engine API by
translating the minimum endpoint of the interval represented by this
QUICK_RANGE into an index range endpoint specifier for the engine.
@param kr Pointer to an uninitialized key_range C struct.
*/
void make_min_endpoint(key_range *kr) {
kr->key = (const uchar *)min_key;
kr->length = min_length;
kr->keypart_map = min_keypart_map;
kr->flag = ((flag & NEAR_MIN) ? HA_READ_AFTER_KEY
: (flag & EQ_RANGE) ? HA_READ_KEY_EXACT
: HA_READ_KEY_OR_NEXT);
}
/**
Initalizes a key_range object for communication with storage engine.
This function facilitates communication with the Storage Engine API by
translating the maximum endpoint of the interval represented by this
QUICK_RANGE into an index range endpoint specifier for the engine.
@param kr Pointer to an uninitialized key_range C struct.
@param prefix_length The length of the search key prefix to be used for
lookup.
@param keypart_map A set (bitmap) of keyparts to be used.
*/
void make_max_endpoint(key_range *kr, uint prefix_length,
key_part_map keypart_map) {
make_max_endpoint(kr);
kr->length = std::min(kr->length, prefix_length);
kr->keypart_map &= keypart_map;
}
/**
Initalizes a key_range object for communication with storage engine.
This function facilitates communication with the Storage Engine API by
translating the maximum endpoint of the interval represented by this
QUICK_RANGE into an index range endpoint specifier for the engine.
@param kr Pointer to an uninitialized key_range C struct.
*/
void make_max_endpoint(key_range *kr) {
kr->key = (const uchar *)max_key;
kr->length = max_length;
kr->keypart_map = max_keypart_map;
/*
We use READ_AFTER_KEY here because if we are reading on a key
prefix we want to find all keys with this prefix
*/
kr->flag = (flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
}
};
/*
Quick select interface.
This class is a parent for all QUICK_*_SELECT classes.
The usage scenario is as follows:
1. Create quick select
quick= new QUICK_XXX_SELECT(...);
2. Perform lightweight initialization. This can be done in 2 ways:
2.a: Regular initialization
if (quick->init())
{
//the only valid action after failed init() call is delete
delete quick;
}
2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT
if (quick->init_ror_merged_scan())
delete quick;
3. Perform zero, one, or more scans.
while (...)
{
// initialize quick select for scan. This may allocate
// buffers and/or prefetch rows.
if (quick->reset())
{
//the only valid action after failed reset() call is delete
delete quick;
//abort query
}
// perform the scan
do
{
res= quick->get_next();
} while (res && ...)
}
4. Delete the select:
delete quick;
NOTE
quick select doesn't use MEM_ROOT allocation because "range
checked for each record" functionality may create/destroy
O(#records_in_some_table) quick selects during query execution.
See Bug#18684036 ELIMINATE LAST FEW HEAP USAGE FROM THE
RANGE OPTIMIZER.
*/
class QUICK_SELECT_I {
public:
ha_rows records; /* estimate of # of records to be retrieved */
Cost_estimate cost_est; ///> cost to perform this retrieval
TABLE *head;
/*
Index this quick select uses, or MAX_KEY for quick selects
that use several indexes
*/
uint index;
/*
Total length of first used_key_parts parts of the key.
Applicable if index!= MAX_KEY.
*/
uint max_used_key_length;
/*
Max. number of (first) key parts this quick select uses for retrieval.
eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2.
Applicable if index!= MAX_KEY.
For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts.
*/
uint used_key_parts;
/**
true if creation of the object is forced by the hint.
The flag is used to skip ref evaluation in find_best_ref() function.
It also enables using of QUICK_SELECT object in
Optimize_table_order::best_access_path() regardless of the evaluation cost.
*/
bool forced_by_hint;
QUICK_SELECT_I();
QUICK_SELECT_I(const QUICK_SELECT_I &) = default;
virtual ~QUICK_SELECT_I() {}
/*
Do post-constructor initialization.
SYNOPSIS
init()
init() performs initializations that should have been in constructor if
it was possible to return errors from constructors. The join optimizer may
create and then delete quick selects without retrieving any rows so init()
must not contain any IO or CPU intensive code.
If init() call fails the only valid action is to delete this quick select,
reset() and get_next() must not be called.
