用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

15596 lines
551 KiB

/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
TODO:
Fix that MAYBE_KEY are stored in the tree so that we can detect use
of full hash keys for queries like:
select s.id, kws.keyword_id from sites as s,kws where s.id=kws.site_id and
kws.keyword_id in (204,205);
*/
// Needed by the unit tests
#ifndef OPT_RANGE_CC_INCLUDED
#define OPT_RANGE_CC_INCLUDED
/*
This file contains:
RangeAnalysisModule
A module that accepts a condition, index (or partitioning) description,
and builds lists of intervals (in index/partitioning space), such that
all possible records that match the condition are contained within the
intervals.
The entry point for the range analysis module is get_mm_tree()
(mm=min_max) function.
The lists are returned in form of complicated structure of interlinked
SEL_TREE/SEL_IMERGE/SEL_ROOT/SEL_ARG objects.
See quick_range_seq_next, find_used_partitions for examples of how to walk
this structure.
All direct "users" of this module are located within this file, too.
PartitionPruningModule
A module that accepts a partitioned table, condition, and finds which
partitions we will need to use in query execution. Search down for
"PartitionPruningModule" for description.
The module has single entry point - prune_partitions() function.
Range/index_merge/groupby-minmax optimizer module
A module that accepts a table, condition, and returns
- a QUICK_*_SELECT object that can be used to retrieve rows that match
the specified condition, or a "no records will match the condition"
statement.
The module entry point is
test_quick_select()
Record retrieval code for range/index_merge/groupby-min-max.
Implementations of QUICK_*_SELECT classes.
KeyTupleFormat
~~~~~~~~~~~~~~
The code in this file (and elsewhere) makes operations on key value tuples.
Those tuples are stored in the following format:
The tuple is a sequence of key part values. The length of key part value
depends only on its type (and not depends on the what value is stored)
KeyTuple: keypart1-data, keypart2-data, ...
The value of each keypart is stored in the following format:
keypart_data: [isnull_byte] keypart-value-bytes
If a keypart may have a NULL value (key_part->field->real_maybe_null() can
be used to check this), then the first byte is a NULL indicator with the
following valid values:
1 - keypart has NULL value.
0 - keypart has non-NULL value.
<questionable-statement> If isnull_byte==1 (NULL value), then the following
keypart->length bytes must be 0.
</questionable-statement>
keypart-value-bytes holds the value. Its format depends on the field type.
The length of keypart-value-bytes may or may not depend on the value being
stored. The default is that length is static and equal to
KEY_PART_INFO::length.
Key parts with (key_part_flag & HA_BLOB_PART) have length depending of the
value:
keypart-value-bytes: value_length value_bytes
The value_length part itself occupies HA_KEY_BLOB_LENGTH=2 bytes.
See key_copy() and key_restore() for code to move data between index tuple
and table record
CAUTION: the above description is only sergefp's understanding of the
subject and may omit some details.
*/
#include "sql/opt_range.h"
#include <fcntl.h>
#include <float.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include <cmath> // std::log2
#include <memory>
#include <new>
#include <queue>
#include <set>
#include "field_types.h" // enum_field_types
#include "lex_string.h"
#include "m_ctype.h"
#include "map_helpers.h"
#include "memory_debugging.h"
#include "mf_wcomp.h" // wild_compare
#include "my_alloc.h"
#include "my_byteorder.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_loglevel.h"
#include "my_macros.h"
#include "my_sqlcommand.h"
#include "my_sys.h"
#include "mysql/components/services/log_builtins.h"
#include "mysql/psi/psi_base.h"
#include "mysql/service_mysql_alloc.h"
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysqld_error.h"
#include "mysys_err.h" // EE_CAPACITY_EXCEEDED
#include "sql/check_stack.h"
#include "sql/current_thd.h"
#include "sql/derror.h" // ER_THD
#include "sql/error_handler.h" // Internal_error_handler
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_row.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/key.h" // is_key_used
#include "sql/malloc_allocator.h"
#include "sql/mem_root_array.h"
#include "sql/mysqld.h"
#include "sql/opt_costmodel.h"
#include "sql/opt_hints.h" // hint_key_state
#include "sql/opt_statistics.h" // guess_rec_per_key
#include "sql/opt_trace.h" // Opt_trace_array
#include "sql/opt_trace_context.h"
#include "sql/partition_info.h" // partition_info
#include "sql/psi_memory_key.h"
#include "sql/row_iterator.h"
#include "sql/sql_base.h" // free_io_cache
#include "sql/sql_class.h" // THD
#include "sql/sql_error.h"
#include "sql/sql_executor.h"
#include "sql/sql_lex.h"
#include "sql/sql_opt_exec_shared.h" // QEP_shared_owner
#include "sql/sql_optimizer.h" // JOIN
#include "sql/sql_partition.h" // HA_USE_AUTO_PARTITION
#include "sql/sql_select.h"
#include "sql/sql_sort.h"
#include "sql/system_variables.h"
#include "sql/thr_malloc.h"
#include "sql/uniques.h" // Unique
#include "template_utils.h"
// idx_merge_hint_state()
#include "item_json_func.h" // Item_func_json_contains
using std::max;
using std::min;
/*
Convert double value to #rows. Currently this does floor(), and we
might consider using round() instead.
*/
#define double2rows(x) ((ha_rows)(x))
static int sel_cmp(Field *f, uchar *a, uchar *b, uint8 a_flag, uint8 b_flag);
static SEL_ARG *rb_delete_fixup(SEL_ARG *root, SEL_ARG *key, SEL_ARG *par);
#ifndef DBUG_OFF
static int test_rb_tree(SEL_ARG *element, SEL_ARG *parent);
#endif
static uchar is_null_string[2] = {1, 0};
class RANGE_OPT_PARAM;
/**
Error handling class for range optimizer. We handle only out of memory
error here. This is to give a hint to the user to
raise range_optimizer_max_mem_size if required.
Warning for the memory error is pushed only once. The consequent errors
will be ignored.
*/
class Range_optimizer_error_handler : public Internal_error_handler {
public:
Range_optimizer_error_handler()
: m_has_errors(false), m_is_mem_error(false) {}
virtual bool handle_condition(THD *thd, uint sql_errno, const char *,
Sql_condition::enum_severity_level *level,
const char *) {
if (*level == Sql_condition::SL_ERROR) {
m_has_errors = true;
/* Out of memory error is reported only once. Return as handled */
if (m_is_mem_error && sql_errno == EE_CAPACITY_EXCEEDED) return true;
if (sql_errno == EE_CAPACITY_EXCEEDED) {
m_is_mem_error = true;
/* Convert the error into a warning. */
*level = Sql_condition::SL_WARNING;
push_warning_printf(
thd, Sql_condition::SL_WARNING, ER_CAPACITY_EXCEEDED,
ER_THD(thd, ER_CAPACITY_EXCEEDED),
(ulonglong)thd->variables.range_optimizer_max_mem_size,
"range_optimizer_max_mem_size",
ER_THD(thd, ER_CAPACITY_EXCEEDED_IN_RANGE_OPTIMIZER));
return true;
}
}
return false;
}
bool has_errors() const { return m_has_errors; }
private:
bool m_has_errors;
bool m_is_mem_error;
};
/**
A helper function to invert min flags to max flags for DESC key parts.
It changes NEAR_MIN, NO_MIN_RANGE to NEAR_MAX, NO_MAX_RANGE appropriately
*/
static uint invert_min_flag(uint min_flag) {
uint max_flag_out = min_flag & ~(NEAR_MIN | NO_MIN_RANGE);
if (min_flag & NEAR_MIN) max_flag_out |= NEAR_MAX;
if (min_flag & NO_MIN_RANGE) max_flag_out |= NO_MAX_RANGE;
return max_flag_out;
}
/**
A helper function to invert max flags to min flags for DESC key parts.
It changes NEAR_MAX, NO_MAX_RANGE to NEAR_MIN, NO_MIN_RANGE appropriately
*/
static uint invert_max_flag(uint max_flag) {
uint min_flag_out = max_flag & ~(NEAR_MAX | NO_MAX_RANGE);
if (max_flag & NEAR_MAX) min_flag_out |= NEAR_MIN;
if (max_flag & NO_MAX_RANGE) min_flag_out |= NO_MIN_RANGE;
return min_flag_out;
}
class SEL_ARG;
/**
A graph of (possible multiple) key ranges, represented as a red-black
binary tree. There are three types (see the Type enum); if KEY_RANGE,
we have zero or more SEL_ARGs, described in the documentation on SEL_ARG.
As a special case, a nullptr SEL_ROOT means a range that is always true.
This is true both for keys[] and next_key_part.
*/
class SEL_ROOT {
public:
/**
Used to indicate if the range predicate for an index is always
true/false, depends on values from other tables or can be
evaluated as is.
*/
enum class Type {
/** The range predicate for this index is always false. */
IMPOSSIBLE,
/**
There is a range predicate that refers to another table. The
range access method cannot be used on this index unless that
other table is earlier in the join sequence. The bit
representing the index is set in JOIN_TAB::needed_reg to
notify the join optimizer that there is a table dependency.
After deciding on join order, the optimizer may chose to rerun
the range optimizer for tables with such dependencies.
*/
MAYBE_KEY,
/**
There is a range condition that can be used on this index. The
range conditions for this index in stored in the SEL_ARG tree.
*/
KEY_RANGE
} type;
/**
Constructs a tree of type KEY_RANGE, using the given root.
(The root is allowed to have children.)
*/
SEL_ROOT(SEL_ARG *root);
/**
Used to construct MAYBE_KEY and IMPOSSIBLE SEL_ARGs.
*/
SEL_ROOT(MEM_ROOT *memroot, Type type_arg);
/**
Note that almost all SEL_ROOTs are created on the MEM_ROOT,
so this destructor will only rarely be called.
*/
~SEL_ROOT() { DBUG_ASSERT(use_count == 0); }
/**
Returns true iff we have a single node that has no max nor min.
Note that by convention, a nullptr SEL_ROOT means the same.
*/
bool is_always() const;
/**
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
*/
int store_min_key(KEY_PART *key, uchar **range_key, uint *range_key_flag,
uint last_part, bool start_key);
/* returns a number of keypart values appended to the key buffer */
int store_max_key(KEY_PART *key, uchar **range_key, uint *range_key_flag,
uint last_part, bool start_key);
/**
Signal to the tree that the caller will shortly be dropping it
on the floor; if others are still using it, this is a no-op,
but if the caller was the last one, it is now an orphan, and
references from it should not count.
*/
void free_tree();
/**
Insert the given node into the tree, and update the root.
@param key The node to insert.
*/
void insert(SEL_ARG *key);
/**
Delete the given node from the tree, and update the root.
@param key The node to delete. Must exist in the tree.
*/
void tree_delete(SEL_ARG *key);
/**
Find best key with min <= given key.
Because of the call context, this should never return nullptr to get_range.
@param key The key to search for.
*/
SEL_ARG *find_range(const SEL_ARG *key) const;
/**
Create a new tree that's a duplicate of this one.
@param param The parameters for the new tree. Used to find out which
MEM_ROOT to allocate the new nodes on.
@return The new tree, or nullptr in case of out of memory.
*/
SEL_ROOT *clone_tree(RANGE_OPT_PARAM *param) const;
/**
Check if SEL_ROOT::use_count value is correct. See the definition
of use_count for what is "correct".
@param root The origin tree of the SEL_ARG graph (an RB-tree that
has the least value of root->sel_root->root->part in the
entire graph, and thus is the "origin" of the graph)
@return true iff an incorrect SEL_ARG::use_count is found.
*/
bool test_use_count(const SEL_ROOT *root) const;
/** Returns true iff this is a single-element, single-field predicate. */
inline bool simple_key() const;
/**
The root node of the tree. Note that this may change as the result
of rotations during insertions or deletions, so pointers should be
to the SEL_ROOT, not individual SEL_ARG nodes.
This element can never be nullptr, but can be null_element
if type == KEY_RANGE and the tree is empty (which then means the same as
type == IMPOSSIBLE).
If type == IMPOSSIBLE or type == MAYBE_KEY, there's a single root
element which only serves to hold next_key_part (we don't really care
about root->part in this case); the actual min/max values etc.
do not matter and should not be accessed.
*/
SEL_ARG *root;
/**
Number of references to this SEL_ARG tree. References may be from
SEL_ARG::next_key_part of SEL_ARGs from earlier keyparts or
SEL_TREE::keys[i].
The SEL_ARG trees are re-used in a lazy-copy manner based on this
reference counting.
*/
ulong use_count{0};
/**
Number of nodes in the RB-tree, not including sentinels.
*/
uint16 elements{0};
};
/*
A construction block of the SEL_ARG-graph.
One SEL_ARG object represents an "elementary interval" in form
min_value <=? table.keypartX <=? max_value
The interval is a non-empty interval of any kind: with[out] minimum/maximum
bound, [half]open/closed, single-point interval, etc.
1. SEL_ARG GRAPH STRUCTURE
SEL_ARG objects are linked together in a graph, represented by the SEL_ROOT.
The meaning of the graph is better demonstrated by an example:
tree->keys[i]
|
| $ $
| part=1 $ part=2 $ part=3
| $ $
| +-------+ $ +-------+ $ +--------+
| | kp1<1 |--$-->| kp2=5 |--$-->| kp3=10 |
| +-------+ $ +-------+ $ +--------+
| | $ $ |
| | $ $ +--------+
| | $ $ | kp3=12 |
| | $ $ +--------+
| +-------+ $ $
\->| kp1=2 |--$--------------$-+
+-------+ $ $ | +--------+
| $ $ ==>| kp3=11 |
+-------+ $ $ | +--------+
| kp1=3 |--$--------------$-+ |
+-------+ $ $ +--------+
| $ $ | kp3=14 |
... $ $ +--------+
The entire graph is partitioned into "interval lists".
An interval list is a sequence of ordered disjoint intervals over
the same key part. SEL_ARG are linked via "next" and "prev" pointers
with NULL as sentinel.
In the example pic, there are 4 interval lists:
"kp<1 OR kp1=2 OR kp1=3", "kp2=5", "kp3=10 OR kp3=12", "kp3=11 OR kp3=13".
The vertical lines represent SEL_ARG::next/prev pointers.
Additionally, all intervals in the list form a red-black (RB) tree,
linked via left/right/parent pointers with null_element as sentinel. The
red-black tree root SEL_ARG object will be further called "root of the
interval list".
A red-black tree with 7 SEL_ARGs will look similar to what is shown
below. Left/right/parent pointers are shown while next pointers go from a
node with number X to the node with number X+1 (and prev in the
opposite direction):
Root
+---+
| 4 |
+---+
left/ \ right
__/ \__
/ \
+---+ +---+
| 2 | | 6 |
+---+ +---+
left / \ right left / \ right
| | | |
+---+ +---+ +---+ +---+
| 1 | | 3 | | 5 | | 7 |
+---+ +---+ +---+ +---+
In this tree,
* node1->prev == node7->next == NULL
* node1->left == node1->right ==
node3->left == ... node7->right == null_element
In an interval list, each member X may have SEL_ARG::next_key_part pointer
pointing to the root of another interval list Y. The pointed interval list
must cover a key part with greater number (i.e. Y->part > X->part).
In the example pic, the next_key_part pointers are represented by
horisontal lines.
2. SEL_ARG GRAPH SEMANTICS
It represents a condition in a special form (we don't have a name for it ATM)
The SEL_ARG::next/prev is "OR", and next_key_part is "AND".
For example, the picture represents the condition in form:
(kp1 < 1 AND kp2=5 AND (kp3=10 OR kp3=12)) OR
(kp1=2 AND (kp3=11 OR kp3=14)) OR
(kp1=3 AND (kp3=11 OR kp3=14))
In red-black tree form:
+-------+ +--------+
| kp1=2 |.................| kp3=14 |
+-------+ +--------+
/ \ /
+---------+ +-------+ +--------+
| kp1 < 1 | | kp1=3 | | kp3=11 |
+---------+ +-------+ +--------+
. .
...... .......
. .
+-------+ +--------+
| kp2=5 | | kp3=14 |
+-------+ +--------+
. /
. +--------+
(root of R-B tree | kp3=11 |
for "kp3={10|12}") +--------+
Where / and \ denote left and right pointers and ... denotes
next_key_part pointers to the root of the R-B tree of intervals for
consecutive key parts.
3. SEL_ARG GRAPH USE
Use get_mm_tree() to construct SEL_ARG graph from WHERE condition.
Then walk the SEL_ARG graph and get a list of dijsoint ordered key
intervals (i.e. intervals in form
(constA1, .., const1_K) < (keypart1,.., keypartK) < (constB1, .., constB_K)
Those intervals can be used to access the index. The uses are in:
- check_quick_select() - Walk the SEL_ARG graph and find an estimate of
how many table records are contained within all
intervals.
- get_quick_select() - Walk the SEL_ARG, materialize the key intervals,
and create QUICK_RANGE_SELECT object that will
read records within these intervals.
4. SPACE COMPLEXITY NOTES
SEL_ARG graph is a representation of an ordered disjoint sequence of
intervals over the ordered set of index tuple values.
For multi-part keys, one can construct a WHERE expression such that its
list of intervals will be of combinatorial size. Here is an example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
(keypart3 IN (1,2, ..., n3))
For this WHERE clause the list of intervals will have n1*n2*n3 intervals
of form
(keypart1, keypart2, keypart3) = (k1, k2, k3), where 1 <= k{i} <= n{i}
SEL_ARG graph structure aims to reduce the amount of required space by
"sharing" the elementary intervals when possible (the pic at the
beginning of this comment has examples of such sharing). The sharing may
prevent combinatorial blowup:
There are WHERE clauses that have combinatorial-size interval lists but
will be represented by a compact SEL_ARG graph.
Example:
(keypartN IN (1,2, ..., n1)) AND
...
(keypart2 IN (1,2, ..., n2)) AND
(keypart1 IN (1,2, ..., n3))
but not in all cases:
- There are WHERE clauses that do have a compact SEL_ARG-graph
representation but get_mm_tree() and its callees will construct a
graph of combinatorial size.
Example:
(keypart1 IN (1,2, ..., n1)) AND
(keypart2 IN (1,2, ..., n2)) AND
...
(keypartN IN (1,2, ..., n3))
- There are WHERE clauses for which the minimal possible SEL_ARG graph
representation will have combinatorial size.
Example:
By induction: Let's take any interval on some keypart in the middle:
kp15=c0
Then let's AND it with this interval 'structure' from preceding and
following keyparts:
(kp14=c1 AND kp16=c3) OR keypart14=c2) (*)
We will obtain this SEL_ARG graph:
kp14 $ kp15 $ kp16
$ $
+---------+ $ +---------+ $ +---------+
| kp14=c1 |--$-->| kp15=c0 |--$-->| kp16=c3 |
+---------+ $ +---------+ $ +---------+
| $ $
+---------+ $ +---------+ $
| kp14=c2 |--$-->| kp15=c0 | $
+---------+ $ +---------+ $
$ $
Note that we had to duplicate "kp15=c0" and there was no way to avoid
that.
The induction step: AND the obtained expression with another "wrapping"
expression like (*).