RETURN
0 OK
other Error code
*/
virtual int init() = 0;
/*
Initialize quick select for row retrieval.
SYNOPSIS
reset()
reset() should be called when it is certain that row retrieval will be
necessary. This call may do heavyweight initialization like buffering first
N records etc. If reset() call fails get_next() must not be called.
Note that reset() may be called several times if
* the quick select is executed in a subselect
* a JOIN buffer is used
RETURN
0 OK
other Error code
*/
virtual int reset(void) = 0;
virtual int get_next() = 0; /* get next record to retrieve */
/* Range end should be called when we have looped over the whole index */
virtual void range_end() {}
/**
Whether the range access method returns records in reverse order.
*/
virtual bool reverse_sorted() const = 0;
/**
Whether the range access method is capable of returning records
in reverse order.
*/
virtual bool reverse_sort_possible() const = 0;
virtual bool unique_key_range() { return false; }
virtual bool clustered_pk_range() { return false; }
/*
Request that this quick select produces sorted output.
Not all quick selects can provide sorted output, the caller is responsible
for calling this function only for those quick selects that can.
The implementation is also allowed to provide sorted output even if it
was not requested if benificial, or required by implementation
internals.
*/
virtual void need_sorted_output() = 0;
enum {
QS_TYPE_RANGE = 0,
QS_TYPE_INDEX_MERGE = 1,
QS_TYPE_RANGE_DESC = 2,
QS_TYPE_FULLTEXT = 3,
QS_TYPE_ROR_INTERSECT = 4,
QS_TYPE_ROR_UNION = 5,
QS_TYPE_GROUP_MIN_MAX = 6,
QS_TYPE_SKIP_SCAN = 7
};
/* Get type of this quick select - one of the QS_TYPE_* values */
virtual int get_type() const = 0;
virtual bool is_loose_index_scan() const = 0;
virtual bool is_agg_loose_index_scan() const = 0;
/*
Initialize this quick select as a merged scan inside a ROR-union or a ROR-
intersection scan. The caller must not additionally call init() if this
function is called.
SYNOPSIS
init_ror_merged_scan()
reuse_handler If true, the quick select may use table->handler,
otherwise it must create and use a separate handler
object.
RETURN
0 Ok
other Error
*/
virtual int init_ror_merged_scan(bool reuse_handler MY_ATTRIBUTE((unused))) {
DBUG_ASSERT(0);
return 1;
}
/*
Save ROWID of last retrieved row in file->ref. This used in ROR-merging.
*/
virtual void save_last_pos() {}
/*
Append comma-separated list of keys this quick select uses to key_names;
append comma-separated list of corresponding used lengths to used_lengths.
This is used by select_describe.
*/
virtual void add_keys_and_lengths(String *key_names,
String *used_lengths) = 0;
/*
Append text representation of quick select structure (what and how is
merged) to str. The result is added to "Extra" field in EXPLAIN output.
This function is implemented only by quick selects that merge other quick
selects output and/or can produce output suitable for merging.
*/
virtual void add_info_string(String *str MY_ATTRIBUTE((unused))) {}
/*
Return 1 if any index used by this quick select
uses field which is marked in passed bitmap.
*/
virtual bool is_keys_used(const MY_BITMAP *fields);
/**
Simple sanity check that the quick select has been set up
correctly. Function is overridden by quick selects that merge
indices.
*/
virtual bool is_valid() { return index != MAX_KEY; }
/*
rowid of last row retrieved by this quick select. This is used only when
doing ROR-index_merge selects
*/
uchar *last_rowid;
/*
Table record buffer used by this quick select.
*/
uchar *record;
#ifndef DBUG_OFF
/*
Print quick select information to DBUG_FILE. Caller is responsible
for locking DBUG_FILE before this call and unlocking it afterwards.
*/
virtual void dbug_dump(int indent, bool verbose) = 0;
#endif
/*
Returns a QUICK_SELECT with reverse order of to the index.
*/
virtual QUICK_SELECT_I *make_reverse(
uint used_key_parts_arg MY_ATTRIBUTE((unused))) {
return NULL;
}
virtual void set_handler(handler *file_arg MY_ATTRIBUTE((unused))) {}
/**
Get the fields used by the range access method.
@param[out] used_fields Bitmap of fields that this range access
method uses.
*/
virtual void get_fields_used(MY_BITMAP *used_fields) = 0;
void trace_quick_description(Opt_trace_context *trace);
};
class PARAM;
class SEL_ARG;
class SEL_ROOT;
typedef Prealloced_array<QUICK_RANGE *, 16> Quick_ranges;
/*
MRR range sequence, array<QUICK_RANGE> implementation: sequence traversal
context.
*/
struct QUICK_RANGE_SEQ_CTX {
Quick_ranges::const_iterator first;
Quick_ranges::const_iterator cur;
Quick_ranges::const_iterator last;
};
range_seq_t quick_range_seq_init(void *init_param, uint n_ranges, uint flags);
uint quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
/*
Quick select that does a range scan on a single key. The records are
returned in key order if ::need_sorted_output() has been called.
*/
class QUICK_RANGE_SELECT : public QUICK_SELECT_I {
protected:
handler *file;
/* Members to deal with case when this quick select is a ROR-merged scan */
bool in_ror_merged_scan;
// TODO: pre-allocate space to avoid malloc/free for small number of columns.
MY_BITMAP column_bitmap;
friend class TRP_ROR_INTERSECT;
friend bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick,
KEY_PART *key, SEL_ARG *key_tree, uchar *min_key,
uint min_key_flag, uchar *max_key,
uint max_key_flag, uint *desc_flag);
friend QUICK_RANGE_SELECT *get_quick_select(PARAM *, uint idx,
SEL_ROOT *key_tree,
uint mrr_flags, uint mrr_buf_size,
MEM_ROOT *alloc);
friend uint quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range);
friend range_seq_t quick_range_seq_init(void *init_param, uint n_ranges,
uint flags);
friend class QUICK_SELECT_DESC;
friend class QUICK_INDEX_MERGE_SELECT;
friend class QUICK_ROR_INTERSECT_SELECT;
friend class QUICK_GROUP_MIN_MAX_SELECT;
Quick_ranges ranges; /* ordered array of range ptrs */
bool free_file; /* TRUE <=> this->file is "owned" by this quick select */
/* Range pointers to be used when not using MRR interface */
QUICK_RANGE **cur_range; /* current element in ranges */
QUICK_RANGE *last_range;
/* Members needed to use the MRR interface */
QUICK_RANGE_SEQ_CTX qr_traversal_ctx;
public:
uint mrr_flags; /* Flags to be used with MRR interface */
protected:
uint mrr_buf_size; /* copy from thd->variables.read_rnd_buff_size */
HANDLER_BUFFER *mrr_buf_desc; /* the handler buffer */
/* Info about index we're scanning */
KEY_PART *key_parts;
KEY_PART_INFO *key_part_info;
bool dont_free; /* Used by QUICK_SELECT_DESC */
int cmp_next(QUICK_RANGE *range);
int cmp_prev(QUICK_RANGE *range);
bool row_in_ranges();
public:
std::shared_ptr<MEM_ROOT> alloc;
QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint index_arg, bool no_alloc,
MEM_ROOT *parent_alloc, bool *create_error);
~QUICK_RANGE_SELECT();
void need_sorted_output();
int init();
int reset(void);
int get_next();
void range_end();
int get_next_prefix(uint prefix_length, uint group_key_parts,
uchar *cur_prefix);
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return true; }
bool unique_key_range();
int init_ror_merged_scan(bool reuse_handler);
void save_last_pos() { file->position(record); }
int get_type() const { return QS_TYPE_RANGE; }
virtual bool is_loose_index_scan() const { return false; }
virtual bool is_agg_loose_index_scan() const { return false; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
QUICK_SELECT_I *make_reverse(uint used_key_parts_arg);
void set_handler(handler *file_arg) { file = file_arg; }
virtual void get_fields_used(MY_BITMAP *used_fields) {
for (uint i = 0; i < used_key_parts; i++)
bitmap_set_bit(used_fields, key_parts[i].field->field_index);
}
private:
/* Default copy ctor used by QUICK_SELECT_DESC */
QUICK_RANGE_SELECT(const QUICK_RANGE_SELECT &) = default;
};
class QUICK_RANGE_SELECT_GEOM : public QUICK_RANGE_SELECT {
public:
QUICK_RANGE_SELECT_GEOM(THD *thd, TABLE *table, uint index_arg, bool no_alloc,
MEM_ROOT *parent_alloc, bool *create_error)
: QUICK_RANGE_SELECT(thd, table, index_arg, no_alloc, parent_alloc,
create_error) {}
virtual int get_next();
};
/*
QUICK_INDEX_MERGE_SELECT - index_merge access method quick select.