When the process ends because of the limit on max. number of keyparts
we'll have:
WHERE clause length is O(3*#max_keyparts)
SEL_ARG graph size is O(2^(#max_keyparts/2))
(it is also possible to construct a case where instead of 2 in 2^n we
have a bigger constant, e.g. 4, and get a graph with 4^(31/2)= 2^31
nodes)
We avoid consuming too much memory by setting a limit on the number of
SEL_ARG object we can construct during one range analysis invocation.
*/
class SEL_ARG {
public:
uint8 min_flag{0}, max_flag{0};
/**
maybe_flag signals that this range is AND-ed with some unknown range
(a MAYBE_KEY node). This means that the range could be smaller than
what it would otherwise denote; e.g., a range such as
(0 < x < 3) AND x=( SELECT ... )
could in reality be e.g. (1 < x < 2), depending on what the subselect
returns (and we don't know that when planning), but it could never be
bigger.
FIXME: It's unclear if this is really kept separately per SEL_ARG or is
meaningful only at the root node, and thus should be moved to the
SEL_ROOT. Most code seems to assume the latter, but a few select places,
non-root nodes appear to be modified.
*/
bool maybe_flag{false};
/*
Which key part. TODO: This is the same for all values in a SEL_ROOT,
so we should move it there.
*/
uint8 part{0};
bool maybe_null() const { return field->real_maybe_null(); }
/**
The rtree index interval to scan, undefined unless
SEL_ARG::min_flag == GEOM_FLAG.
*/
enum ha_rkey_function rkey_func_flag;
/*
TODO: This is the same for all values in a SEL_ROOT, so we should
move it there; however, be careful about cmp_* functions.
Note that this should never be nullptr except in the special case
where we have a dummy SEL_ARG to hold next_key_part only
(see SEL_ROOT::root for more information).
*/
Field *field{nullptr};
uchar *min_value, *max_value; // Pointer to range
/*
eq_tree(), first(), last() etc require that left == right == NULL
if the type is MAYBE_KEY. Todo: fix this so SEL_ARGs without R-B
children are handled consistently. See related WL#5894.
*/
SEL_ARG *left, *right; /* R-B tree children */
SEL_ARG *next, *prev; /* Links for bi-directional interval list */
SEL_ARG *parent{nullptr}; /* R-B tree parent (nullptr for root) */
/*
R-B tree of intervals covering keyparts consecutive to this
SEL_ARG. See documentation of SEL_ARG GRAPH semantics for details.
*/
SEL_ROOT *next_key_part{nullptr};
/**
Convenience function for removing the next_key_part. The typical
use for this function is to disconnect the next_key_part from the
root, send it to key_and() or key_or(), and then connect the
result of that function back to the SEL_ARG using set_next_key_part().
@return The previous value of next_key_part.
*/
SEL_ROOT *release_next_key_part() {
SEL_ROOT *ret = next_key_part;
if (next_key_part) {
DBUG_ASSERT(next_key_part->use_count > 0);
--next_key_part->use_count;
}
next_key_part = nullptr;
return ret;
}
/**
Convenience function for changing next_key_part, including
updating the use_count. The argument is allowed to be nullptr.
@param next_key_part_arg New value for next_key_part.
*/
void set_next_key_part(SEL_ROOT *next_key_part_arg) {
release_next_key_part();
next_key_part = next_key_part_arg;
if (next_key_part) ++next_key_part->use_count;
}
enum leaf_color { BLACK, RED } color;
bool is_ascending; ///< true - ASC order, false - DESC
SEL_ARG() {}
SEL_ARG(SEL_ARG &);
SEL_ARG(Field *, const uchar *, const uchar *, bool asc);
SEL_ARG(Field *field, uint8 part, uchar *min_value, uchar *max_value,
uint8 min_flag, uint8 max_flag, bool maybe_flag, bool asc);
/**
Note that almost all SEL_ARGs are created on the MEM_ROOT,
so this destructor will only rarely be called.
*/
~SEL_ARG() { release_next_key_part(); }
/**
returns true if a range predicate is equal. Use all_same()
to check for equality of all the predicates on this keypart.
*/
inline bool is_same(const SEL_ARG *arg) const {
if (part != arg->part) return false;
return cmp_min_to_min(arg) == 0 && cmp_max_to_max(arg) == 0;
}
inline void merge_flags(SEL_ARG *arg) { maybe_flag |= arg->maybe_flag; }
inline void maybe_smaller() { maybe_flag = true; }
/* Return true iff it's a single-point null interval */
inline bool is_null_interval() { return maybe_null() && max_value[0] == 1; }
inline int cmp_min_to_min(const SEL_ARG *arg) const {
return sel_cmp(field, min_value, arg->min_value, min_flag, arg->min_flag);
}
inline int cmp_min_to_max(const SEL_ARG *arg) const {
return sel_cmp(field, min_value, arg->max_value, min_flag, arg->max_flag);
}
inline int cmp_max_to_max(const SEL_ARG *arg) const {
return sel_cmp(field, max_value, arg->max_value, max_flag, arg->max_flag);
}
inline int cmp_max_to_min(const SEL_ARG *arg) const {
return sel_cmp(field, max_value, arg->min_value, max_flag, arg->min_flag);
}
SEL_ARG *clone_and(SEL_ARG *arg,
MEM_ROOT *mem_root) { // Get intersection of ranges.
uchar *new_min, *new_max;
uint8 flag_min, flag_max;
if (cmp_min_to_min(arg) >= 0) {
new_min = min_value;
flag_min = min_flag;
} else {
new_min = arg->min_value;
flag_min = arg->min_flag; /* purecov: deadcode */
}
if (cmp_max_to_max(arg) <= 0) {
new_max = max_value;
flag_max = max_flag;
} else {
new_max = arg->max_value;
flag_max = arg->max_flag;
}
return new (mem_root)
SEL_ARG(field, part, new_min, new_max, flag_min, flag_max,
maybe_flag && arg->maybe_flag, is_ascending);
}
SEL_ARG *clone_first(SEL_ARG *arg,
MEM_ROOT *mem_root) { // arg->min <= X < arg->min
return new (mem_root)
SEL_ARG(field, part, min_value, arg->min_value, min_flag,
arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX,
maybe_flag || arg->maybe_flag, is_ascending);
}
SEL_ARG *clone_last(SEL_ARG *arg,
MEM_ROOT *mem_root) { // arg->min <= X <= key_max
return new (mem_root)
SEL_ARG(field, part, min_value, arg->max_value, min_flag, arg->max_flag,
maybe_flag || arg->maybe_flag, is_ascending);
}
SEL_ARG *clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent, SEL_ARG **next);
bool copy_min(SEL_ARG *arg) { // max(this->min, arg->min) <= x <= this->max
if (cmp_min_to_min(arg) > 0) {
min_value = arg->min_value;
min_flag = arg->min_flag;
if ((max_flag & NO_MAX_RANGE) && (min_flag & NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag |= arg->maybe_flag;
return 0;
}
bool copy_max(SEL_ARG *arg) { // this->min <= x <= min(this->max, arg->max)
if (cmp_max_to_max(arg) <= 0) {
max_value = arg->max_value;
max_flag = arg->max_flag;
if ((max_flag & NO_MAX_RANGE) && (min_flag & NO_MIN_RANGE))
return 1; // Full range
}
maybe_flag |= arg->maybe_flag;
return 0;
}
void copy_min_to_min(SEL_ARG *arg) {
min_value = arg->min_value;
min_flag = arg->min_flag;
}
void copy_min_to_max(SEL_ARG *arg) {
max_value = arg->min_value;
max_flag = arg->min_flag & NEAR_MIN ? 0 : NEAR_MAX;
}
void copy_max_to_min(SEL_ARG *arg) {
min_value = arg->max_value;
min_flag = arg->max_flag & NEAR_MAX ? 0 : NEAR_MIN;
}
/**
Set spatial index range scan parameters. This object will be used to do
spatial index range scan after this call.
@param rkey_func The scan function to perform. It must be one of the
spatial index specific scan functions.
*/
void set_gis_index_read_function(const enum ha_rkey_function rkey_func) {
DBUG_ASSERT(rkey_func >= HA_READ_MBR_CONTAIN &&
rkey_func <= HA_READ_MBR_EQUAL);
min_flag = GEOM_FLAG;
rkey_func_flag = rkey_func;
max_flag = NO_MAX_RANGE;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_min_value(uint length, uchar **min_key, uint min_key_flag) {
/* "(kp1 > c1) AND (kp2 OP c2) AND ..." -> (kp1 > c1) */
if ((min_flag & GEOM_FLAG) ||
(!(min_flag & NO_MIN_RANGE) &&
!(min_key_flag & (NO_MIN_RANGE | NEAR_MIN)))) {
if (maybe_null() && *min_value) {
**min_key = 1;
memset(*min_key + 1, 0, length - 1);
} else
memcpy(*min_key, min_value, length);
(*min_key) += length;
return 1;
}
return 0;
}
/* returns a number of keypart values (0 or 1) appended to the key buffer */
int store_max_value(uint length, uchar **max_key, uint max_key_flag) {
if (!(max_flag & NO_MAX_RANGE) &&
!(max_key_flag & (NO_MAX_RANGE | NEAR_MAX))) {
if (maybe_null() && *max_value) {
**max_key = 1;
memset(*max_key + 1, 0, length - 1);
} else
memcpy(*max_key, max_value, length);
(*max_key) += length;
return 1;
}
return 0;
}
/*
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
Note: Caller of this function should take care of sending the
correct flags and correct key to be stored into. In case of
ascending indexes, store_min_key() gets called to store the
min_value to range start_key. In case of descending indexes, it's
called for storing min_value to range end_key.
*/
/**
Helper function for storing min/max values of SEL_ARG taking into account
key part's order.
*/
void store_min_max_values(uint length, uchar **min_key, uint min_flag,
uchar **max_key, uint max_flag, int *min_part,
int *max_part) {
if (is_ascending) {
*min_part += store_min_value(length, min_key, min_flag);
*max_part += store_max_value(length, max_key, max_flag);
} else {
*max_part += store_min_value(length, max_key, min_flag);
*min_part += store_max_value(length, min_key, max_flag);
}
}
/**
Helper function for storing min/max keys of next SEL_ARG taking into
account key part's order.
@note On checking min/max flags: Flags are used to track whether there's
a partial key in the key buffer. So for ASC key parts the flag
corresponding to the key being added to should be checked, not
corresponding to the value being added. I.e min_flag for min_key.
For DESC key parts it's opposite - max_flag for min_key. It's flag
of prev key part that should be checked.
*/
void store_next_min_max_keys(KEY_PART *key, uchar **cur_min_key,
uint *cur_min_flag, uchar **cur_max_key,
uint *cur_max_flag, int *min_part,
int *max_part) {
DBUG_ASSERT(next_key_part);
const bool asc = next_key_part->root->is_ascending;
if (!get_min_flag()) {
if (asc)
*min_part += next_key_part->store_min_key(key, cur_min_key,
cur_min_flag, MAX_KEY, true);
else {
uint tmp_flag = invert_min_flag(*cur_min_flag);
*min_part += next_key_part->store_max_key(key, cur_min_key, &tmp_flag,
MAX_KEY, true);
*cur_min_flag = invert_max_flag(tmp_flag);
}
}
if (!get_max_flag()) {
if (asc)
*max_part += next_key_part->store_max_key(key, cur_max_key,
cur_max_flag, MAX_KEY, false);
else {
uint tmp_flag = invert_max_flag(*cur_max_flag);
*max_part += next_key_part->store_min_key(key, cur_max_key, &tmp_flag,
MAX_KEY, false);
*cur_max_flag = invert_min_flag(tmp_flag);
}
}
}
SEL_ARG *rb_insert(SEL_ARG *leaf);
friend SEL_ARG *rb_delete_fixup(SEL_ARG *root, SEL_ARG *key, SEL_ARG *par);
#ifndef DBUG_OFF
friend int test_rb_tree(SEL_ARG *element, SEL_ARG *parent);
#endif
SEL_ARG *first();
const SEL_ARG *first() const;
SEL_ARG *last();
void make_root();
inline SEL_ARG **parent_ptr() {
return parent->left == this ? &parent->left : &parent->right;
}
/*
Check if this SEL_ARG object represents a single-point interval
SYNOPSIS
is_singlepoint()
DESCRIPTION
Check if this SEL_ARG object (not tree) represents a single-point
interval, i.e. if it represents a "keypart = const" or
"keypart IS NULL".
RETURN
true This SEL_ARG object represents a singlepoint interval
false Otherwise
*/
bool is_singlepoint() const {
/*
Check for NEAR_MIN ("strictly less") and NO_MIN_RANGE (-inf < field)
flags, and the same for right edge.
*/
if (min_flag || max_flag) return false;
uchar *min_val = min_value;
uchar *max_val = max_value;
if (maybe_null()) {
/* First byte is a NULL value indicator */
if (*min_val != *max_val) return false;
if (*min_val) return true; /* This "x IS NULL" */
min_val++;
max_val++;
}
return !field->key_cmp(min_val, max_val);
}
/**
Return correct min_flag.
For DESC key parts max flag should be used as min flag, but in order to
be checked correctly, max flag should be flipped as code doesn't expect
e.g NEAR_MAX in min flag.
*/
uint get_min_flag() {
return (is_ascending ? min_flag : invert_max_flag(max_flag));
}
/**
Return correct max_flag.
For DESC key parts min flag should be used as max flag, but in order to
be checked correctly, min flag should be flipped as code doesn't expect
e.g NEAR_MIN in max flag.
*/
uint get_max_flag() {
return (is_ascending ? max_flag : invert_min_flag(min_flag));
}
};
/*
Returns a number of keypart values appended to the key buffer
for min key and max key. This function is used by both Range
Analysis and Partition pruning. For partition pruning we have
to ensure that we don't store also subpartition fields. Thus
we have to stop at the last partition part and not step into
the subpartition fields. For Range Analysis we set last_part
to MAX_KEY which we should never reach.
Note: Caller of this function should take care of sending the
correct flags and correct key to be stored into. In case of
ascending indexes, store_min_key() gets called to store the
min_value to range start_key. In case of descending indexes, it's
called for storing min_value to range end_key.
*/
int SEL_ROOT::store_min_key(KEY_PART *key, uchar **range_key,
uint *range_key_flag, uint last_part,
bool start_key) {
SEL_ARG *key_tree = root->first();
uint res = key_tree->store_min_value(key[key_tree->part].store_length,
range_key, *range_key_flag);
// We've stored min_value, so append min_flag
*range_key_flag |= key_tree->min_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->root->part == key_tree->part + 1 &&
!(*range_key_flag & (NO_MIN_RANGE | NEAR_MIN))) {
const bool asc = key_tree->next_key_part->root->is_ascending;
if ((start_key && asc) || (!start_key && !asc))
res += key_tree->next_key_part->store_min_key(
key, range_key, range_key_flag, last_part, start_key);
else {
uint tmp_flag = invert_min_flag(*range_key_flag);
res += key_tree->next_key_part->store_max_key(key, range_key, &tmp_flag,
last_part, start_key);
*range_key_flag = invert_max_flag(tmp_flag);
}
}
return res;
}
/*
Returns the number of keypart values appended to the key buffer.
Note: Caller of this function should take care of sending the
correct flags and correct key to be stored into. In case of
ascending indexes, store_max_key() gets called while storing the
max_value into range end_key. In case of descending indexes,
its max_value to range start_key.
*/
int SEL_ROOT::store_max_key(KEY_PART *key, uchar **range_key,
uint *range_key_flag, uint last_part,
bool start_key) {
SEL_ARG *key_tree = root->last();
uint res = key_tree->store_max_value(key[key_tree->part].store_length,
range_key, *range_key_flag);
// We've stored max value, so return max_flag
(*range_key_flag) |= key_tree->max_flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE &&
key_tree->part != last_part &&
key_tree->next_key_part->root->part == key_tree->part + 1 &&
!(*range_key_flag & (NO_MAX_RANGE | NEAR_MAX))) {
const bool asc = key_tree->next_key_part->root->is_ascending;
if ((!start_key && asc) || (start_key && !asc))
res += key_tree->next_key_part->store_max_key(
key, range_key, range_key_flag, last_part, start_key);
else {
uint tmp_flag = invert_max_flag(*range_key_flag);
res += key_tree->next_key_part->store_min_key(key, range_key, &tmp_flag,
last_part, start_key);
*range_key_flag = invert_min_flag(tmp_flag);
}
}
return res;
}
void SEL_ROOT::free_tree() {
if (use_count == 0) {
for (SEL_ARG *pos = root->first(); pos; pos = pos->next) {
SEL_ROOT *root = pos->release_next_key_part();
if (root) root->free_tree();
}
}
}
/**
Helper function to compare two SEL_ROOTs.
*/
static bool all_same(const SEL_ROOT *sa1, const SEL_ROOT *sa2) {
if (sa1 == NULL && sa2 == NULL) return true;
if ((sa1 != NULL && sa2 == NULL) || (sa1 == NULL && sa2 != NULL))
return false;
if (sa1->type == SEL_ROOT::Type::KEY_RANGE &&
sa2->type == SEL_ROOT::Type::KEY_RANGE) {
const SEL_ARG *sa1_arg = sa1->root->first();
const SEL_ARG *sa2_arg = sa2->root->first();
for (; sa1_arg && sa2_arg && sa1_arg->is_same(sa2_arg);
sa1_arg = sa1_arg->next, sa2_arg = sa2_arg->next)
;
if (sa1_arg || sa2_arg) return false;
return true;
} else
return sa1->type == sa2->type;
}
class SEL_IMERGE;
struct ROR_SCAN_INFO;
class SEL_TREE {
public:
/**
Starting an effort to document this field:
IMPOSSIBLE: if keys[i]->type == SEL_ROOT::Type::IMPOSSIBLE for some i,
then type == SEL_TREE::IMPOSSIBLE. Rationale: if the predicate for
one of the indexes is always false, then the full predicate is also
always false.
ALWAYS: if either (keys[i]->is_always()) or (keys[i] == NULL) for all i,
then type == SEL_TREE::ALWAYS. Rationale: the range access method
will not be able to filter out any rows when there are no range
predicates that can be used to filter on any index.
KEY: There are range predicates that can be used on at least one
index.
KEY_SMALLER: There are range predicates that can be used on at
least one index. In addition, there are predicates that cannot
be directly utilized by range access on key parts in the same
index. These unused predicates makes it probable that the row
estimate for range access on this index is too pessimistic.
*/
enum Type { IMPOSSIBLE, ALWAYS, MAYBE, KEY, KEY_SMALLER } type;
SEL_TREE(enum Type type_arg, MEM_ROOT *root, size_t num_keys)
: type(type_arg), keys(root, num_keys), n_ror_scans(0) {}
SEL_TREE(MEM_ROOT *root, size_t num_keys)
: type(KEY), keys(root, num_keys), n_ror_scans(0) {}
/**
Constructor that performs deep-copy of the SEL_ARG trees in
'keys[]' and the index merge alternatives in 'merges'.