QUICK_INDEX_MERGE_SELECT uses
* QUICK_RANGE_SELECTs to get rows
* Unique class to remove duplicate rows
INDEX MERGE OPTIMIZER
Current implementation doesn't detect all cases where index_merge could
be used, in particular:
* index_merge will never be used if range scan is possible (even if
range scan is more expensive)
* index_merge+'using index' is not supported (this the consequence of
the above restriction)
* If WHERE part contains complex nested AND and OR conditions, some ways
to retrieve rows using index_merge will not be considered. The choice
of read plan may depend on the order of conjuncts/disjuncts in WHERE
part of the query, see comments near imerge_list_or_list and
SEL_IMERGE::or_sel_tree_with_checks functions for details.
* There is no "index_merge_ref" method (but index_merge on non-first
table in join is possible with 'range checked for each record').
See comments around SEL_IMERGE class and test_quick_select for more
details.
ROW RETRIEVAL ALGORITHM
index_merge uses Unique class for duplicates removal. index_merge takes
advantage of Clustered Primary Key (CPK) if the table has one.
The index_merge algorithm consists of two phases:
Phase 1 (implemented in QUICK_INDEX_MERGE_SELECT::prepare_unique):
prepare()
{
activate 'index only';
while(retrieve next row for non-CPK scan)
{
if (there is a CPK scan and row will be retrieved by it)
skip this row;
else
put its rowid into Unique;
}
deactivate 'index only';
}
Phase 2 (implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next
calls):
fetch()
{
retrieve all rows from row pointers stored in Unique;
free Unique;
retrieve all rows for CPK scan;
}
*/
class QUICK_INDEX_MERGE_SELECT : public QUICK_SELECT_I {
Unique *unique;
public:
QUICK_INDEX_MERGE_SELECT(THD *thd, TABLE *table);
~QUICK_INDEX_MERGE_SELECT();
int init();
void need_sorted_output() { DBUG_ASSERT(false); /* Can't do it */ }
int reset(void);
int get_next();
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return false; }
bool unique_key_range() { return false; }
int get_type() const { return QS_TYPE_INDEX_MERGE; }
virtual bool is_loose_index_scan() const { return false; }
virtual bool is_agg_loose_index_scan() const { return false; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);
/* range quick selects this index_merge read consists of */
List<QUICK_RANGE_SELECT> quick_selects;
/* quick select that uses clustered primary key (NULL if none) */
QUICK_RANGE_SELECT *pk_quick_select;
/* true if this select is currently doing a clustered PK scan */
bool doing_pk_scan;
MEM_ROOT alloc;
THD *thd;
int read_keys_and_merge();
bool clustered_pk_range() { return pk_quick_select; }
virtual bool is_valid() {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
bool valid = true;
while ((quick = it++)) {
if (!quick->is_valid()) {
valid = false;
break;
}
}
return valid;
}
virtual void get_fields_used(MY_BITMAP *used_fields) {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
while ((quick = it++)) quick->get_fields_used(used_fields);
if (pk_quick_select) pk_quick_select->get_fields_used(used_fields);
}
/* used to get rows collected in Unique */
unique_ptr_destroy_only<RowIterator> read_record;
};
/*
Rowid-Ordered Retrieval (ROR) index intersection quick select.
This quick select produces intersection of row sequences returned
by several QUICK_RANGE_SELECTs it "merges".
All merged QUICK_RANGE_SELECTs must return rowids in rowid order.
QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too.
All merged quick selects retrieve {rowid, covered_fields} tuples (not full
table records).
QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used
by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't
cover needed all fields.
If one of the merged quick selects is a Clustered PK range scan, it is
used only to filter rowid sequence produced by other merged quick selects.
*/
class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I {
public:
QUICK_ROR_INTERSECT_SELECT(THD *thd, TABLE *table, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
~QUICK_ROR_INTERSECT_SELECT();
int init();
void need_sorted_output() { DBUG_ASSERT(false); /* Can't do it */ }
int reset(void);
int get_next();
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return false; }
bool unique_key_range() { return false; }
int get_type() const { return QS_TYPE_ROR_INTERSECT; }
virtual bool is_loose_index_scan() const { return false; }
virtual bool is_agg_loose_index_scan() const { return false; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
int init_ror_merged_scan(bool reuse_handler);
bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);
/*
Range quick selects this intersection consists of, not including
cpk_quick.
*/
List<QUICK_RANGE_SELECT> quick_selects;
virtual bool is_valid() {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
bool valid = true;
while ((quick = it++)) {
if (!quick->is_valid()) {
valid = false;
break;
}
}
return valid;
}
virtual void get_fields_used(MY_BITMAP *used_fields) {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
while ((quick = it++)) quick->get_fields_used(used_fields);
}
/*
Merged quick select that uses Clustered PK, if there is one. This quick
select is not used for row retrieval, it is used for row retrieval.
*/
QUICK_RANGE_SELECT *cpk_quick;
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
THD *thd; /* current thread */
bool need_to_fetch_row; /* if true, do retrieve full table records. */
/* in top-level quick select, true if merged scans where initialized */
bool scans_inited;
};
/*
Comparison function to be used QUICK_ROR_UNION_SELECT::queue priority
queue.
*/
struct Quick_ror_union_less {
explicit Quick_ror_union_less(const QUICK_SELECT_I *me) : m_me(me) {}
bool operator()(QUICK_SELECT_I *a, QUICK_SELECT_I *b) {
return m_me->head->file->cmp_ref(a->last_rowid, b->last_rowid) > 0;
}
const QUICK_SELECT_I *m_me;
};
/*
Rowid-Ordered Retrieval index union select.
This quick select produces union of row sequences returned by several
quick select it "merges".
All merged quick selects must return rowids in rowid order.
QUICK_ROR_UNION_SELECT will return rows in rowid order, too.
All merged quick selects are set not to retrieve full table records.
ROR-union quick select always retrieves full records.
*/
class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I {
public:
QUICK_ROR_UNION_SELECT(THD *thd, TABLE *table);
~QUICK_ROR_UNION_SELECT();
int init();
void need_sorted_output() { DBUG_ASSERT(false); /* Can't do it */ }
int reset(void);
int get_next();
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return false; }
bool unique_key_range() { return false; }
int get_type() const { return QS_TYPE_ROR_UNION; }
virtual bool is_loose_index_scan() const { return false; }
virtual bool is_agg_loose_index_scan() const { return false; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
bool push_quick_back(QUICK_SELECT_I *quick_sel_range);
List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */
virtual bool is_valid() {
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
QUICK_SELECT_I *quick;
bool valid = true;
while ((quick = it++)) {
if (!quick->is_valid()) {
valid = false;
break;
}
}
return valid;
}
virtual void get_fields_used(MY_BITMAP *used_fields) {
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
QUICK_SELECT_I *quick;
while ((quick = it++)) quick->get_fields_used(used_fields);
}
Priority_queue<
QUICK_SELECT_I *,
std::vector<QUICK_SELECT_I *, Malloc_allocator<QUICK_SELECT_I *>>,
Quick_ror_union_less>
queue; /* Priority queue for merge operation */
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
THD *thd; /* current thread */
uchar *cur_rowid; /* buffer used in get_next() */
uchar *prev_rowid; /* rowid of last row returned by get_next() */
bool have_prev_rowid; /* true if prev_rowid has valid data */
uint rowid_length; /* table rowid length */
private:
bool scans_inited;
};
/*
Index scan for GROUP-BY queries with MIN/MAX aggregate functions.
This class provides a specialized index access method for GROUP-BY queries
of the forms:
SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)]
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND EQ(B_1,...,B_m)]
[AND PC(C)]
[AND PA(A_i1,...,A_iq)]
GROUP BY A_1,...,A_k;
or
SELECT DISTINCT A_i1,...,A_ik
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND PA(A_i1,...,A_iq)];
where all selected fields are parts of the same index.
The class of queries that can be processed by this quick select is fully
specified in the description of get_best_trp_group_min_max() in opt_range.cc.
The get_next() method directly produces result tuples, thus obviating the
need to call end_send_group() because all grouping is already done inside
get_next().
Since one of the requirements is that all select fields are part of the same
index, this class produces only index keys, and not complete records.