@param arg The SEL_TREE to copy
@param param Parameters for range analysis
*/
SEL_TREE(SEL_TREE *arg, RANGE_OPT_PARAM *param);
/*
Possible ways to read rows using a single index because the
conditions of the query consists of single-index conjunctions:
(ranges_for_idx_1) AND (ranges_for_idx_2) AND ...
The SEL_ARG graph for each non-NULL element in keys[] may consist
of many single-index ranges (disjunctions), so ranges_for_idx_1
may e.g. be:
"idx_field1 = 1 OR (idx_field1 > 5 AND idx_field2 = 10)"
assuming that index1 is a composite index covering
(idx_field1,...,idx_field2,..)
Index merge intersection intersects ranges on SEL_ARGs from two or
more indexes.
Note: there may exist SEL_TREE objects with sel_tree->type=KEY and
keys[i]=0 for all i. (SergeyP: it is not clear whether there is any
merit in range analyzer functions (e.g. get_mm_parts) returning a
pointer to such SEL_TREE instead of NULL)
Note: If you want to set an element in keys[], use set_key()
or release_key() to make sure the SEL_ARG's use_count is correctly
updated.
*/
Mem_root_array<SEL_ROOT *> keys;
Key_map keys_map; /* bitmask of non-NULL elements in keys */
/*
Possible ways to read rows using Index merge (sort) union.
Each element in 'merges' consists of multi-index disjunctions,
which means that Index merge (sort) union must be applied to read
rows. The nodes in the 'merges' list forms a conjunction of such
multi-index disjunctions.
The list is non-empty only if type==KEY.
*/
List<SEL_IMERGE> merges;
/* The members below are filled/used only after get_mm_tree is done */
Key_map ror_scans_map; /* bitmask of ROR scan-able elements in keys */
uint n_ror_scans; /* number of set bits in ror_scans_map */
ROR_SCAN_INFO **ror_scans; /* list of ROR key scans */
ROR_SCAN_INFO **ror_scans_end; /* last ROR scan */
/* Note that #records for each key scan is stored in table->quick_rows */
/**
Convenience function for removing an element in keys[]. The typical
use for this function is to disconnect the next_key_part from the
root, send it to key_and() or key_or(), and then connect the
result of that function back to the SEL_ROOT using set_key().
@param index Which index slot to release.
@return The value in the slot (before removal).
*/
SEL_ROOT *release_key(int index) {
SEL_ROOT *ret = keys[index];
if (keys[index]) {
DBUG_ASSERT(keys[index]->use_count > 0);
--keys[index]->use_count;
}
keys[index] = nullptr;
return ret;
}
/**
Convenience function for changing an element in keys[], including
updating the use_count.
@param index Which index slot to change.
@param key The new contents of the index slot. Is allowed to be nullptr.
*/
void set_key(int index, SEL_ROOT *key) {
release_key(index);
keys[index] = key;
if (key) ++key->use_count;
}
};
class RANGE_OPT_PARAM {
public:
THD *thd; /* Current thread handle */
TABLE *table; /* Table being analyzed */
Item *cond; /* Used inside get_mm_tree(). */
table_map prev_tables;
table_map read_tables;
table_map current_table; /* Bit of the table being analyzed */
/* Array of parts of all keys for which range analysis is performed */
KEY_PART *key_parts;
KEY_PART *key_parts_end;
MEM_ROOT
*mem_root; /* Memory that will be freed when range analysis completes */
MEM_ROOT *old_root; /* Memory that will last until the query end */
/*
Number of indexes used in range analysis (In SEL_TREE::keys only first
#keys elements are not empty)
*/
uint keys;
/*
If true, the index descriptions describe real indexes (and it is ok to
call field->optimize_range(real_keynr[...], ...).
Otherwise index description describes fake indexes, like a partitioning
expression.
*/
bool using_real_indexes;
/*
Aggressively remove "scans" that do not have conditions on first
keyparts. Such scans are usable when doing partition pruning but not
regular range optimization.
*/
bool remove_jump_scans;
/*
used_key_no -> table_key_no translation table. Only makes sense if
using_real_indexes==true
*/
uint real_keynr[MAX_KEY];
/*
Used to store 'current key tuples', in both range analysis and
partitioning (list) analysis
*/
uchar min_key[MAX_KEY_LENGTH + MAX_FIELD_WIDTH],
max_key[MAX_KEY_LENGTH + MAX_FIELD_WIDTH];
bool force_default_mrr;
/**
Whether index statistics or index dives should be used when
estimating the number of rows in an equality range. If true, index
statistics is used for these indexes.
*/
bool use_index_statistics;
/// Error handler for this param.
Range_optimizer_error_handler error_handler;
bool has_errors() const { return (error_handler.has_errors()); }
virtual ~RANGE_OPT_PARAM() {}
};
class PARAM : public RANGE_OPT_PARAM {
public:
KEY_PART *key[MAX_KEY]; /* First key parts of keys used in the query */
longlong baseflag;
uint max_key_part;
/* Number of ranges in the last checked tree->key */
uint range_count;
bool quick; // Don't calulate possible keys
uint fields_bitmap_size;
MY_BITMAP needed_fields; /* bitmask of fields needed by the query */
MY_BITMAP tmp_covered_fields;
Key_map *needed_reg; /* ptr to needed_reg argument of test_quick_select() */
// Buffer for index_merge cost estimates.
Unique::Imerge_cost_buf_type imerge_cost_buff;
/* true if last checked tree->key can be used for ROR-scan */
bool is_ror_scan;
/* true if last checked tree->key can be used for index-merge-scan */
bool is_imerge_scan;
/* Number of ranges in the last checked tree->key */
uint n_ranges;
/*
The sort order the range access method must be able
to provide. Three-value logic: asc/desc/don't care
*/
enum_order order_direction;
/// Control whether the various index merge strategies are allowed
bool index_merge_allowed;
bool index_merge_union_allowed;
bool index_merge_sort_union_allowed;
bool index_merge_intersect_allowed;
/// Same value as JOIN_TAB::skip_records_in_range().
bool skip_records_in_range;
};
class TABLE_READ_PLAN;
class TRP_GROUP_MIN_MAX;
class TRP_RANGE;
class TRP_ROR_INTERSECT;
class TRP_SKIP_SCAN;
static SEL_TREE *get_mm_parts(RANGE_OPT_PARAM *param, Item_func *cond_func,
Field *field, Item_func::Functype type,
Item *value);
static SEL_ROOT *get_mm_leaf(RANGE_OPT_PARAM *param, Item *cond_func,
Field *field, KEY_PART *key_part,
Item_func::Functype type, Item *value);
static SEL_TREE *get_mm_tree(RANGE_OPT_PARAM *param, Item *cond);
static bool is_key_scan_ror(PARAM *param, uint keynr, uint nparts);
static ha_rows check_quick_select(PARAM *param, uint idx, bool index_only,
SEL_ROOT *tree, bool update_tbl_stats,
uint *mrr_flags, uint *bufsize,
Cost_estimate *cost);
QUICK_RANGE_SELECT *get_quick_select(PARAM *param, uint index,
SEL_ROOT *key_tree, uint mrr_flags,
uint mrr_buf_size, MEM_ROOT *alloc);
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
bool index_read_must_be_used,
bool update_tbl_stats,
const Cost_estimate *cost_est);
static TRP_ROR_INTERSECT *get_best_ror_intersect(const PARAM *param,
SEL_TREE *tree,
const Cost_estimate *cost_est,
bool force_index_merge_result);
static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param,
SEL_IMERGE *imerge,
const Cost_estimate *cost_est);
static TRP_GROUP_MIN_MAX *get_best_group_min_max(PARAM *param, SEL_TREE *tree,
const Cost_estimate *cost_est);
static TRP_SKIP_SCAN *get_best_skip_scan(PARAM *param, SEL_TREE *tree,
bool force_skip_scan);
#ifndef DBUG_OFF
static void print_sel_tree(PARAM *param, SEL_TREE *tree, Key_map *tree_map,
const char *msg);
static void print_ror_scans_arr(TABLE *table, const char *msg,
ROR_SCAN_INFO **start, ROR_SCAN_INFO **end);
static void print_quick(QUICK_SELECT_I *quick, const Key_map *needed_reg);
#endif
static void append_range_all_keyparts(Opt_trace_array *range_trace,
String *range_string,
String *range_so_far, SEL_ROOT *keypart,
const KEY_PART_INFO *key_parts,
const bool print_full);
#ifndef DBUG_OFF
static inline void dbug_print_tree(const char *tree_name, SEL_TREE *tree,
const RANGE_OPT_PARAM *param);
#else
static inline void dbug_print_tree(const char *, SEL_TREE *,
const RANGE_OPT_PARAM *) {}
#endif
static inline void print_tree(String *out, const char *tree_name,
SEL_TREE *tree, const RANGE_OPT_PARAM *param,
const bool print_full) MY_ATTRIBUTE((unused));
void append_range(String *out, const KEY_PART_INFO *key_parts,
const uchar *min_key, const uchar *max_key, const uint flag);
// Note: tree1 and tree2 are not usable by themselves after tree_and() or
// tree_or().
static SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1,
SEL_TREE *tree2);
static SEL_TREE *tree_or(RANGE_OPT_PARAM *param, SEL_TREE *tree1,
SEL_TREE *tree2);
/*
A null_sel_tree is used in get_func_mm_tree_from_in_predicate to pass
as an argument to tree_or. It is used only to influence the return
value from tree_or function.
*/
static MEM_ROOT null_root;
static SEL_TREE null_sel_tree(SEL_TREE::IMPOSSIBLE, &null_root, 0);
static SEL_ROOT *sel_add(SEL_ROOT *key1, SEL_ROOT *key2);
static SEL_ROOT *key_or(RANGE_OPT_PARAM *param, SEL_ROOT *key1, SEL_ROOT *key2);
static SEL_ROOT *key_and(RANGE_OPT_PARAM *param, SEL_ROOT *key1,
SEL_ROOT *key2);
static bool get_range(SEL_ARG **e1, SEL_ARG **e2, const SEL_ROOT *root1);
bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick, KEY_PART *key,
SEL_ARG *key_tree, uchar *min_key, uint min_key_flag,
uchar *max_key, uint max_key_flag, uint *desc_flag);
static bool eq_tree(const SEL_ROOT *a, const SEL_ROOT *b);
static bool eq_tree(const SEL_ARG *a, const SEL_ARG *b);
static bool eq_ranges_exceeds_limit(const SEL_ROOT *keypart, uint *count,
uint limit);
/**
Shared sentinel node for all trees. Initialized by range_optimizer_init(),
destroyed by range_optimizer_free();
*/
static SEL_ARG *null_element = nullptr;
static bool null_part_in_key(KEY_PART *key_part, const uchar *key, uint length);
static bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2,
RANGE_OPT_PARAM *param);
void range_optimizer_init() {
null_element = new SEL_ARG;
null_element->color =
SEL_ARG::BLACK; // Don't trip up the test in test_rb_tree.
}
void range_optimizer_free() { delete null_element; }
/*
SEL_IMERGE is a list of possible ways to do index merge, i.e. it is
a condition in the following form:
(t_1||t_2||...||t_N) && (next)
where all t_i are SEL_TREEs, next is another SEL_IMERGE and no pair
(t_i,t_j) contains SEL_ARGS for the same index.
SEL_TREE contained in SEL_IMERGE always has merges=NULL.
This class relies on memory manager to do the cleanup.
*/
class SEL_IMERGE {
enum { PREALLOCED_TREES = 10 };
public:
SEL_TREE *trees_prealloced[PREALLOCED_TREES];
SEL_TREE **trees; /* trees used to do index_merge */
SEL_TREE **trees_next; /* last of these trees */
SEL_TREE **trees_end; /* end of allocated space */
SEL_ARG ***best_keys; /* best keys to read in SEL_TREEs */
SEL_IMERGE()
: trees(&trees_prealloced[0]),
trees_next(trees),
trees_end(trees + PREALLOCED_TREES) {}
SEL_IMERGE(SEL_IMERGE *arg, RANGE_OPT_PARAM *param);
int or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree);
int or_sel_tree_with_checks(RANGE_OPT_PARAM *param, SEL_TREE *new_tree);
int or_sel_imerge_with_checks(RANGE_OPT_PARAM *param, SEL_IMERGE *imerge);
};
/*
Add SEL_TREE to this index_merge without any checks,
NOTES
This function implements the following:
(x_1||...||x_N) || t = (x_1||...||x_N||t), where x_i, t are SEL_TREEs
RETURN
0 - OK
-1 - Out of memory.
*/
int SEL_IMERGE::or_sel_tree(RANGE_OPT_PARAM *param, SEL_TREE *tree) {
if (trees_next == trees_end) {
const int realloc_ratio = 2; /* Double size for next round */
uint old_elements = static_cast<uint>(trees_end - trees);
uint old_size = sizeof(SEL_TREE **) * old_elements;
uint new_size = old_size * realloc_ratio;
SEL_TREE **new_trees;
if (!(new_trees = (SEL_TREE **)param->mem_root->Alloc(new_size))) return -1;
memcpy(new_trees, trees, old_size);
trees = new_trees;
trees_next = trees + old_elements;
trees_end = trees + old_elements * realloc_ratio;
}
*(trees_next++) = tree;
return 0;
}
/*
Perform OR operation on this SEL_IMERGE and supplied SEL_TREE new_tree,
combining new_tree with one of the trees in this SEL_IMERGE if they both
have SEL_ARGs for the same key.
SYNOPSIS
or_sel_tree_with_checks()
param PARAM from test_quick_select
new_tree SEL_TREE with type KEY or KEY_SMALLER.
NOTES
This does the following:
(t_1||...||t_k)||new_tree =
either
= (t_1||...||t_k||new_tree)
or
= (t_1||....||(t_j|| new_tree)||...||t_k),
where t_i, y are SEL_TREEs.
new_tree is combined with the first t_j it has a SEL_ARG on common
key with. As a consequence of this, choice of keys to do index_merge
read may depend on the order of conditions in WHERE part of the query.
RETURN
0 OK
1 One of the trees was combined with new_tree to SEL_TREE::ALWAYS,
and (*this) should be discarded.
-1 An error occurred.
*/
int SEL_IMERGE::or_sel_tree_with_checks(RANGE_OPT_PARAM *param,
SEL_TREE *new_tree) {
DBUG_TRACE;
for (SEL_TREE **tree = trees; tree != trees_next; tree++) {
if (sel_trees_can_be_ored(*tree, new_tree, param)) {
*tree = tree_or(param, *tree, new_tree);
if (!*tree) return 1;
if (((*tree)->type == SEL_TREE::MAYBE) ||
((*tree)->type == SEL_TREE::ALWAYS))
return 1;
/* SEL_TREE::IMPOSSIBLE is impossible here */
return 0;
}
}
/* New tree cannot be combined with any of existing trees. */
const int ret = or_sel_tree(param, new_tree);
return ret;
}
/*
Perform OR operation on this index_merge and supplied index_merge list.
RETURN
0 - OK
1 - One of conditions in result is always true and this SEL_IMERGE
should be discarded.
-1 - An error occurred
*/
int SEL_IMERGE::or_sel_imerge_with_checks(RANGE_OPT_PARAM *param,
SEL_IMERGE *imerge) {
for (SEL_TREE **tree = imerge->trees; tree != imerge->trees_next; tree++) {
if (or_sel_tree_with_checks(param, *tree)) return 1;
}
return 0;
}
SEL_TREE::SEL_TREE(SEL_TREE *arg, RANGE_OPT_PARAM *param)
: keys(param->mem_root, param->keys), n_ror_scans(0) {
keys_map = arg->keys_map;
type = arg->type;
for (uint idx = 0; idx < param->keys; idx++) {
if (arg->keys[idx]) {
set_key(idx, arg->keys[idx]->clone_tree(param));
if (!keys[idx]) break;
} else
set_key(idx, nullptr);
}
List_iterator<SEL_IMERGE> it(arg->merges);
for (SEL_IMERGE *el = it++; el; el = it++) {
SEL_IMERGE *merge = new (param->mem_root) SEL_IMERGE(el, param);
if (!merge || merge->trees == merge->trees_next || param->has_errors()) {
merges.empty();
return;
}
merges.push_back(merge);
}
/*
SEL_TREEs are only created by get_mm_tree() (and functions called
by get_mm_tree()). Index intersection is checked after
get_mm_tree() has constructed all ranges. In other words, there
should not be any ROR scans to copy when this ctor is called.
*/
DBUG_ASSERT(n_ror_scans == 0);
}
SEL_IMERGE::SEL_IMERGE(SEL_IMERGE *arg, RANGE_OPT_PARAM *param) {
uint elements = static_cast<uint>(arg->trees_end - arg->trees);
if (elements > PREALLOCED_TREES) {
uint size = elements * sizeof(SEL_TREE **);
if (!(trees = (SEL_TREE **)param->mem_root->Alloc(size))) goto mem_err;
} else
trees = &trees_prealloced[0];
trees_next = trees;
trees_end = trees + elements;
for (SEL_TREE **tree = trees, **arg_tree = arg->trees; tree < trees_end;
tree++, arg_tree++) {
if (!(*tree = new (param->mem_root) SEL_TREE(*arg_tree, param)) ||
param->has_errors())
goto mem_err;
}
return;
mem_err:
trees = &trees_prealloced[0];
trees_next = trees;
trees_end = trees;
}
/*
Perform AND operation on two index_merge lists and store result in *im1.
*/
inline void imerge_list_and_list(List<SEL_IMERGE> *im1, List<SEL_IMERGE> *im2) {
im1->concat(im2);
}
/*
Perform OR operation on 2 index_merge lists, storing result in first list.
NOTES
The following conversion is implemented:
(a_1 &&...&& a_N)||(b_1 &&...&& b_K) = AND_i,j(a_i || b_j) =>
=> (a_1||b_1).
i.e. all conjuncts except the first one are currently dropped.
This is done to avoid producing N*K ways to do index_merge.
If (a_1||b_1) produce a condition that is always true, NULL is returned
and index_merge is discarded (while it is actually possible to try
harder).
As a consequence of this, choice of keys to do index_merge read may depend
on the order of conditions in WHERE part of the query.
RETURN
0 OK, result is stored in *im1
other Error, both passed lists are unusable
*/
static int imerge_list_or_list(RANGE_OPT_PARAM *param, List<SEL_IMERGE> *im1,
List<SEL_IMERGE> *im2) {
SEL_IMERGE *imerge = im1->head();
im1->empty();
im1->push_back(imerge);
return imerge->or_sel_imerge_with_checks(param, im2->head());
}
/*
Perform OR operation on index_merge list and key tree.
RETURN
false OK, result is stored in *im1.
true Error
*/
static bool imerge_list_or_tree(RANGE_OPT_PARAM *param, List<SEL_IMERGE> *im1,
SEL_TREE *tree) {
DBUG_TRACE;
SEL_IMERGE *imerge;
List_iterator<SEL_IMERGE> it(*im1);
uint remaining_trees = im1->elements;
while ((imerge = it++)) {
SEL_TREE *or_tree;
/*
Need to make a copy of 'tree' for all but the last OR operation
because or_sel_tree_with_checks() may change it.
*/
if (--remaining_trees == 0)
or_tree = tree;
else {
or_tree = new (param->mem_root) SEL_TREE(tree, param);
if (!or_tree || param->has_errors()) return true;
if (or_tree->keys_map.is_clear_all() && or_tree->merges.is_empty())
return false;
}
int result_or = imerge->or_sel_tree_with_checks(param, or_tree);
if (result_or == 1)
it.remove();
else if (result_or == -1)
return true;
}
DBUG_ASSERT(remaining_trees == 0);
return im1->is_empty();
}
QUICK_SELECT_I::QUICK_SELECT_I()
: max_used_key_length(0), used_key_parts(0), forced_by_hint(false) {}
void QUICK_SELECT_I::trace_quick_description(Opt_trace_context *trace) {
Opt_trace_object range_trace(trace, "range_details");
String range_info;
range_info.set_charset(system_charset_info);
add_info_string(&range_info);
range_trace.add_utf8("used_index", range_info.ptr(), range_info.length());
}
QUICK_RANGE_SELECT::QUICK_RANGE_SELECT(THD *thd, TABLE *table, uint key_nr,
bool no_alloc, MEM_ROOT *parent_alloc,
bool *create_error)
: ranges(key_memory_Quick_ranges),
free_file(0),
cur_range(NULL),
last_range(0),
mrr_flags(0),
mrr_buf_size(0),
mrr_buf_desc(NULL),
dont_free(0) {
my_bitmap_map *bitmap;
DBUG_TRACE;
in_ror_merged_scan = 0;
index = key_nr;
head = table;
key_part_info = head->key_info[index].key_part;
/* 'thd' is not accessible in QUICK_RANGE_SELECT::reset(). */
mrr_buf_size = thd->variables.read_rnd_buff_size;
if (!no_alloc && !parent_alloc) {
// Allocates everything through the internal memroot
alloc.reset(new MEM_ROOT);
init_sql_alloc(key_memory_quick_range_select_root, alloc.get(),
thd->variables.range_alloc_block_size, 0);
thd->mem_root = alloc.get();
} else if (alloc != nullptr)
::new (alloc.get()) MEM_ROOT(PSI_NOT_INSTRUMENTED, 0);
file = head->file;
record = head->record[0];
/* Allocate a bitmap for used columns (Q: why not on MEM_ROOT?) */
if (!(bitmap = (my_bitmap_map *)my_malloc(key_memory_my_bitmap_map,
head->s->column_bitmap_size,
MYF(MY_WME)))) {
column_bitmap.bitmap = 0;
*create_error = 1;
} else
bitmap_init(&column_bitmap, bitmap, head->s->fields, false);
}
void QUICK_RANGE_SELECT::need_sorted_output() { mrr_flags |= HA_MRR_SORTED; }
int QUICK_RANGE_SELECT::init() {
DBUG_TRACE;
if (file->inited) file->ha_index_or_rnd_end();
return false;
}
void QUICK_RANGE_SELECT::range_end() {
if (file->inited) file->ha_index_or_rnd_end();
}
QUICK_RANGE_SELECT::~QUICK_RANGE_SELECT() {
DBUG_TRACE;
if (head->key_info[index].flags & HA_MULTI_VALUED_KEY && file)
file->ha_extra(HA_EXTRA_DISABLE_UNIQUE_RECORD_FILTER);
if (!dont_free) {
/* file is NULL for CPK scan on covering ROR-intersection */
if (file) {
range_end();
if (free_file) {
DBUG_PRINT("info",
("Freeing separate handler %p (free: %d)", file, free_file));
file->ha_external_lock(current_thd, F_UNLCK);
file->ha_close();
destroy(file);
}
}
if (alloc != nullptr) free_root(alloc.get(), MYF(0));
my_free(column_bitmap.bitmap);
}
my_free(mrr_buf_desc);
}
QUICK_INDEX_MERGE_SELECT::QUICK_INDEX_MERGE_SELECT(THD *thd_param, TABLE *table)
: unique(NULL), pk_quick_select(NULL), thd(thd_param) {
DBUG_TRACE;
index = MAX_KEY;
head = table;
init_sql_alloc(key_memory_quick_index_merge_root, &alloc,
thd->variables.range_alloc_block_size, 0);
}
int QUICK_INDEX_MERGE_SELECT::init() {
DBUG_TRACE;
return 0;
}
int QUICK_INDEX_MERGE_SELECT::reset() {
DBUG_TRACE;
const int retval = read_keys_and_merge();
return retval;
}
bool QUICK_INDEX_MERGE_SELECT::push_quick_back(
QUICK_RANGE_SELECT *quick_sel_range) {
/*
Save quick_select that does scan on clustered primary key as it will be
processed separately.
*/
if (head->file->primary_key_is_clustered() &&
quick_sel_range->index == head->s->primary_key)
pk_quick_select = quick_sel_range;
else
return quick_selects.push_back(quick_sel_range);
return 0;
}
QUICK_INDEX_MERGE_SELECT::~QUICK_INDEX_MERGE_SELECT() {
List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
QUICK_RANGE_SELECT *quick;
DBUG_TRACE;
bool disable_unique_filter = false;
destroy(unique);
quick_it.rewind();
while ((quick = quick_it++)) {
// Normally it's disabled by dtor of QUICK_RANGE_SELECT, but it can't be
// done without table's handler
disable_unique_filter |=
head->key_info[quick->index].flags & HA_MULTI_VALUED_KEY;
quick->file = NULL;
}
quick_selects.delete_elements();
if (disable_unique_filter)
head->file->ha_extra(HA_EXTRA_DISABLE_UNIQUE_RECORD_FILTER);
delete pk_quick_select;
/* It's ok to call the next two even if they are already deinitialized */
read_record.reset();
free_io_cache(head);
free_root(&alloc, MYF(0));
}
QUICK_ROR_INTERSECT_SELECT::QUICK_ROR_INTERSECT_SELECT(THD *thd_param,
TABLE *table,
bool retrieve_full_rows,
MEM_ROOT *parent_alloc)
: cpk_quick(NULL),
thd(thd_param),
need_to_fetch_row(retrieve_full_rows),
scans_inited(false) {
index = MAX_KEY;
head = table;
record = head->record[0];
if (!parent_alloc)
init_sql_alloc(key_memory_quick_ror_intersect_select_root, &alloc,
thd->variables.range_alloc_block_size, 0);
else
::new (&alloc) MEM_ROOT(PSI_NOT_INSTRUMENTED, 0);
last_rowid = (uchar *)(parent_alloc ? parent_alloc : &alloc)
->Alloc(head->file->ref_length);
}
/*
Do post-constructor initialization.
SYNOPSIS
QUICK_ROR_INTERSECT_SELECT::init()
RETURN
0 OK
other Error code
*/
int QUICK_ROR_INTERSECT_SELECT::init() {
DBUG_TRACE;
/* Check if last_rowid was successfully allocated in ctor */
return !last_rowid;
}
/*
Initialize this quick select to be a ROR-merged scan.
SYNOPSIS
QUICK_RANGE_SELECT::init_ror_merged_scan()
reuse_handler If true, use head->file, otherwise create a separate
handler object
NOTES
This function creates and prepares for subsequent use a separate handler
object if it can't reuse head->file. The reason for this is that during
ROR-merge several key scans are performed simultaneously, and a single
handler is only capable of preserving context of a single key scan.
In ROR-merge the quick select doing merge does full records retrieval,
merged quick selects read only keys.
RETURN
0 ROR child scan initialized, ok to use.
1 error
*/
int QUICK_RANGE_SELECT::init_ror_merged_scan(bool reuse_handler) {
handler *save_file = file, *org_file;
THD *thd;
MY_BITMAP *const save_read_set = head->read_set;
MY_BITMAP *const save_write_set = head->write_set;
DBUG_TRACE;
in_ror_merged_scan = 1;
mrr_flags |= HA_MRR_SORTED;
if (reuse_handler) {
DBUG_PRINT("info", ("Reusing handler %p", file));
if (init() || reset()) {
return 1;
}
head->column_bitmaps_set(&column_bitmap, &column_bitmap);
file->ha_extra(HA_EXTRA_SECONDARY_SORT_ROWID);
goto end;
}
/* Create a separate handler object for this quick select */
if (free_file) {
/* already have own 'handler' object. */
return 0;
}
thd = head->in_use;
if (!(file =
head->file->clone(head->s->normalized_path.str, thd->mem_root))) {
/*
Manually set the error flag. Note: there seems to be quite a few
places where a failure could cause the server to "hang" the client by
sending no response to a query. ATM those are not real errors because
the storage engine calls in question happen to never fail with the
existing storage engines.
*/
my_error(ER_OUT_OF_RESOURCES, MYF(0)); /* purecov: inspected */
/* Caller will free the memory */
goto failure; /* purecov: inspected */
}
head->column_bitmaps_set(&column_bitmap, &column_bitmap);
if (file->ha_external_lock(thd, F_RDLCK)) goto failure;
if (init() || reset()) {
file->ha_external_lock(thd, F_UNLCK);
file->ha_close();
goto failure;
}
free_file = true;
last_rowid = file->ref;
file->ha_extra(HA_EXTRA_SECONDARY_SORT_ROWID);
end:
/*
We are only going to read key fields and call position() on 'file'
The following sets head->tmp_set to only use this key and then updates
head->read_set and head->write_set to use this bitmap.
The now bitmap is stored in 'column_bitmap' which is used in ::get_next()
*/
org_file = head->file;
head->file = file;
/* We don't have to set 'head->keyread' here as the 'file' is unique */
if (!head->no_keyread) head->mark_columns_used_by_index(index);
head->prepare_for_position();
head->file = org_file;
bitmap_copy(&column_bitmap, head->read_set);
/*
We have prepared a column_bitmap which get_next() will use. To do this we
used TABLE::read_set/write_set as playground; restore them to their
original value to not pollute other scans.
*/
head->column_bitmaps_set(save_read_set, save_write_set);
bitmap_clear_all(&head->tmp_set);
return 0;
failure:
head->column_bitmaps_set(save_read_set, save_write_set);
destroy(file);
file = save_file;
return 1;
}
/*
Initialize this quick select to be a part of a ROR-merged scan.
SYNOPSIS
QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan()
reuse_handler If true, use head->file, otherwise create separate
handler object.
RETURN
0 OK
other error code
*/
int QUICK_ROR_INTERSECT_SELECT::init_ror_merged_scan(bool reuse_handler) {
int error;
List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
QUICK_RANGE_SELECT *quick;
DBUG_TRACE;
/* Initialize all merged "children" quick selects */
DBUG_ASSERT(!need_to_fetch_row || reuse_handler);
if (!need_to_fetch_row && reuse_handler) {
quick = quick_it++;
/*
There is no use of this->file. Use it for the first of merged range
selects.
*/
int error = quick->init_ror_merged_scan(true);
if (error) return error;
quick->file->ha_extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
}
while ((quick = quick_it++)) {
#ifndef DBUG_OFF
const MY_BITMAP *const save_read_set = quick->head->read_set;
const MY_BITMAP *const save_write_set = quick->head->write_set;
#endif
if ((error = quick->init_ror_merged_scan(false))) return error;
quick->file->ha_extra(HA_EXTRA_KEYREAD_PRESERVE_FIELDS);
// Sets are shared by all members of "quick_selects" so must not change
DBUG_ASSERT(quick->head->read_set == save_read_set);
DBUG_ASSERT(quick->head->write_set == save_write_set);
/* All merged scans share the same record buffer in intersection. */
quick->record = head->record[0];
}
/* Prepare for ha_rnd_pos calls if needed. */
if (need_to_fetch_row && (error = head->file->ha_rnd_init(false))) {
DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
return error;
}
return 0;
}
/*
Initialize quick select for row retrieval.
SYNOPSIS
reset()
RETURN
0 OK
other Error code
*/
int QUICK_ROR_INTERSECT_SELECT::reset() {
DBUG_TRACE;
if (!scans_inited && init_ror_merged_scan(true)) return 1;
scans_inited = true;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
while ((quick = it++)) quick->reset();
return 0;
}
/*
Add a merged quick select to this ROR-intersection quick select.
SYNOPSIS
QUICK_ROR_INTERSECT_SELECT::push_quick_back()
quick Quick select to be added. The quick select must return
rows in rowid order.
NOTES
This call can only be made before init() is called.
RETURN
false OK
true Out of memory.
*/
bool QUICK_ROR_INTERSECT_SELECT::push_quick_back(QUICK_RANGE_SELECT *quick) {
return quick_selects.push_back(quick);
}
QUICK_ROR_INTERSECT_SELECT::~QUICK_ROR_INTERSECT_SELECT() {
DBUG_TRACE;
quick_selects.delete_elements();
delete cpk_quick;
free_root(&alloc, MYF(0));
if (need_to_fetch_row && head->file->inited) head->file->ha_rnd_end();
}
QUICK_ROR_UNION_SELECT::QUICK_ROR_UNION_SELECT(THD *thd_param, TABLE *table)
: queue(Quick_ror_union_less(this),
Malloc_allocator<PSI_memory_key>(PSI_INSTRUMENT_ME)),
thd(thd_param),
scans_inited(false) {
index = MAX_KEY;
head = table;
rowid_length = table->file->ref_length;
record = head->record[0];
init_sql_alloc(key_memory_quick_ror_union_select_root, &alloc,
thd->variables.range_alloc_block_size, 0);
thd_param->mem_root = &alloc;
}
/*
Do post-constructor initialization.
SYNOPSIS
QUICK_ROR_UNION_SELECT::init()
RETURN
0 OK
other Error code
*/
int QUICK_ROR_UNION_SELECT::init() {
DBUG_TRACE;
if (queue.reserve(quick_selects.elements)) {
return 1;
}
if (!(cur_rowid = (uchar *)alloc.Alloc(2 * head->file->ref_length))) return 1;
prev_rowid = cur_rowid + head->file->ref_length;
return 0;
}
/*
Initialize quick select for row retrieval.
SYNOPSIS
reset()
RETURN
0 OK
other Error code
*/
int QUICK_ROR_UNION_SELECT::reset() {
QUICK_SELECT_I *quick;
int error;
DBUG_TRACE;
have_prev_rowid = false;
if (!scans_inited) {
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
while ((quick = it++)) {
/*
Use mem_root of this "QUICK" as using the statement mem_root
might result in too many allocations when combined with
dynamic range access where range optimizer is invoked many times
for a single statement.
*/
THD *thd = quick->head->in_use;
MEM_ROOT *saved_root = thd->mem_root;
thd->mem_root = &alloc;
error = quick->init_ror_merged_scan(false);
thd->mem_root = saved_root;
if (error) return 1;
}
scans_inited = true;
}
queue.clear();
/*
Initialize scans for merged quick selects and put all merged quick
selects into the queue.
*/
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
while ((quick = it++)) {
if ((error = quick->reset())) return error;
if ((error = quick->get_next())) {
if (error == HA_ERR_END_OF_FILE) continue;
return error;
}
quick->save_last_pos();
queue.push(quick);
}
/* Prepare for ha_rnd_pos calls. */
if (head->file->inited && (error = head->file->ha_rnd_end())) {
DBUG_PRINT("error", ("ROR index_merge rnd_end call failed"));
return error;
}
if ((error = head->file->ha_rnd_init(false))) {
DBUG_PRINT("error", ("ROR index_merge rnd_init call failed"));
return error;
}
return 0;
}
bool QUICK_ROR_UNION_SELECT::push_quick_back(QUICK_SELECT_I *quick_sel_range) {
return quick_selects.push_back(quick_sel_range);
}
QUICK_ROR_UNION_SELECT::~QUICK_ROR_UNION_SELECT() {
DBUG_TRACE;
quick_selects.delete_elements();
if (head->file->inited) head->file->ha_rnd_end();
free_root(&alloc, MYF(0));
}
QUICK_RANGE::QUICK_RANGE()
: min_key(0),
max_key(0),
min_length(0),
max_length(0),
flag(NO_MIN_RANGE | NO_MAX_RANGE),
rkey_func_flag(HA_READ_INVALID),
min_keypart_map(0),
max_keypart_map(0) {}
QUICK_RANGE::QUICK_RANGE(const uchar *min_key_arg, uint min_length_arg,
key_part_map min_keypart_map_arg,
const uchar *max_key_arg, uint max_length_arg,
key_part_map max_keypart_map_arg, uint flag_arg,
enum ha_rkey_function rkey_func_flag_arg)
: min_key(NULL),
max_key(NULL),
min_length((uint16)min_length_arg),
max_length((uint16)max_length_arg),
flag((uint16)flag_arg),
rkey_func_flag(rkey_func_flag_arg),
min_keypart_map(min_keypart_map_arg),
max_keypart_map(max_keypart_map_arg) {
min_key = static_cast<uchar *>(sql_memdup(min_key_arg, min_length_arg + 1));
max_key = static_cast<uchar *>(sql_memdup(max_key_arg, max_length_arg + 1));
// If we get is_null_string as argument, the memdup is undefined behavior.