*/
class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I {
private:
JOIN *join; /* Descriptor of the current query */
KEY *index_info; /* The index chosen for data access */
uchar *tmp_record; /* Temporary storage for next_min(), next_max(). */
uchar *group_prefix; /* Key prefix consisting of the GROUP fields. */
const uint group_prefix_len; /* Length of the group prefix. */
uint group_key_parts; /* A number of keyparts in the group prefix */
uchar *last_prefix; /* Prefix of the last group for detecting EOF. */
bool have_min; /* Specify whether we are computing */
bool have_max; /* a MIN, a MAX, or both. */
bool have_agg_distinct; /* aggregate_function(DISTINCT ...). */
bool seen_first_key; /* Denotes whether the first key was retrieved.*/
KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */
/* of all MIN/MAX functions. */
uint min_max_arg_len; /* The length of the MIN/MAX argument field */
uchar *key_infix; /* Infix of constants from equality predicates. */
uint key_infix_len;
Quick_ranges min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */
uint real_prefix_len; /* Length of key prefix extended with key_infix. */
uint real_key_parts; /* A number of keyparts in the above value. */
List<Item_sum> *min_functions;
List<Item_sum> *max_functions;
List_iterator<Item_sum> *min_functions_it;
List_iterator<Item_sum> *max_functions_it;
/*
Use index scan to get the next different key instead of jumping into it
through index read
*/
bool is_index_scan;
/**
Whether used part of the index has desc key parts
*/
bool has_desc_keyparts;
public:
/*
The following two members are public to allow easy access from
TRP_GROUP_MIN_MAX::make_quick()
*/
MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */
QUICK_RANGE_SELECT
*quick_prefix_select; /* For retrieval of group prefixes. */
private:
int next_prefix();
int next_min_in_range();
int next_max_in_range();
int next_min();
int next_max();
void update_min_result(bool reset);
void update_max_result(bool reset);
public:
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join, bool have_min,
bool have_max, bool have_agg_distinct,
KEY_PART_INFO *min_max_arg_part,
uint group_prefix_len, uint group_key_parts,
uint used_key_parts, KEY *index_info,
uint use_index, const Cost_estimate *cost_est,
ha_rows records, uint key_infix_len,
uchar *key_infix, MEM_ROOT *parent_alloc,
bool is_index_scan);
~QUICK_GROUP_MIN_MAX_SELECT();
bool add_range(SEL_ARG *sel_range);
void update_key_stat();
void adjust_prefix_ranges();
int init();
void need_sorted_output() { /* always do it */
}
int reset();
int get_next();
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return false; }
bool unique_key_range() { return false; }
int get_type() const { return QS_TYPE_GROUP_MIN_MAX; }
virtual bool is_loose_index_scan() const { return true; }
virtual bool is_agg_loose_index_scan() const { return is_agg_distinct(); }
void add_keys_and_lengths(String *key_names, String *used_lengths);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
bool is_agg_distinct() const { return have_agg_distinct; }
virtual void append_loose_scan_type(String *str) {
if (is_index_scan) str->append(STRING_WITH_LEN("scanning"));
}
virtual void get_fields_used(MY_BITMAP *used_fields) {
for (uint i = 0; i < used_key_parts; i++)
bitmap_set_bit(used_fields, index_info->key_part[i].field->field_index);
}
void add_info_string(String *str);
};
class QUICK_SELECT_DESC : public QUICK_RANGE_SELECT {
public:
QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts);
int get_next();
bool reverse_sorted() const { return true; }
bool reverse_sort_possible() const { return true; }
int get_type() const { return QS_TYPE_RANGE_DESC; }
virtual bool is_loose_index_scan() const { return false; }
virtual bool is_agg_loose_index_scan() const { return false; }
QUICK_SELECT_I *make_reverse(uint) {
return this; // is already reverse sorted
}
private:
bool range_reads_after_key(QUICK_RANGE *range);
int reset(void) {
rev_it.rewind();
return QUICK_RANGE_SELECT::reset();
}
List<QUICK_RANGE> rev_ranges;
List_iterator<QUICK_RANGE> rev_it;
uint m_used_key_parts;
};
/*
Index scan for range queries that can use skip scans.
This class provides a specialized index access method for the queries
of the forms:
SELECT A_1,...,A_k, B_1,...,B_m, C
FROM T
WHERE
EQ(A_1,...,A_k)
AND RNG(C);
where all selected fields are parts of the same index.