DBUG_ASSERT(min_key_arg != is_null_string);
DBUG_ASSERT(max_key_arg != is_null_string);
}
SEL_ARG::SEL_ARG(SEL_ARG &arg)
: min_flag(arg.min_flag),
max_flag(arg.max_flag),
maybe_flag(arg.maybe_flag),
part(arg.part),
rkey_func_flag(arg.rkey_func_flag),
field(arg.field),
min_value(arg.min_value),
max_value(arg.max_value),
left(null_element),
right(null_element),
next(NULL),
prev(NULL),
next_key_part(arg.next_key_part),
is_ascending(arg.is_ascending) {
if (next_key_part) ++next_key_part->use_count;
}
inline void SEL_ARG::make_root() {
left = right = null_element;
color = BLACK;
parent = next = prev = nullptr;
}
SEL_ARG::SEL_ARG(Field *f, const uchar *min_value_arg,
const uchar *max_value_arg, bool asc)
: part(0),
rkey_func_flag(HA_READ_INVALID),
field(f),
min_value(const_cast<uchar *>(min_value_arg)),
max_value(const_cast<uchar *>(max_value_arg)),
left(null_element),
right(null_element),
next(NULL),
prev(NULL),
parent(NULL),
color(BLACK),
is_ascending(asc) {}
SEL_ARG::SEL_ARG(Field *field_, uint8 part_, uchar *min_value_,
uchar *max_value_, uint8 min_flag_, uint8 max_flag_,
bool maybe_flag_, bool asc)
: min_flag(min_flag_),
max_flag(max_flag_),
maybe_flag(maybe_flag_),
part(part_),
rkey_func_flag(HA_READ_INVALID),
field(field_),
min_value(min_value_),
max_value(max_value_),
left(null_element),
right(null_element),
next(NULL),
prev(NULL),
parent(NULL),
color(BLACK),
is_ascending(asc) {}
SEL_ARG *SEL_ARG::clone(RANGE_OPT_PARAM *param, SEL_ARG *new_parent,
SEL_ARG **next_arg) {
SEL_ARG *tmp;
if (param->has_errors()) return 0;
if (!(tmp = new (param->mem_root)
SEL_ARG(field, part, min_value, max_value, min_flag, max_flag,
maybe_flag, is_ascending)))
return 0; // OOM
tmp->parent = new_parent;
tmp->set_next_key_part(next_key_part);
if (left == null_element || left == nullptr) {
tmp->left = left;
} else {
if (!(tmp->left = left->clone(param, tmp, next_arg))) return 0; // OOM
}
tmp->prev = *next_arg; // Link into next/prev chain
(*next_arg)->next = tmp;
(*next_arg) = tmp;
if (right == null_element || right == nullptr) {
tmp->right = right;
} else {
if (!(tmp->right = right->clone(param, tmp, next_arg))) return 0; // OOM
}
tmp->color = color;
return tmp;
}
/**
This gives the first SEL_ARG in the interval list, and the minimal element
in the red-black tree
@return
SEL_ARG first SEL_ARG in the interval list
*/
SEL_ARG *SEL_ARG::first() {
SEL_ARG *next_arg = this;
if (!next_arg->left) return 0; // MAYBE_KEY
while (next_arg->left != null_element) next_arg = next_arg->left;
return next_arg;
}
const SEL_ARG *SEL_ARG::first() const {
return const_cast<SEL_ARG *>(this)->first();
}
SEL_ARG *SEL_ARG::last() {
SEL_ARG *next_arg = this;
if (!next_arg->right) return 0; // MAYBE_KEY
while (next_arg->right != null_element) next_arg = next_arg->right;
return next_arg;
}
/*
Check if a compare is ok, when one takes ranges in account
Returns -2 or 2 if the ranges where 'joined' like < 2 and >= 2
*/
static int sel_cmp(Field *field, uchar *a, uchar *b, uint8 a_flag,
uint8 b_flag) {
int cmp;
/* First check if there was a compare to a min or max element */
if (a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) {
if ((a_flag & (NO_MIN_RANGE | NO_MAX_RANGE)) ==
(b_flag & (NO_MIN_RANGE | NO_MAX_RANGE)))
return 0;
return (a_flag & NO_MIN_RANGE) ? -1 : 1;
}
if (b_flag & (NO_MIN_RANGE | NO_MAX_RANGE))
return (b_flag & NO_MIN_RANGE) ? 1 : -1;
if (field->real_maybe_null()) // If null is part of key
{
if (*a != *b) {
return *a ? -1 : 1;
}
if (*a) goto end; // NULL where equal
a++;
b++; // Skip NULL marker
}
cmp = field->key_cmp(a, b);
if (cmp) return cmp < 0 ? -1 : 1; // The values differed
// Check if the compared equal arguments was defined with open/closed range
end:
if (a_flag & (NEAR_MIN | NEAR_MAX)) {
if ((a_flag & (NEAR_MIN | NEAR_MAX)) == (b_flag & (NEAR_MIN | NEAR_MAX)))
return 0;
if (!(b_flag & (NEAR_MIN | NEAR_MAX))) return (a_flag & NEAR_MIN) ? 2 : -2;
return (a_flag & NEAR_MIN) ? 1 : -1;
}
if (b_flag & (NEAR_MIN | NEAR_MAX)) return (b_flag & NEAR_MIN) ? -2 : 2;
return 0; // The elements where equal
}
namespace {
size_t count_elements(const SEL_ARG *arg) {
size_t elements = 1;
DBUG_ASSERT(arg->left);
DBUG_ASSERT(arg->right);
if (arg->left && arg->left != null_element)
elements += count_elements(arg->left);
if (arg->right && arg->right != null_element)
elements += count_elements(arg->right);
return elements;
}
} // Namespace
SEL_ROOT::SEL_ROOT(SEL_ARG *root_arg)
: type(Type::KEY_RANGE),
root(root_arg),
elements(count_elements(root_arg)) {}
SEL_ROOT::SEL_ROOT(MEM_ROOT *mem_root, Type type_arg)
: type(type_arg), root(new (mem_root) SEL_ARG()), elements(1) {
DBUG_ASSERT(type_arg == Type::MAYBE_KEY || type_arg == Type::IMPOSSIBLE);
root->make_root();
if (type_arg == Type::MAYBE_KEY) {
// See todo for left/right pointers
root->left = root->right = nullptr;
}
}
inline bool SEL_ROOT::is_always() const {
return type == Type::KEY_RANGE && elements == 1 && !root->maybe_flag &&
(root->min_flag & NO_MIN_RANGE) && (root->max_flag & NO_MAX_RANGE);
}
SEL_ROOT *SEL_ROOT::clone_tree(RANGE_OPT_PARAM *param) const {
/*
Only SEL_ROOTs of type KEY_RANGE has any elements that need to be cloned.
For other types, just create a new SEL_ROOT object.
*/
if (type != Type::KEY_RANGE)
return new (param->mem_root) SEL_ROOT(param->mem_root, type);
SEL_ARG tmp_link, *next_arg, *new_root;
SEL_ROOT *new_tree;
next_arg = &tmp_link;
// Clone the underlying SEL_ARG tree, starting from the root node.
if (!(new_root = root->clone(param, (SEL_ARG *)0, &next_arg)) ||
(param && param->has_errors()))
return nullptr;
// Make the SEL_ROOT itself.
if (!(new_tree = new (param->mem_root) SEL_ROOT(new_root))) return nullptr;
new_tree->elements = elements;
next_arg->next = 0; // Fix last link
tmp_link.next->prev = 0; // Fix first link
new_tree->use_count = 0;
return new_tree;
}
/*
Table rows retrieval plan. Range optimizer creates QUICK_SELECT_I-derived
objects from table read plans.
*/
class TABLE_READ_PLAN {
public:
/*
Plan read cost, with or without cost of full row retrieval, depending
on plan creation parameters.
*/
Cost_estimate cost_est;
ha_rows records; /* estimate of #rows to be examined */
/*
If true, the scan returns rows in rowid order. This is used only for
scans that can be both ROR and non-ROR.
*/
bool is_ror;
/*
If true, this plan can be used for index merge scan.
*/
bool is_imerge;
/*
Create quick select for this plan.
SYNOPSIS
make_quick()
param Parameter from test_quick_select
retrieve_full_rows If true, created quick select will do full record
retrieval.
parent_alloc Memory pool to use, if any.
NOTES
retrieve_full_rows is ignored by some implementations.
RETURN
created quick select
NULL on any error.
*/
virtual QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc = NULL) = 0;
/* Table read plans are allocated on MEM_ROOT and are never deleted */
static void *operator new(size_t size, MEM_ROOT *mem_root,
const std::nothrow_t &arg MY_ATTRIBUTE((unused)) =
std::nothrow) noexcept {
return mem_root->Alloc(size);
}
static void operator delete(void *ptr MY_ATTRIBUTE((unused)),
size_t size MY_ATTRIBUTE((unused))) {
TRASH(ptr, size);
}
static void operator delete(
void *, MEM_ROOT *, const std::nothrow_t &)noexcept { /* Never called */
}
virtual ~TABLE_READ_PLAN() {} /* Remove gcc warning */
/**
Add basic info for this TABLE_READ_PLAN to the optimizer trace.
@param param Parameters for range analysis of this table
@param trace_object The optimizer trace object the info is appended to
*/
virtual void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const = 0;
virtual bool is_forced_by_hint() { return false; }
};
/*
Plan for a QUICK_RANGE_SELECT scan.
TRP_RANGE::make_quick ignores retrieve_full_rows parameter because
QUICK_RANGE_SELECT doesn't distinguish between 'index only' scans and full
record retrieval scans.
*/
class TRP_RANGE : public TABLE_READ_PLAN {
public:
/**
Root of red-black tree for intervals over key fields to be used in
"range" method retrieval. See SEL_ARG graph description.
*/
SEL_ROOT *key;
uint key_idx; /* key number in PARAM::key and PARAM::real_keynr */
uint mrr_flags;
uint mrr_buf_size;
TRP_RANGE(SEL_ROOT *key_arg, uint idx_arg, uint mrr_flags_arg)
: key(key_arg), key_idx(idx_arg), mrr_flags(mrr_flags_arg) {}
virtual ~TRP_RANGE() {} /* Remove gcc warning */
QUICK_SELECT_I *make_quick(PARAM *param, bool, MEM_ROOT *parent_alloc) {
DBUG_TRACE;
QUICK_RANGE_SELECT *quick;
if ((quick = get_quick_select(param, key_idx, key, mrr_flags, mrr_buf_size,
parent_alloc))) {
quick->records = records;
quick->cost_est = cost_est;
}
return quick;
}
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
};
void TRP_RANGE::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
DBUG_ASSERT(param->using_real_indexes);
const uint keynr_in_table = param->real_keynr[key_idx];
const KEY &cur_key = param->table->key_info[keynr_in_table];
const KEY_PART_INFO *key_part = cur_key.key_part;
trace_object->add_alnum("type", "range_scan")
.add_utf8("index", cur_key.name)
.add("rows", records);
Opt_trace_array trace_range(&param->thd->opt_trace, "ranges");
// TRP_RANGE should not be created if there are no range intervals
DBUG_ASSERT(key);
String range_info;
range_info.set_charset(system_charset_info);
append_range_all_keyparts(&trace_range, NULL, &range_info, key, key_part,
false);
}
struct ROR_SCAN_INFO {
uint idx; ///< # of used key in param->keys
uint keynr; ///< # of used key in table
ha_rows records; ///< estimate of # records this scan will return
/** Set of intervals over key fields that will be used for row retrieval. */
SEL_ROOT *sel_root;
/** Fields used in the query and covered by this ROR scan. */
MY_BITMAP covered_fields;
/**
Fields used in the query that are a) covered by this ROR scan and
b) not already covered by ROR scans ordered earlier in the merge
sequence.
*/
MY_BITMAP covered_fields_remaining;
/** Number of fields in covered_fields_remaining (caching of
* bitmap_bits_set()) */
uint num_covered_fields_remaining;
/**
Cost of reading all index records with values in sel_arg intervals set
(assuming there is no need to access full table records)
*/
Cost_estimate index_read_cost;
};
/* Plan for QUICK_ROR_INTERSECT_SELECT scan. */
class TRP_ROR_INTERSECT : public TABLE_READ_PLAN {
bool forced_by_hint;
public:
explicit TRP_ROR_INTERSECT(bool forced_by_hint_arg)
: forced_by_hint(forced_by_hint_arg) {}
virtual ~TRP_ROR_INTERSECT() {} /* Remove gcc warning */
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
/* Array of pointers to ROR range scans used in this intersection */
ROR_SCAN_INFO **first_scan;
ROR_SCAN_INFO **last_scan; /* End of the above array */
ROR_SCAN_INFO *cpk_scan; /* Clustered PK scan, if there is one */
bool is_covering; /* true if no row retrieval phase is necessary */
Cost_estimate index_scan_cost; /* SUM(cost(index_scan)) */
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
};
void TRP_ROR_INTERSECT::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
trace_object->add_alnum("type", "index_roworder_intersect")
.add("rows", records)
.add("cost", cost_est)
.add("covering", is_covering)
.add("clustered_pk_scan", cpk_scan != NULL);
Opt_trace_context *const trace = &param->thd->opt_trace;
Opt_trace_array ota(trace, "intersect_of");
for (ROR_SCAN_INFO **cur_scan = first_scan; cur_scan != last_scan;
cur_scan++) {
const KEY &cur_key = param->table->key_info[(*cur_scan)->keynr];
const KEY_PART_INFO *key_part = cur_key.key_part;
Opt_trace_object trace_isect_idx(trace);
trace_isect_idx.add_alnum("type", "range_scan")
.add_utf8("index", cur_key.name)
.add("rows", (*cur_scan)->records);
Opt_trace_array trace_range(trace, "ranges");
for (const SEL_ARG *current = (*cur_scan)->sel_root->root->first(); current;
current = current->next) {
String range_info;
range_info.set_charset(system_charset_info);
for (const SEL_ARG *part = current; part;
part = part->next_key_part ? part->next_key_part->root : nullptr) {
const KEY_PART_INFO *cur_key_part = key_part + part->part;
append_range(&range_info, cur_key_part, part->min_value,
part->max_value, part->min_flag | part->max_flag);
}
trace_range.add_utf8(range_info.ptr(), range_info.length());
}
}
}
/*
Plan for QUICK_ROR_UNION_SELECT scan.
QUICK_ROR_UNION_SELECT always retrieves full rows, so retrieve_full_rows
is ignored by make_quick.
*/
class TRP_ROR_UNION : public TABLE_READ_PLAN {
bool forced_by_hint;
public:
explicit TRP_ROR_UNION(bool forced_by_hint_arg)
: forced_by_hint(forced_by_hint_arg) {}
virtual ~TRP_ROR_UNION() {} /* Remove gcc warning */
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
TABLE_READ_PLAN **first_ror; /* array of ptrs to plans for merged scans */
TABLE_READ_PLAN **last_ror; /* end of the above array */
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
};
void TRP_ROR_UNION::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
Opt_trace_context *const trace = &param->thd->opt_trace;
trace_object->add_alnum("type", "index_roworder_union");
Opt_trace_array ota(trace, "union_of");
for (TABLE_READ_PLAN **current = first_ror; current != last_ror; current++) {
Opt_trace_object trp_info(trace);
(*current)->trace_basic_info(param, &trp_info);
}
}
/*
Plan for QUICK_INDEX_MERGE_SELECT scan.
QUICK_ROR_INTERSECT_SELECT always retrieves full rows, so retrieve_full_rows
is ignored by make_quick.
*/
class TRP_INDEX_MERGE : public TABLE_READ_PLAN {
bool forced_by_hint;
public:
explicit TRP_INDEX_MERGE(bool forced_by_hint_arg)
: forced_by_hint(forced_by_hint_arg) {}
virtual ~TRP_INDEX_MERGE() {} /* Remove gcc warning */
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
TRP_RANGE **range_scans; /* array of ptrs to plans of merged scans */
TRP_RANGE **range_scans_end; /* end of the array */
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
};
void TRP_INDEX_MERGE::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
Opt_trace_context *const trace = &param->thd->opt_trace;
trace_object->add_alnum("type", "index_merge");
Opt_trace_array ota(trace, "index_merge_of");
for (TRP_RANGE **current = range_scans; current != range_scans_end;
current++) {
Opt_trace_object trp_info(trace);
(*current)->trace_basic_info(param, &trp_info);
}
}
/*
Plan for a QUICK_GROUP_MIN_MAX_SELECT scan.
*/
class TRP_GROUP_MIN_MAX : public TABLE_READ_PLAN {
private:
bool have_min; ///< true if there is a MIN function
bool have_max; ///< true if there is a MAX function
/**
true if there is an aggregate distinct function, e.g.
"COUNT(DISTINCT x)"
*/
bool have_agg_distinct;
/**
The key_part of the only field used by all MIN/MAX functions.
Note that TRP_GROUP_MIN_MAX is not used if there are MIN/MAX
functions on more than one field.
*/
KEY_PART_INFO *min_max_arg_part;
uint group_prefix_len; ///< Length of all key parts in the group prefix
uint used_key_parts; ///< Number of index key parts used for access
uint group_key_parts; ///< Number of index key parts in the group prefix
KEY *index_info; ///< The index chosen for data access
uint index; ///< The id of the chosen index
uchar key_infix[MAX_KEY_LENGTH]; ///< Constants from equality predicates
uint key_infix_len; ///< Length of key_infix
SEL_TREE *range_tree; ///< Represents all range predicates in the query
SEL_ROOT *index_tree; ///< The sub-tree corresponding to index_info
uint param_idx; ///< Index of used key in param->key
bool is_index_scan; ///< Use index_next() instead of random read
public:
/** Number of records selected by the ranges in index_tree. */
ha_rows quick_prefix_records;
public:
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
TRP_GROUP_MIN_MAX(bool have_min_arg, bool have_max_arg,
bool have_agg_distinct_arg,
KEY_PART_INFO *min_max_arg_part_arg,
uint group_prefix_len_arg, uint used_key_parts_arg,
uint group_key_parts_arg, KEY *index_info_arg,
uint index_arg, uint key_infix_len_arg,
uchar *key_infix_arg, SEL_TREE *tree_arg,
SEL_ROOT *index_tree_arg, uint param_idx_arg,
ha_rows quick_prefix_records_arg)
: have_min(have_min_arg),
have_max(have_max_arg),
have_agg_distinct(have_agg_distinct_arg),
min_max_arg_part(min_max_arg_part_arg),
group_prefix_len(group_prefix_len_arg),
used_key_parts(used_key_parts_arg),
group_key_parts(group_key_parts_arg),
index_info(index_info_arg),
index(index_arg),
key_infix_len(key_infix_len_arg),
range_tree(tree_arg),
index_tree(index_tree_arg),
param_idx(param_idx_arg),
is_index_scan(false),
quick_prefix_records(quick_prefix_records_arg) {
if (key_infix_len) memcpy(this->key_infix, key_infix_arg, key_infix_len);
}
virtual ~TRP_GROUP_MIN_MAX() {} /* Remove gcc warning */
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
void use_index_scan() { is_index_scan = true; }
};
void TRP_GROUP_MIN_MAX::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
trace_object->add_alnum("type", "index_group")
.add_utf8("index", index_info->name);
if (min_max_arg_part)
trace_object->add_utf8("group_attribute",
min_max_arg_part->field->field_name);
else
trace_object->add_null("group_attribute");
trace_object->add("min_aggregate", have_min)
.add("max_aggregate", have_max)
.add("distinct_aggregate", have_agg_distinct)
.add("rows", records)
.add("cost", cost_est);
const KEY_PART_INFO *key_part = index_info->key_part;
Opt_trace_context *const trace = &param->thd->opt_trace;
{
Opt_trace_array trace_keyparts(trace, "key_parts_used_for_access");
for (uint partno = 0; partno < used_key_parts; partno++) {
const KEY_PART_INFO *cur_key_part = key_part + partno;
trace_keyparts.add_utf8(cur_key_part->field->field_name);
}
}
Opt_trace_array trace_range(trace, "ranges");
// can have group quick without ranges
if (index_tree) {
String range_info;
range_info.set_charset(system_charset_info);
append_range_all_keyparts(&trace_range, NULL, &range_info, index_tree,
key_part, false);
}
}
/*
Plan for a QUICK_SKIP_SCAN_SELECT scan.
*/
class TRP_SKIP_SCAN : public TABLE_READ_PLAN {
private:
KEY *index_info; ///< The index chosen for data access
uint index; ///< The id of the chosen index
uint eq_prefix_len; ///< Length of the equality prefix
uint eq_prefix_parts; ///< Number of parts in the equality prefix
KEY_PART_INFO *range_key_part; ///< The key part corresponding to the range
///< condition
/**
The sub-tree corresponding to the range condition
(on key part C - for more details see description of get_best_skip_scan()).
*/
SEL_ARG *range_cond;
SEL_ROOT *index_range_tree; ///< The sub-tree corresponding to index_info
uint used_key_parts; ///< Number of index key parts used for access
bool forced_by_hint; ///< TRUE if skip scan is forced by optimizer hint
bool has_aggregate_function; ///< TRUE if there are aggregate functions.
public:
void trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const;
TRP_SKIP_SCAN(KEY *index_info, uint index, SEL_ROOT *index_range_tree,
uint eq_prefix_len, uint eq_prefix_parts,
KEY_PART_INFO *range_key_part, SEL_ARG *range_cond,
uint used_key_parts, bool forced_by_hint, ha_rows read_records,
bool has_aggregate_function)
: index_info(index_info),
index(index),
eq_prefix_len(eq_prefix_len),
eq_prefix_parts(eq_prefix_parts),
range_key_part(range_key_part),
range_cond(range_cond),
index_range_tree(index_range_tree),
used_key_parts(used_key_parts),
forced_by_hint(forced_by_hint),
has_aggregate_function(has_aggregate_function) {
records = read_records;
}
virtual ~TRP_SKIP_SCAN() {}
QUICK_SELECT_I *make_quick(PARAM *param, bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
virtual bool is_forced_by_hint() { return forced_by_hint; }
};
void TRP_SKIP_SCAN::trace_basic_info(const PARAM *param,
Opt_trace_object *trace_object) const {
trace_object->add_alnum("type", "skip_scan")
.add_utf8("index", index_info->name);
const KEY_PART_INFO *key_part = index_info->key_part;
Opt_trace_context *const trace = &param->thd->opt_trace;
{
Opt_trace_array trace_keyparts(trace, "key_parts_used_for_access");
for (uint partno = 0; partno < used_key_parts; partno++) {
const KEY_PART_INFO *cur_key_part = key_part + partno;
trace_keyparts.add_utf8(cur_key_part->field->field_name);
}
}
if (index_range_tree && eq_prefix_parts > 0) {
Opt_trace_array trace_range(trace, "prefix ranges");
String range_info;
range_info.set_charset(system_charset_info);
append_range_all_keyparts(&trace_range, NULL, &range_info, index_range_tree,
key_part, false);
}
Opt_trace_array trace_range(trace, "range");
{
String range_info;
range_info.set_charset(system_charset_info);
const SEL_ARG *range_part = range_cond->first();
{
const KEY_PART_INFO *cur_key_part = key_part + range_part->part;
append_range(&range_info, cur_key_part, range_part->min_value,
range_part->max_value,
range_part->min_flag | range_part->max_flag);
}
trace_range.add_utf8(range_info.ptr(), range_info.length());
}
}
/*
Fill param->needed_fields with bitmap of fields used in the query.
SYNOPSIS
fill_used_fields_bitmap()
param Parameter from test_quick_select function.
NOTES
Clustered PK members are not put into the bitmap as they are implicitly
present in all keys (and it is impossible to avoid reading them).
RETURN
0 Ok
1 Out of memory.
*/
static int fill_used_fields_bitmap(PARAM *param) {
TABLE *table = param->table;
my_bitmap_map *tmp;
uint pk;
param->tmp_covered_fields.bitmap = 0;
param->fields_bitmap_size = table->s->column_bitmap_size;
if (!(tmp = (my_bitmap_map *)param->mem_root->Alloc(
param->fields_bitmap_size)) ||
bitmap_init(&param->needed_fields, tmp, table->s->fields, false))
return 1;
bitmap_copy(&param->needed_fields, table->read_set);
bitmap_union(&param->needed_fields, table->write_set);
pk = param->table->s->primary_key;
if (pk != MAX_KEY && param->table->file->primary_key_is_clustered()) {
/* The table uses clustered PK and it is not internally generated */
KEY_PART_INFO *key_part = param->table->key_info[pk].key_part;
KEY_PART_INFO *key_part_end =
key_part + param->table->key_info[pk].user_defined_key_parts;
for (; key_part != key_part_end; ++key_part)
bitmap_clear_bit(&param->needed_fields, key_part->fieldnr - 1);
}
return 0;
}
/*
Test if a key can be used in different ranges, and create the QUICK
access method (range, index merge etc) that is estimated to be
cheapest unless table/index scan is even cheaper (exception: @see
parameter force_quick_range).
SYNOPSIS
test_quick_select()
thd Current thread
keys_to_use Keys to use for range retrieval
prev_tables Tables assumed to be already read when the scan is
performed (but not read at the moment of this call)
limit Query limit
force_quick_range Prefer to use range (instead of full table scan) even
if it is more expensive.
interesting_order The sort order the range access method must be able
to provide. Three-value logic: asc/desc/don't care
needed_reg this info is used in make_join_select() even if there is
no quick.
quick[out] Calculated QUICK, or NULL.
ignore_table_scan Disregard table scan while looking for range.
NOTES
Updates the following:
needed_reg - Bits for keys with may be used if all prev regs are read
In the table struct the following information is updated:
quick_keys - Which keys can be used
quick_rows - How many rows the key matches
quick_condition_rows - E(# rows that will satisfy the table condition)
IMPLEMENTATION
quick_condition_rows value is obtained as follows:
It is a minimum of E(#output rows) for all considered table access
methods (range and index_merge accesses over various indexes).
The obtained value is not a true E(#rows that satisfy table condition)
but rather a pessimistic estimate. To obtain a true E(#...) one would
need to combine estimates of various access methods, taking into account
correlations between sets of rows they will return.
For example, if values of tbl.key1 and tbl.key2 are independent (a right
assumption if we have no information about their correlation) then the
correct estimate will be:
E(#rows("tbl.key1 < c1 AND tbl.key2 < c2")) =
= E(#rows(tbl.key1 < c1)) / total_rows(tbl) * E(#rows(tbl.key2 < c2)
which is smaller than
MIN(E(#rows(tbl.key1 < c1), E(#rows(tbl.key2 < c2)))
which is currently produced.
TODO
* Change the value returned in quick_condition_rows from a pessimistic
estimate to true E(#rows that satisfy table condition).
(we can re-use some of E(#rows) calcuation code from
index_merge/intersection for this)
* Check if this function really needs to modify keys_to_use, and change the
code to pass it by reference if it doesn't.
* In addition to force_quick_range other means can be (an usually are) used
to make this function prefer range over full table scan. Figure out if
force_quick_range is really needed.
RETURN
-1 if impossible select (i.e. certainly no rows will be selected)
0 if can't use quick_select
1 if found usable ranges and quick select has been successfully created.
@note After this call, caller may decide to really use the returned QUICK,
by calling QEP_TAB::set_quick() and updating tab->type() if appropriate.
*/
int test_quick_select(THD *thd, Key_map keys_to_use, table_map prev_tables,
ha_rows limit, bool force_quick_range,
const enum_order interesting_order,
const QEP_shared_owner *tab, Item *cond,
Key_map *needed_reg, QUICK_SELECT_I **quick,
bool ignore_table_scan) {
DBUG_TRACE;
*quick = NULL;
needed_reg->clear_all();
if (keys_to_use.is_clear_all()) return 0;
table_map const_tables, read_tables;
if (tab->join()) {
const_tables = tab->join()->found_const_table_map;
read_tables = tab->join()->is_executed() ?
// in execution, range estimation
// is done for each row, so can
// access previous tables
(tab->prefix_tables() & ~tab->added_tables())
: const_tables;
} else
const_tables = read_tables = 0;
DBUG_PRINT("enter", ("keys_to_use: %lu prev_tables: %lu const_tables: %lu",
(ulong)keys_to_use.to_ulonglong(), (ulong)prev_tables,
(ulong)const_tables));
bool force_skip_scan = false;
const Cost_model_server *const cost_model = thd->cost_model();
TABLE *const head = tab->table();
ha_rows records = head->file->stats.records;
if (!records) records++; /* purecov: inspected */
double scan_time =
cost_model->row_evaluate_cost(static_cast<double>(records)) + 1;
Cost_estimate cost_est = head->file->table_scan_cost();
cost_est.add_io(1.1);
cost_est.add_cpu(scan_time);
if (ignore_table_scan) {
scan_time = DBL_MAX;
cost_est.set_max_cost();
}
if (limit < records) {
cost_est.reset();
// Force to use index
cost_est.add_io(
head->cost_model()->page_read_cost(static_cast<double>(records)) + 1);
cost_est.add_cpu(scan_time);
} else if (cost_est.total_cost() <= 2.0 && !force_quick_range)
return 0; /* No need for quick select */
Opt_trace_context *const trace = &thd->opt_trace;
Opt_trace_object trace_range(trace, "range_analysis");
Opt_trace_object(trace, "table_scan")
.add("rows", head->file->stats.records)
.add("cost", cost_est);
keys_to_use.intersect(head->keys_in_use_for_query);
if (!keys_to_use.is_clear_all()) {
MEM_ROOT alloc;
SEL_TREE *tree = NULL;
KEY_PART *key_parts;
KEY *key_info;
PARAM param;
/*
Use the 3 multiplier as range optimizer allocates big PARAM structure
and may evaluate a subquery expression
TODO During the optimization phase we should evaluate only inexpensive
single-lookup subqueries.
*/
uchar buff[STACK_BUFF_ALLOC];
if (check_stack_overrun(thd, 3 * STACK_MIN_SIZE + sizeof(PARAM), buff))
return 0; // Fatal error flag is set
/* set up parameter that is passed to all functions */
param.thd = thd;
param.baseflag = head->file->ha_table_flags();
param.prev_tables = prev_tables | const_tables | INNER_TABLE_BIT;
param.read_tables = read_tables | INNER_TABLE_BIT;
param.current_table = head->pos_in_table_list->map();
param.table = head;
param.keys = 0;
param.is_ror_scan = false;
param.mem_root = &alloc;
param.old_root = thd->mem_root;
param.needed_reg = needed_reg;
param.imerge_cost_buff.reset();
param.using_real_indexes = true;
param.remove_jump_scans = true;
param.force_default_mrr = (interesting_order == ORDER_DESC);
param.order_direction = interesting_order;
param.use_index_statistics = false;
/*
Set index_merge_allowed from OPTIMIZER_SWITCH_INDEX_MERGE.
Notice also that OPTIMIZER_SWITCH_INDEX_MERGE disables all
index merge sub strategies.
*/
param.index_merge_allowed =
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE);
param.index_merge_union_allowed =
param.index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_UNION);
param.index_merge_sort_union_allowed =
param.index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_SORT_UNION);
param.index_merge_intersect_allowed =
param.index_merge_allowed &&
thd->optimizer_switch_flag(OPTIMIZER_SWITCH_INDEX_MERGE_INTERSECT);
param.skip_records_in_range = tab->skip_records_in_range();
init_sql_alloc(key_memory_test_quick_select_exec, &alloc,
thd->variables.range_alloc_block_size, 0);
alloc.set_max_capacity(thd->variables.range_optimizer_max_mem_size);
alloc.set_error_for_capacity_exceeded(true);
thd->push_internal_handler(&param.error_handler);
if (!(param.key_parts =
(KEY_PART *)alloc.Alloc(sizeof(KEY_PART) * head->s->key_parts)) ||
fill_used_fields_bitmap(&param)) {
thd->pop_internal_handler();
free_root(&alloc, MYF(0)); // Return memory & allocator
return 0; // Can't use range
}
key_parts = param.key_parts;
thd->mem_root = &alloc;
{
Opt_trace_array trace_idx(trace, "potential_range_indexes",
Opt_trace_context::RANGE_OPTIMIZER);
/*
Make an array with description of all key parts of all table keys.
This is used in get_mm_parts function.
*/
key_info = head->key_info;
for (uint idx = 0; idx < head->s->keys; idx++, key_info++) {
Opt_trace_object trace_idx_details(trace);
trace_idx_details.add_utf8("index", key_info->name);
KEY_PART_INFO *key_part_info;
if (!keys_to_use.is_set(idx)) {
trace_idx_details.add("usable", false)
.add_alnum("cause", "not_applicable");
continue;
}
if (hint_key_state(thd, head->pos_in_table_list, idx,
NO_RANGE_HINT_ENUM, 0)) {
trace_idx_details.add("usable", false)
.add_alnum("cause", "no_range_optimization hint");
continue;
}
if (key_info->flags & HA_FULLTEXT) {
trace_idx_details.add("usable", false).add_alnum("cause", "fulltext");
continue; // ToDo: ft-keys in non-ft ranges, if possible SerG
}
trace_idx_details.add("usable", true);
param.key[param.keys] = key_parts;
key_part_info = key_info->key_part;
Opt_trace_array trace_keypart(trace, "key_parts");
for (uint part = 0; part < actual_key_parts(key_info);
part++, key_parts++, key_part_info++) {
key_parts->key = param.keys;
key_parts->part = part;
key_parts->length = key_part_info->length;
key_parts->store_length = key_part_info->store_length;
key_parts->field = key_part_info->field;
key_parts->null_bit = key_part_info->null_bit;
key_parts->image_type = (part < key_info->user_defined_key_parts &&
key_info->flags & HA_SPATIAL)
? Field::itMBR
: Field::itRAW;
/* Only HA_PART_KEY_SEG is used */
key_parts->flag = key_part_info->key_part_flag;
trace_keypart.add_utf8(
get_field_name_or_expression(thd, key_part_info->field));
}
param.real_keynr[param.keys++] = idx;
}
}
param.key_parts_end = key_parts;
/* Calculate cost of full index read for the shortest covering index */
if (!head->covering_keys.is_clear_all()) {
int key_for_use = find_shortest_key(head, &head->covering_keys);
Cost_estimate key_read_time = param.table->file->index_scan_cost(
key_for_use, 1, static_cast<double>(records));
key_read_time.add_cpu(
cost_model->row_evaluate_cost(static_cast<double>(records)));
bool chosen = false;
if (key_read_time < cost_est) {
cost_est = key_read_time;
chosen = true;
}
Opt_trace_object trace_cov(trace, "best_covering_index_scan",
Opt_trace_context::RANGE_OPTIMIZER);
trace_cov.add_utf8("index", head->key_info[key_for_use].name)
.add("cost", key_read_time)
.add("chosen", chosen);
if (!chosen) trace_cov.add_alnum("cause", "cost");
}
TABLE_READ_PLAN *best_trp = NULL;
TRP_GROUP_MIN_MAX *group_trp;
TRP_SKIP_SCAN *skip_scan_trp;
Cost_estimate best_cost = cost_est;
if (cond) {
{
Opt_trace_array trace_setup_cond(trace, "setup_range_conditions");
tree = get_mm_tree(&param, cond);
}
if (tree) {
if (tree->type == SEL_TREE::IMPOSSIBLE) {
trace_range.add("impossible_range", true);
records = 0L; /* Return -1 from this function. */
cost_est.reset();
cost_est.add_io(static_cast<double>(HA_POS_ERROR));
goto free_mem;
}
/*
If the tree can't be used for range scans, proceed anyway, as we
can construct a group-min-max quick select
*/
if (tree->type != SEL_TREE::KEY &&
tree->type != SEL_TREE::KEY_SMALLER) {
trace_range.add("range_scan_possible", false);
if (tree->type == SEL_TREE::ALWAYS)
trace_range.add_alnum("cause", "condition_always_true");
tree = NULL;
}
}
}
/*
Try to construct a QUICK_GROUP_MIN_MAX_SELECT.
Notice that it can be constructed no matter if there is a range tree.
*/
group_trp = get_best_group_min_max(&param, tree, &best_cost);
if (group_trp) {
DBUG_EXECUTE_IF("force_lis_for_group_by", group_trp->cost_est.reset(););
param.table->quick_condition_rows =
min(group_trp->records, head->file->stats.records);
Opt_trace_object grp_summary(trace, "best_group_range_summary",
Opt_trace_context::RANGE_OPTIMIZER);
if (unlikely(trace->is_started()))
group_trp->trace_basic_info(&param, &grp_summary);
if (group_trp->cost_est < best_cost) {
grp_summary.add("chosen", true);
best_trp = group_trp;
best_cost = best_trp->cost_est;
} else
grp_summary.add("chosen", false).add_alnum("cause", "cost");
}
force_skip_scan = hint_table_state(
param.thd, param.table->pos_in_table_list, SKIP_SCAN_HINT_ENUM, 0);
if (thd->optimizer_switch_flag(OPTIMIZER_SKIP_SCAN) || force_skip_scan) {
skip_scan_trp = get_best_skip_scan(&param, tree, force_skip_scan);
if (skip_scan_trp) {
param.table->quick_condition_rows =
min(skip_scan_trp->records, head->file->stats.records);
Opt_trace_object summary(trace, "best_skip_scan_summary",
Opt_trace_context::RANGE_OPTIMIZER);
if (unlikely(trace->is_started()))
skip_scan_trp->trace_basic_info(&param, &summary);
if (skip_scan_trp->cost_est < best_cost || force_skip_scan) {
summary.add("chosen", true);
best_trp = skip_scan_trp;
best_cost = best_trp->cost_est;
} else
summary.add("chosen", false).add_alnum("cause", "cost");
}
}
if (tree && (!best_trp || !best_trp->is_forced_by_hint())) {
/*
It is possible to use a range-based quick select (but it might be
slower than 'all' table scan).
*/
dbug_print_tree("final_tree", tree, &param);
{
/*
Calculate cost of single index range scan and possible
intersections of these
*/
Opt_trace_object trace_range(trace, "analyzing_range_alternatives",
Opt_trace_context::RANGE_OPTIMIZER);
TRP_RANGE *range_trp;
TRP_ROR_INTERSECT *rori_trp;
/* Get best 'range' plan and prepare data for making other plans */
if ((range_trp =
get_key_scans_params(&param, tree, false, true, &best_cost))) {
best_trp = range_trp;
best_cost = best_trp->cost_est;
}
/*
Simultaneous key scans and row deletes on several handler
objects are not allowed so don't use ROR-intersection for
table deletes. Also, ROR-intersection cannot return rows in
descending order
*/
if ((thd->lex->sql_command != SQLCOM_DELETE) &&
(param.index_merge_allowed ||
hint_table_state(param.thd, param.table->pos_in_table_list,
INDEX_MERGE_HINT_ENUM, 0)) &&
interesting_order != ORDER_DESC) {
/*
Get best non-covering ROR-intersection plan and prepare data for
building covering ROR-intersection.
*/
if ((rori_trp =
get_best_ror_intersect(&param, tree, &best_cost, true))) {
best_trp = rori_trp;
best_cost = best_trp->cost_est;
}
}
}
// Here we calculate cost of union index merge
if (!tree->merges.is_empty()) {
// Cannot return rows in descending order.
if ((param.index_merge_allowed ||
hint_table_state(param.thd, param.table->pos_in_table_list,
INDEX_MERGE_HINT_ENUM, 0)) &&
interesting_order != ORDER_DESC &&
param.table->file->stats.records) {
/* Try creating index_merge/ROR-union scan. */
SEL_IMERGE *imerge;
TABLE_READ_PLAN *best_conj_trp = NULL, *new_conj_trp = NULL;
List_iterator_fast<SEL_IMERGE> it(tree->merges);
Opt_trace_array trace_idx_merge(trace, "analyzing_index_merge_union",
Opt_trace_context::RANGE_OPTIMIZER);
while ((imerge = it++)) {
new_conj_trp = get_best_disjunct_quick(&param, imerge, &best_cost);
if (new_conj_trp)
set_if_smaller(param.table->quick_condition_rows,
new_conj_trp->records);
if (!best_conj_trp ||
(new_conj_trp &&
new_conj_trp->cost_est < best_conj_trp->cost_est)) {
best_conj_trp = new_conj_trp;
}
}
if (best_conj_trp) best_trp = best_conj_trp;
}
}
}
thd->mem_root = param.old_root;
/*
If we got a read plan, create a quick select from it.