The class of queries that can be processed by this quick select is fully
specified in the description of get_best_skip_scan() in opt_range.cc.
Since one of the requirements is that all select fields are part of the same
index, this class produces only index keys, and not complete records.
*/
class QUICK_SKIP_SCAN_SELECT : public QUICK_SELECT_I {
private:
JOIN *join; /* Pointer to JOIN object */
KEY *index_info; /* Index for skip scan */
SEL_ROOT *index_range_tree; /* Range tree for skip scan */
MY_BITMAP column_bitmap; /* Map of key parts to be read */
/*
This is an array of array of equality constants with length
eq_prefix_key_parts. The length of array eq_key_prefixes[i] is
eq_prefix_elements[i].
For example, an equality predicate like "a IN (1, 2) AND b IN (2, 3, 4)",
eq_key_prefixes will contain:
[
[ 1, 2 ],
[ 2, 3, 4 ]
]
eq_prefix_elements will contain:
[ 2, 3 ]
*/
uchar ***eq_key_prefixes;
uint *eq_prefix_elements;
const uint eq_prefix_len; /* Total length of the equality prefix. */
uint eq_prefix_key_parts; /* A number of keyparts in skip scan prefix */
uchar *eq_prefix; /* Storage for current equality prefix. */
/*
During skip scan, we will have to iterate through all possible
equality prefixes. This is the product of all the elements in
eq_prefix_elements. In the above example, there are 2 x 3 = 6 possible
equality prefixes.
To track which prefix we are on, we use the cur_eq_prefix array.
For example, the array [1, 1] indicates that the current equality prefix
is (2, 3).
*/
uint *cur_eq_prefix;
uchar *distinct_prefix; /* Storage for prefix A_1, ... B_m. */
uint distinct_prefix_len;
uint distinct_prefix_key_parts;
KEY_PART_INFO *range_key_part; /* The keypart of range condition 'C'. */
uint range_key_len;
/*
Denotes whether the first key for the current equality prefix was
retrieved.
*/
bool seen_first_key;
/* Storage for full lookup key for use with handler::read_range_first/next */
uchar *min_range_key;
uchar *max_range_key;
uchar *min_search_key;
uchar *max_search_key;
uint range_cond_flag;
key_range start_key;
key_range end_key;
bool has_aggregate_function;
bool next_eq_prefix();
public:
MEM_ROOT alloc; /* Memory pool for data in this class. */
public:
QUICK_SKIP_SCAN_SELECT(TABLE *table, JOIN *join, KEY *index_info, uint index,
KEY_PART_INFO *range_part, SEL_ROOT *index_range_tree,
uint eq_prefix_len, uint eq_prefix_parts,
uint used_key_parts,
const Cost_estimate *read_cost_arg, ha_rows records,
MEM_ROOT *parent_alloc, bool has_aggregate_function);
~QUICK_SKIP_SCAN_SELECT();
bool set_range(SEL_ARG *sel_range);
int init();
void need_sorted_output() {}
int reset();
int get_next();
bool reverse_sorted() const { return false; }
bool reverse_sort_possible() const { return false; }
bool unique_key_range() { return false; }
int get_type() const { return QS_TYPE_SKIP_SCAN; }
virtual bool is_loose_index_scan() const { return true; }
virtual bool is_agg_loose_index_scan() const {
return has_aggregate_function;
}
void add_keys_and_lengths(String *key_names, String *used_lengths);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
virtual void get_fields_used(MY_BITMAP *used_fields) {
for (uint i = 0; i < used_key_parts; i++)
bitmap_set_bit(used_fields, index_info->key_part[i].field->field_index);
}
void add_info_string(String *str);
};
class QEP_shared_owner;
int test_quick_select(THD *thd, Key_map keys, table_map prev_tables,
ha_rows limit, bool force_quick_range,
const enum_order interesting_order,
const QEP_shared_owner *tab, Item *cond,
Key_map *needed_reg, QUICK_SELECT_I **quick,
bool ignore_table_scan);
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
void store_key_image_to_rec(Field *field, uchar *ptr, uint len);
extern String null_string;
/// Global initialization of the null_element. Call on server start.
void range_optimizer_init();
/// Global destruction of the null_element. Call on server stop.
void range_optimizer_free();
#endif