Only create a quick select if the storage engine supports using indexes
for access.
*/
if (best_trp && (head->file->ha_table_flags() & HA_NO_INDEX_ACCESS) == 0) {
QUICK_SELECT_I *qck;
records = best_trp->records;
if (!(qck = best_trp->make_quick(&param, true)) || qck->init())
qck = NULL;
*quick = qck;
}
free_mem:
thd->pop_internal_handler();
if (unlikely(*quick && trace->is_started() && best_trp)) {
// best_trp cannot be NULL if quick is set, done to keep fortify happy
Opt_trace_object trace_range_summary(trace,
"chosen_range_access_summary");
{
Opt_trace_object trace_range_plan(trace, "range_access_plan");
best_trp->trace_basic_info(&param, &trace_range_plan);
}
trace_range_summary.add("rows_for_plan", (*quick)->records)
.add("cost_for_plan", (*quick)->cost_est)
.add("chosen", true);
}
free_root(&alloc, MYF(0)); // Return memory & allocator
thd->mem_root = param.old_root;
DBUG_EXECUTE("info", print_quick(*quick, needed_reg););
}
/*
Assume that if the user is using 'limit' we will only need to scan
limit rows if we are using a key
*/
return records ? (*quick != nullptr) : -1;
}
/****************************************************************************
* Partition pruning module
****************************************************************************/
/*
PartitionPruningModule
This part of the code does partition pruning. Partition pruning solves the
following problem: given a query over partitioned tables, find partitions
that we will not need to access (i.e. partitions that we can assume to be
empty) when executing the query.
The set of partitions to prune doesn't depend on which query execution
plan will be used to execute the query.
HOW IT WORKS
Partition pruning module makes use of RangeAnalysisModule. The following
examples show how the problem of partition pruning can be reduced to the
range analysis problem:
EXAMPLE 1
Consider a query:
SELECT * FROM t1 WHERE (t1.a < 5 OR t1.a = 10) AND t1.a > 3 AND t1.b='z'
where table t1 is partitioned using PARTITION BY RANGE(t1.a). An apparent
way to find the used (i.e. not pruned away) partitions is as follows:
1. analyze the WHERE clause and extract the list of intervals over t1.a
for the above query we will get this list: {(3 < t1.a < 5), (t1.a=10)}
2. for each interval I
{
find partitions that have non-empty intersection with I;
mark them as used;
}
EXAMPLE 2
Suppose the table is partitioned by HASH(part_func(t1.a, t1.b)). Then
we need to:
1. Analyze the WHERE clause and get a list of intervals over (t1.a, t1.b).
The list of intervals we'll obtain will look like this:
((t1.a, t1.b) = (1,'foo')),
((t1.a, t1.b) = (2,'bar')),
((t1,a, t1.b) > (10,'zz'))
2. for each interval I
{
if (the interval has form "(t1.a, t1.b) = (const1, const2)" )
{
calculate HASH(part_func(t1.a, t1.b));
find which partition has records with this hash value and mark
it as used;
}
else
{
mark all partitions as used;
break;
}
}
For both examples the step #1 is exactly what RangeAnalysisModule could
be used to do, if it was provided with appropriate index description
(array of KEY_PART structures).
In example #1, we need to provide it with description of index(t1.a),
in example #2, we need to provide it with description of index(t1.a, t1.b).
These index descriptions are further called "partitioning index
descriptions". Note that it doesn't matter if such indexes really exist,
as range analysis module only uses the description.
Putting it all together, partitioning module works as follows:
prune_partitions() {
call create_partition_index_description();
call get_mm_tree(); // invoke the RangeAnalysisModule
// analyze the obtained interval list and get used partitions
call find_used_partitions();
}
*/
typedef void (*mark_full_part_func)(partition_info *, uint32);
/*
Partition pruning operation context
*/
struct PART_PRUNE_PARAM {
RANGE_OPT_PARAM range_param; /* Range analyzer parameters */
/***************************************************************
Following fields are filled in based solely on partitioning
definition and not modified after that:
**************************************************************/
partition_info *part_info; /* Copy of table->part_info */
/* Function to get partition id from partitioning fields only */
get_part_id_func get_top_partition_id_func;
/* Function to mark a partition as used (w/all subpartitions if they exist)*/
mark_full_part_func mark_full_partition_used;
/* Partitioning 'index' description, array of key parts */
KEY_PART *key;
/*
Number of fields in partitioning 'index' definition created for
partitioning (0 if partitioning 'index' doesn't include partitioning
fields)
*/
uint part_fields;
uint subpart_fields; /* Same as above for subpartitioning */
/*
Number of the last partitioning field keypart in the index, or -1 if
partitioning index definition doesn't include partitioning fields.
*/
int last_part_partno;
int last_subpart_partno; /* Same as above for supartitioning */
/*
is_part_keypart[i] == test(keypart #i in partitioning index is a member
used in partitioning)
Used to maintain current values of cur_part_fields and cur_subpart_fields
*/
bool *is_part_keypart;
/* Same as above for subpartitioning */
bool *is_subpart_keypart;
bool ignore_part_fields; /* Ignore rest of partioning fields */
/***************************************************************
Following fields form find_used_partitions() recursion context:
**************************************************************/
SEL_ARG **arg_stack; /* "Stack" of SEL_ARGs */
SEL_ARG **arg_stack_end; /* Top of the stack */
/* Number of partitioning fields for which we have a SEL_ARG* in arg_stack */
uint cur_part_fields;
/* Same as cur_part_fields, but for subpartitioning */
uint cur_subpart_fields;
/* Iterator to be used to obtain the "current" set of used partitions */
PARTITION_ITERATOR part_iter;
/* Initialized bitmap of num_subparts size */
MY_BITMAP subparts_bitmap;
uchar *cur_min_key;
uchar *cur_max_key;
uint cur_min_flag, cur_max_flag;
};
static bool create_partition_index_description(PART_PRUNE_PARAM *prune_par);
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ROOT *key_tree);
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ROOT::Type type,
SEL_ARG *key_tree);
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
SEL_IMERGE *imerge);
static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
List<SEL_IMERGE> &merges);
static void mark_all_partitions_as_used(partition_info *part_info);
#ifndef DBUG_OFF
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end);
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part);
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num);
#endif
/**
Perform partition pruning for a given table and condition.
@param thd Thread handle
@param table Table to perform partition pruning for
@param pprune_cond Condition to use for partition pruning
@note This function assumes that lock_partitions are setup when it
is invoked. The function analyzes the condition, finds partitions that
need to be used to retrieve the records that match the condition, and
marks them as used by setting appropriate bit in part_info->read_partitions
In the worst case all partitions are marked as used. If the table is not
yet locked, it will also unset bits in part_info->lock_partitions that is
not set in read_partitions.
This function returns promptly if called for non-partitioned table.
@return Operation status
@retval true Failure
@retval false Success
*/
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond) {
partition_info *part_info = table->part_info;
DBUG_TRACE;
/*
If the prepare stage already have completed pruning successfully,
it is no use of running prune_partitions() again on the same condition.
Since it will not be able to prune anything more than the previous call
from the prepare step.
*/
if (part_info && part_info->is_pruning_completed) return false;
table->all_partitions_pruned_away = false;
if (!part_info) return false; /* not a partitioned table */
if (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION &&
part_info->is_auto_partitioned)
return false; /* Should not prune auto partitioned table */
if (!pprune_cond) {
mark_all_partitions_as_used(part_info);
return false;
}
/* No need to continue pruning if there is no more partitions to prune! */
if (bitmap_is_clear_all(&part_info->lock_partitions))
bitmap_clear_all(&part_info->read_partitions);
if (bitmap_is_clear_all(&part_info->read_partitions)) {
table->all_partitions_pruned_away = true;
return false;
}
PART_PRUNE_PARAM prune_param;
MEM_ROOT alloc;
RANGE_OPT_PARAM *range_par = &prune_param.range_param;
my_bitmap_map *old_sets[2];
prune_param.part_info = part_info;
init_sql_alloc(key_memory_prune_partitions_exec, &alloc,
thd->variables.range_alloc_block_size, 0);
alloc.set_max_capacity(thd->variables.range_optimizer_max_mem_size);
alloc.set_error_for_capacity_exceeded(true);
thd->push_internal_handler(&range_par->error_handler);
range_par->mem_root = &alloc;
range_par->old_root = thd->mem_root;
if (create_partition_index_description(&prune_param)) {
mark_all_partitions_as_used(part_info);
thd->pop_internal_handler();
free_root(&alloc, MYF(0)); // Return memory & allocator
return false;
}
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
range_par->thd = thd;
range_par->table = table;
/* range_par->cond doesn't need initialization */
range_par->prev_tables = range_par->read_tables = INNER_TABLE_BIT;
range_par->current_table = table->pos_in_table_list->map();
range_par->keys = 1; // one index
range_par->using_real_indexes = false;
range_par->remove_jump_scans = false;
range_par->real_keynr[0] = 0;
thd->mem_root = &alloc;
bitmap_clear_all(&part_info->read_partitions);
prune_param.key = prune_param.range_param.key_parts;
SEL_TREE *tree;
int res;
tree = get_mm_tree(range_par, pprune_cond);
if (!tree) goto all_used;
if (tree->type == SEL_TREE::IMPOSSIBLE) {
/* Cannot improve the pruning any further. */
part_info->is_pruning_completed = true;
goto end;
}
if (tree->type != SEL_TREE::KEY && tree->type != SEL_TREE::KEY_SMALLER)
goto all_used;
if (tree->merges.is_empty()) {
/* Range analysis has produced a single list of intervals. */
prune_param.arg_stack_end = prune_param.arg_stack;
prune_param.cur_part_fields = 0;
prune_param.cur_subpart_fields = 0;
prune_param.cur_min_key = prune_param.range_param.min_key;
prune_param.cur_max_key = prune_param.range_param.max_key;
prune_param.cur_min_flag = prune_param.cur_max_flag = 0;
init_all_partitions_iterator(part_info, &prune_param.part_iter);
if (!tree->keys[0] ||
(-1 == (res = find_used_partitions(&prune_param, tree->keys[0]))))
goto all_used;
} else {
if (tree->merges.elements == 1) {
/*
Range analysis has produced a "merge" of several intervals lists, a
SEL_TREE that represents an expression in form
sel_imerge = (tree1 OR tree2 OR ... OR treeN)
that cannot be reduced to one tree. This can only happen when
partitioning index has several keyparts and the condition is OR of
conditions that refer to different key parts. For example, we'll get
here for "partitioning_field=const1 OR subpartitioning_field=const2"
*/
if (-1 == (res = find_used_partitions_imerge(&prune_param,
tree->merges.head())))
goto all_used;
} else {
/*
Range analysis has produced a list of several imerges, i.e. a
structure that represents a condition in form
imerge_list= (sel_imerge1 AND sel_imerge2 AND ... AND sel_imergeN)
This is produced for complicated WHERE clauses that range analyzer
can't really analyze properly.
*/
if (-1 ==
(res = find_used_partitions_imerge_list(&prune_param, tree->merges)))
goto all_used;
}
}
/*
Decide if the current pruning attempt is the final one.
During the prepare phase, before locking, subqueries and stored programs
are not evaluated. So we need to run prune_partitions() a second time in
the optimize phase to prune partitions for reading, when subqueries and
stored programs may be evaluated.
The upcoming pruning attempt will be the final one when:
- condition is constant, or
- condition may vary for every row (so there is nothing to prune) or
- evaluation is in execution phase.
*/
if (pprune_cond->const_item() || !pprune_cond->const_for_execution() ||
thd->lex->is_query_tables_locked())
part_info->is_pruning_completed = true;
goto end;
all_used:
mark_all_partitions_as_used(prune_param.part_info);
end:
thd->pop_internal_handler();
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
thd->mem_root = range_par->old_root;
free_root(&alloc, MYF(0)); // Return memory & allocator
/* If an error occurred we can return failure after freeing the memroot. */
if (thd->is_error()) {
return true;
}
/*
Must be a subset of the locked partitions.
lock_partitions contains the partitions marked by explicit partition
selection (... t PARTITION (pX) ...) and we must only use partitions
within that set.
*/
bitmap_intersect(&prune_param.part_info->read_partitions,
&prune_param.part_info->lock_partitions);
/*
If not yet locked, also prune partitions to lock if not UPDATEing
partition key fields. This will also prune lock_partitions if we are under
LOCK TABLES, so prune away calls to start_stmt().
TODO: enhance this prune locking to also allow pruning of
'UPDATE t SET part_key = const WHERE cond_is_prunable' so it adds
a lock for part_key partition.
*/
if (!thd->lex->is_query_tables_locked() &&
!partition_key_modified(table, table->write_set)) {
bitmap_copy(&prune_param.part_info->lock_partitions,
&prune_param.part_info->read_partitions);
}
if (bitmap_is_clear_all(&(prune_param.part_info->read_partitions)))
table->all_partitions_pruned_away = true;
return false;
}
/*
Store field key image to table record
SYNOPSIS
store_key_image_to_rec()
field Field which key image should be stored
ptr Field value in key format
len Length of the value, in bytes
DESCRIPTION
Copy the field value from its key image to the table record. The source
is the value in key image format, occupying len bytes in buffer pointed
by ptr. The destination is table record, in "field value in table record"
format.
*/
void store_key_image_to_rec(Field *field, uchar *ptr, uint len) {
/* Do the same as print_key_value() does */
my_bitmap_map *old_map;
if (field->real_maybe_null()) {
if (*ptr) {
field->set_null();
return;
}
field->set_notnull();
ptr++;
}
old_map = dbug_tmp_use_all_columns(field->table, field->table->write_set);
field->set_key_image(ptr, len);
dbug_tmp_restore_column_map(field->table->write_set, old_map);
}
/*
For SEL_ARG* array, store sel_arg->min values into table record buffer
SYNOPSIS
store_selargs_to_rec()
ppar Partition pruning context
start Array of SEL_ARG* for which the minimum values should be stored
num Number of elements in the array
DESCRIPTION
For each SEL_ARG* interval in the specified array, store the left edge
field value (sel_arg->min, key image format) into the table record.
*/
static void store_selargs_to_rec(PART_PRUNE_PARAM *ppar, SEL_ARG **start,
int num) {
KEY_PART *parts = ppar->range_param.key_parts;
for (SEL_ARG **end = start + num; start != end; start++) {
SEL_ARG *sel_arg = (*start);
store_key_image_to_rec(sel_arg->field, sel_arg->min_value,
parts[sel_arg->part].length);
}
}
/* Mark a partition as used in the case when there are no subpartitions */
static void mark_full_partition_used_no_parts(partition_info *part_info,
uint32 part_id) {
DBUG_TRACE;
DBUG_PRINT("enter", ("Mark partition %u as used", part_id));
bitmap_set_bit(&part_info->read_partitions, part_id);
}
/* Mark a partition as used in the case when there are subpartitions */
static void mark_full_partition_used_with_parts(partition_info *part_info,
uint32 part_id) {
uint32 start = part_id * part_info->num_subparts;
uint32 end = start + part_info->num_subparts;
DBUG_TRACE;
for (; start != end; start++) {
DBUG_PRINT("info", ("1:Mark subpartition %u as used", start));
bitmap_set_bit(&part_info->read_partitions, start);
}
}
/*
Find the set of used partitions for List<SEL_IMERGE>
SYNOPSIS
find_used_partitions_imerge_list
ppar Partition pruning context.
key_tree Intervals tree to perform pruning for.
DESCRIPTION
List<SEL_IMERGE> represents "imerge1 AND imerge2 AND ...".
The set of used partitions is an intersection of used partitions sets
for imerge_{i}.
We accumulate this intersection in a separate bitmap.
RETURN
See find_used_partitions()
*/
static int find_used_partitions_imerge_list(PART_PRUNE_PARAM *ppar,
List<SEL_IMERGE> &merges) {
MY_BITMAP all_merges;
uint bitmap_bytes;
my_bitmap_map *bitmap_buf;
uint n_bits = ppar->part_info->read_partitions.n_bits;
bitmap_bytes = bitmap_buffer_size(n_bits);
if (!(bitmap_buf =
(my_bitmap_map *)ppar->range_param.mem_root->Alloc(bitmap_bytes))) {
/*
Fallback, process just the first SEL_IMERGE. This can leave us with more
partitions marked as used then actually needed.
*/
return find_used_partitions_imerge(ppar, merges.head());
}
bitmap_init(&all_merges, bitmap_buf, n_bits, false);
bitmap_set_prefix(&all_merges, n_bits);
List_iterator<SEL_IMERGE> it(merges);
SEL_IMERGE *imerge;
while ((imerge = it++)) {
int res = find_used_partitions_imerge(ppar, imerge);
if (!res) {
/* no used partitions on one ANDed imerge => no used partitions at all */
return 0;
}
if (res != -1)
bitmap_intersect(&all_merges, &ppar->part_info->read_partitions);
if (bitmap_is_clear_all(&all_merges)) return 0;
bitmap_clear_all(&ppar->part_info->read_partitions);
}
memcpy(ppar->part_info->read_partitions.bitmap, all_merges.bitmap,
bitmap_bytes);
return 1;
}
/*
Find the set of used partitions for SEL_IMERGE structure
SYNOPSIS
find_used_partitions_imerge()
ppar Partition pruning context.
key_tree Intervals tree to perform pruning for.
DESCRIPTION
SEL_IMERGE represents "tree1 OR tree2 OR ...". The implementation is
trivial - just use mark used partitions for each tree and bail out early
if for some tree_{i} all partitions are used.
RETURN
See find_used_partitions().
*/
static int find_used_partitions_imerge(PART_PRUNE_PARAM *ppar,
SEL_IMERGE *imerge) {
int res = 0;
for (SEL_TREE **ptree = imerge->trees; ptree < imerge->trees_next; ptree++) {
ppar->arg_stack_end = ppar->arg_stack;
ppar->cur_part_fields = 0;
ppar->cur_subpart_fields = 0;
ppar->cur_min_key = ppar->range_param.min_key;
ppar->cur_max_key = ppar->range_param.max_key;
ppar->cur_min_flag = ppar->cur_max_flag = 0;
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
SEL_ROOT *key_tree = (*ptree)->keys[0];
if (!key_tree || (-1 == (res |= find_used_partitions(ppar, key_tree))))
return -1;
}
return res;
}
/*
Collect partitioning ranges for the SEL_ARG tree and mark partitions as used
SYNOPSIS
find_used_partitions()
ppar Partition pruning context.
key_tree SEL_ARG range (sub)tree to perform pruning for
DESCRIPTION
This function
* recursively walks the SEL_ARG* tree collecting partitioning "intervals"
* finds the partitions one needs to use to get rows in these intervals
* marks these partitions as used.
The next session desribes the process in greater detail.
IMPLEMENTATION
TYPES OF RESTRICTIONS THAT WE CAN OBTAIN PARTITIONS FOR
We can find out which [sub]partitions to use if we obtain restrictions on
[sub]partitioning fields in the following form:
1. "partition_field1=const1 AND ... AND partition_fieldN=constN"
1.1 Same as (1) but for subpartition fields
If partitioning supports interval analysis (i.e. partitioning is a
function of a single table field, and partition_info::
get_part_iter_for_interval != NULL), then we can also use condition in
this form:
2. "const1 <=? partition_field <=? const2"
2.1 Same as (2) but for subpartition_field
INFERRING THE RESTRICTIONS FROM SEL_ARG TREE
The below is an example of what SEL_ARG tree may represent:
(start)
| $
| Partitioning keyparts $ subpartitioning keyparts
| $
| ... ... $
| | | $
| +---------+ +---------+ $ +-----------+ +-----------+
\-| par1=c1 |--| par2=c2 |-----| subpar1=c3|--| subpar2=c5|
+---------+ +---------+ $ +-----------+ +-----------+
| $ | |
| $ | +-----------+
| $ | | subpar2=c6|
| $ | +-----------+
| $ |
| $ +-----------+ +-----------+
| $ | subpar1=c4|--| subpar2=c8|
| $ +-----------+ +-----------+
| $
| $
+---------+ $ +------------+ +------------+
| par1=c2 |------------------| subpar1=c10|--| subpar2=c12|
+---------+ $ +------------+ +------------+
| $
... $
The up-down connections are connections via SEL_ARG::left and
SEL_ARG::right. A horizontal connection to the right is the
SEL_ARG::next_key_part connection.
find_used_partitions() traverses the entire tree via recursion on
* SEL_ARG::next_key_part (from left to right on the picture)
* SEL_ARG::left|right (up/down on the pic). Left-right recursion is
performed for each depth level.
Recursion descent on SEL_ARG::next_key_part is used to accumulate (in
ppar->arg_stack) constraints on partitioning and subpartitioning fields.
For the example in the above picture, one of stack states is:
in find_used_partitions(key_tree = "subpar2=c5") (***)
in find_used_partitions(key_tree = "subpar1=c3")
in find_used_partitions(key_tree = "par2=c2") (**)
in find_used_partitions(key_tree = "par1=c1")
in prune_partitions(...)
We apply partitioning limits as soon as possible, e.g. when we reach the
depth (**), we find which partition(s) correspond to "par1=c1 AND par2=c2",
and save them in ppar->part_iter.
When we reach the depth (***), we find which subpartition(s) correspond to
"subpar1=c3 AND subpar2=c5", and then mark appropriate subpartitions in
appropriate subpartitions as used.
It is possible that constraints on some partitioning fields are missing.
For the above example, consider this stack state:
in find_used_partitions(key_tree = "subpar2=c12") (***)
in find_used_partitions(key_tree = "subpar1=c10")
in find_used_partitions(key_tree = "par1=c2")
in prune_partitions(...)
Here we don't have constraints for all partitioning fields. Since we've
never set the ppar->part_iter to contain used set of partitions, we use
its default "all partitions" value. We get subpartition id for
"subpar1=c3 AND subpar2=c5", and mark that subpartition as used in every
partition.
The inverse is also possible: we may get constraints on partitioning
fields, but not constraints on subpartitioning fields. In that case,
calls to find_used_partitions() with depth below (**) will return -1,
and we will mark entire partition as used.
TODO
Replace recursion on SEL_ARG::left and SEL_ARG::right with a loop
RETURN
1 OK, one or more [sub]partitions are marked as used.
0 The passed condition doesn't match any partitions
-1 Couldn't infer any partition pruning "intervals" from the passed
SEL_ARG* tree (which means that all partitions should be marked as
used) Marking partitions as used is the responsibility of the caller.
*/
static int find_used_partitions(PART_PRUNE_PARAM *ppar,
SEL_ROOT::Type key_tree_type,
SEL_ARG *key_tree) {
int res, left_res = 0, right_res = 0;
int key_tree_part = (int)key_tree->part;
bool set_full_part_if_bad_ret = false;
bool ignore_part_fields = ppar->ignore_part_fields;
bool did_set_ignore_part_fields = false;
RANGE_OPT_PARAM *range_par = &(ppar->range_param);
if (check_stack_overrun(range_par->thd, 3 * STACK_MIN_SIZE, NULL)) return -1;
if (key_tree->left != null_element) {
if (-1 ==
(left_res = find_used_partitions(ppar, key_tree_type, key_tree->left)))
return -1;
}
/* Push SEL_ARG's to stack to enable looking backwards as well */
ppar->cur_part_fields += ppar->is_part_keypart[key_tree_part];
ppar->cur_subpart_fields += ppar->is_subpart_keypart[key_tree_part];
*(ppar->arg_stack_end++) = key_tree;
if (ignore_part_fields) {
/*
We come here when a condition on the first partitioning
fields led to evaluating the partitioning condition
(due to finding a condition of the type a < const or
b > const). Thus we must ignore the rest of the
partitioning fields but we still want to analyse the
subpartitioning fields.
*/
if (key_tree->next_key_part)
res = find_used_partitions(ppar, key_tree->next_key_part);
else
res = -1;
goto pop_and_go_right;
}
/*
TODO: It seems that key_tree_type is _always_ KEY_RANGE in practice,
so maybe this if is redundant and should be replaced with an assert?
*/
if (key_tree_type == SEL_ROOT::Type::KEY_RANGE) {
if (ppar->part_info->get_part_iter_for_interval &&
key_tree->part <= ppar->last_part_partno) {
/* Collect left and right bound, their lengths and flags */
uchar *min_key = ppar->cur_min_key;
uchar *max_key = ppar->cur_max_key;
uchar *tmp_min_key = min_key;
uchar *tmp_max_key = max_key;
key_tree->store_min_value(ppar->key[key_tree->part].store_length,
&tmp_min_key, ppar->cur_min_flag);
key_tree->store_max_value(ppar->key[key_tree->part].store_length,
&tmp_max_key, ppar->cur_max_flag);
uint flag;
if (key_tree->next_key_part &&
key_tree->next_key_part->root->part == key_tree->part + 1 &&
key_tree->next_key_part->root->part <= ppar->last_part_partno &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE) {
/*
There are more key parts for partition pruning to handle
This mainly happens when the condition is an equality
condition.
*/
if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
(memcmp(min_key, max_key, (uint)(tmp_max_key - max_key)) == 0) &&
!key_tree->min_flag && !key_tree->max_flag) {
/* Set 'parameters' */
ppar->cur_min_key = tmp_min_key;
ppar->cur_max_key = tmp_max_key;
uint save_min_flag = ppar->cur_min_flag;
uint save_max_flag = ppar->cur_max_flag;
ppar->cur_min_flag |= key_tree->min_flag;
ppar->cur_max_flag |= key_tree->max_flag;
res = find_used_partitions(ppar, key_tree->next_key_part);
/* Restore 'parameters' back */
ppar->cur_min_key = min_key;
ppar->cur_max_key = max_key;
ppar->cur_min_flag = save_min_flag;
ppar->cur_max_flag = save_max_flag;
goto pop_and_go_right;
}
/* We have arrived at the last field in the partition pruning */
uint tmp_min_flag = key_tree->min_flag,
tmp_max_flag = key_tree->max_flag;
if (!tmp_min_flag)
key_tree->next_key_part->store_min_key(ppar->key, &tmp_min_key,
&tmp_min_flag,
ppar->last_part_partno, true);
if (!tmp_max_flag)
key_tree->next_key_part->store_max_key(ppar->key, &tmp_max_key,
&tmp_max_flag,
ppar->last_part_partno, false);
flag = tmp_min_flag | tmp_max_flag;
} else
flag = key_tree->min_flag | key_tree->max_flag;
if (tmp_min_key != range_par->min_key)
flag &= ~NO_MIN_RANGE;
else
flag |= NO_MIN_RANGE;
if (tmp_max_key != range_par->max_key)
flag &= ~NO_MAX_RANGE;
else
flag |= NO_MAX_RANGE;
/*
We need to call the interval mapper if we have a condition which
makes sense to prune on. In the example of COLUMNS on a and
b it makes sense if we have a condition on a, or conditions on
both a and b. If we only have conditions on b it might make sense
but this is a harder case we will solve later. For the harder case
this clause then turns into use of all partitions and thus we
simply set res= -1 as if the mapper had returned that.
TODO: What to do here is defined in WL#4065.
*/
if (ppar->arg_stack[0]->part == 0) {
uint32 i;
uint32 store_length_array[MAX_KEY];
uint32 num_keys = ppar->part_fields;
for (i = 0; i < num_keys; i++)
store_length_array[i] = ppar->key[i].store_length;
res = ppar->part_info->get_part_iter_for_interval(
ppar->part_info, false, store_length_array, range_par->min_key,
range_par->max_key, tmp_min_key - range_par->min_key,
tmp_max_key - range_par->max_key, flag, &ppar->part_iter);
if (!res)
goto pop_and_go_right; /* res==0 --> no satisfying partitions */
} else
res = -1;
if (res == -1) {
/* get a full range iterator */
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
}
/*
Save our intent to mark full partition as used if we will not be able
to obtain further limits on subpartitions
*/
if (key_tree_part < ppar->last_part_partno) {
/*
We need to ignore the rest of the partitioning fields in all
evaluations after this
*/
did_set_ignore_part_fields = true;
ppar->ignore_part_fields = true;
}
set_full_part_if_bad_ret = true;
goto process_next_key_part;
}
if (key_tree_part == ppar->last_subpart_partno &&
(NULL != ppar->part_info->get_subpart_iter_for_interval)) {
PARTITION_ITERATOR subpart_iter;
DBUG_EXECUTE("info",
dbug_print_segment_range(key_tree, range_par->key_parts););
res = ppar->part_info->get_subpart_iter_for_interval(
ppar->part_info, true, NULL, /* Currently not used here */
key_tree->min_value, key_tree->max_value, 0,
0, /* Those are ignored here */
key_tree->min_flag | key_tree->max_flag, &subpart_iter);
if (res == 0) {
/*
The only case where we can get "no satisfying subpartitions"
returned from the above call is when an error has occurred.
*/
DBUG_ASSERT(range_par->thd->is_error());
return 0;
}
if (res == -1) goto pop_and_go_right; /* all subpartitions satisfy */
uint32 subpart_id;
bitmap_clear_all(&ppar->subparts_bitmap);
while ((subpart_id = subpart_iter.get_next(&subpart_iter)) !=
NOT_A_PARTITION_ID)
bitmap_set_bit(&ppar->subparts_bitmap, subpart_id);
/* Mark each partition as used in each subpartition. */
uint32 part_id;
while ((part_id = ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID) {
for (uint i = 0; i < ppar->part_info->num_subparts; i++)
if (bitmap_is_set(&ppar->subparts_bitmap, i))
bitmap_set_bit(&ppar->part_info->read_partitions,
part_id * ppar->part_info->num_subparts + i);
}
goto pop_and_go_right;
}
if (key_tree->is_singlepoint()) {
if (key_tree_part == ppar->last_part_partno &&
ppar->cur_part_fields == ppar->part_fields &&
ppar->part_info->get_part_iter_for_interval == NULL) {
/*
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all partitioning
fields. Save all constN constants into table record buffer.
*/
store_selargs_to_rec(ppar, ppar->arg_stack, ppar->part_fields);
DBUG_EXECUTE("info", dbug_print_singlepoint_range(ppar->arg_stack,
ppar->part_fields););
uint32 part_id;
longlong func_value;
/* Find in which partition the {const1, ...,constN} tuple goes */
if (ppar->get_top_partition_id_func(ppar->part_info, &part_id,
&func_value)) {
res = 0; /* No satisfying partitions */
goto pop_and_go_right;
}
/* Rembember the limit we got - single partition #part_id */
init_single_partition_iterator(part_id, &ppar->part_iter);
/*
If there are no subpartitions/we fail to get any limit for them,
then we'll mark full partition as used.
*/
set_full_part_if_bad_ret = true;
goto process_next_key_part;
}
if (key_tree_part == ppar->last_subpart_partno &&
ppar->cur_subpart_fields == ppar->subpart_fields) {
/*
Ok, we've got "fieldN<=>constN"-type SEL_ARGs for all subpartitioning
fields. Save all constN constants into table record buffer.
*/
store_selargs_to_rec(ppar, ppar->arg_stack_end - ppar->subpart_fields,
ppar->subpart_fields);
DBUG_EXECUTE("info", dbug_print_singlepoint_range(
ppar->arg_stack_end - ppar->subpart_fields,
ppar->subpart_fields););
/* Find the subpartition (it's HASH/KEY so we always have one) */
partition_info *part_info = ppar->part_info;
uint32 part_id, subpart_id;
if (part_info->get_subpartition_id(part_info, &subpart_id)) return 0;
/* Mark this partition as used in each subpartition. */
while ((part_id = ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID) {
bitmap_set_bit(&part_info->read_partitions,
part_id * part_info->num_subparts + subpart_id);
}
res = 1; /* Some partitions were marked as used */
goto pop_and_go_right;
}
} else {
/*
Can't handle condition on current key part. If we're that deep that
we're processing subpartititoning's key parts, this means we'll not be
able to infer any suitable condition, so bail out.
*/
if (key_tree_part >= ppar->last_part_partno) {
res = -1;
goto pop_and_go_right;
}
/*
No meaning in continuing with rest of partitioning key parts.
Will try to continue with subpartitioning key parts.
*/
ppar->ignore_part_fields = true;
did_set_ignore_part_fields = true;
goto process_next_key_part;
}
}
process_next_key_part:
if (key_tree->next_key_part)
res = find_used_partitions(ppar, key_tree->next_key_part);
else
res = -1;
if (did_set_ignore_part_fields) {
/*
We have returned from processing all key trees linked to our next
key part. We are ready to be moving down (using right pointers) and
this tree is a new evaluation requiring its own decision on whether
to ignore partitioning fields.
*/
ppar->ignore_part_fields = false;
}
if (set_full_part_if_bad_ret) {
if (res == -1) {
/* Got "full range" for subpartitioning fields */
uint32 part_id;
bool found = false;
while ((part_id = ppar->part_iter.get_next(&ppar->part_iter)) !=
NOT_A_PARTITION_ID) {
ppar->mark_full_partition_used(ppar->part_info, part_id);
found = true;
}
res = found;
}
/*
Restore the "used partitions iterator" to the default setting that
specifies iteration over all partitions.
*/
init_all_partitions_iterator(ppar->part_info, &ppar->part_iter);
}
pop_and_go_right:
/* Pop this key part info off the "stack" */
ppar->arg_stack_end--;
ppar->cur_part_fields -= ppar->is_part_keypart[key_tree_part];
ppar->cur_subpart_fields -= ppar->is_subpart_keypart[key_tree_part];
if (res == -1) return -1;
if (key_tree->right != null_element) {
if (-1 == (right_res =
find_used_partitions(ppar, key_tree_type, key_tree->right)))
return -1;
}
return (left_res || right_res || res);
}
static int find_used_partitions(PART_PRUNE_PARAM *ppar, SEL_ROOT *key_tree) {
return find_used_partitions(ppar, key_tree->type, key_tree->root);
}
static void mark_all_partitions_as_used(partition_info *part_info) {
bitmap_copy(&(part_info->read_partitions), &(part_info->lock_partitions));
}
/*
Check if field types allow to construct partitioning index description
SYNOPSIS
fields_ok_for_partition_index()
pfield NULL-terminated array of pointers to fields.
DESCRIPTION
For an array of fields, check if we can use all of the fields to create
partitioning index description.
We can't process GEOMETRY fields - for these fields singlepoint intervals
cant be generated, and non-singlepoint are "special" kinds of intervals
to which our processing logic can't be applied.
It is not known if we could process ENUM fields, so they are disabled to be
on the safe side.
RETURN
true Yes, fields can be used in partitioning index
false Otherwise
*/
static bool fields_ok_for_partition_index(Field **pfield) {
if (!pfield) return false;
for (; (*pfield); pfield++) {
enum_field_types ftype = (*pfield)->real_type();
if (ftype == MYSQL_TYPE_ENUM || ftype == MYSQL_TYPE_GEOMETRY) return false;
}
return true;
}
/*
Create partition index description and fill related info in the context
struct
SYNOPSIS
create_partition_index_description()
prune_par INOUT Partition pruning context
DESCRIPTION
Create partition index description. Partition index description is:
part_index(used_fields_list(part_expr), used_fields_list(subpart_expr))
If partitioning/sub-partitioning uses BLOB or Geometry fields, then
corresponding fields_list(...) is not included into index description
and we don't perform partition pruning for partitions/subpartitions.
RETURN
true Out of memory or can't do partition pruning at all
false OK
*/
static bool create_partition_index_description(PART_PRUNE_PARAM *ppar) {
RANGE_OPT_PARAM *range_par = &(ppar->range_param);
partition_info *part_info = ppar->part_info;
uint used_part_fields, used_subpart_fields;
used_part_fields = fields_ok_for_partition_index(part_info->part_field_array)
? part_info->num_part_fields
: 0;
used_subpart_fields =
fields_ok_for_partition_index(part_info->subpart_field_array)
? part_info->num_subpart_fields
: 0;
uint total_parts = used_part_fields + used_subpart_fields;
ppar->ignore_part_fields = false;
ppar->part_fields = used_part_fields;
ppar->last_part_partno = (int)used_part_fields - 1;
ppar->subpart_fields = used_subpart_fields;
ppar->last_subpart_partno =
used_subpart_fields ? (int)(used_part_fields + used_subpart_fields - 1)
: -1;
if (part_info->is_sub_partitioned()) {
ppar->mark_full_partition_used = mark_full_partition_used_with_parts;
ppar->get_top_partition_id_func = part_info->get_part_partition_id;
} else {
ppar->mark_full_partition_used = mark_full_partition_used_no_parts;
ppar->get_top_partition_id_func = part_info->get_partition_id;
}
KEY_PART *key_part;
MEM_ROOT *alloc = range_par->mem_root;
if (!total_parts ||
!(key_part = (KEY_PART *)alloc->Alloc(sizeof(KEY_PART) * total_parts)) ||
!(ppar->arg_stack =
(SEL_ARG **)alloc->Alloc(sizeof(SEL_ARG *) * total_parts)) ||
!(ppar->is_part_keypart =
(bool *)alloc->Alloc(sizeof(bool) * total_parts)) ||
!(ppar->is_subpart_keypart =
(bool *)alloc->Alloc(sizeof(bool) * total_parts)))
return true;
if (ppar->subpart_fields) {
my_bitmap_map *buf;
uint32 bufsize = bitmap_buffer_size(ppar->part_info->num_subparts);
if (!(buf = (my_bitmap_map *)alloc->Alloc(bufsize))) return true;
bitmap_init(&ppar->subparts_bitmap, buf, ppar->part_info->num_subparts,
false);
}
range_par->key_parts = key_part;
Field **field = (ppar->part_fields) ? part_info->part_field_array
: part_info->subpart_field_array;
bool in_subpart_fields = false;
for (uint part = 0; part < total_parts; part++, key_part++) {
key_part->key = 0;
key_part->part = part;
key_part->length = (uint16)(*field)->key_length();
key_part->store_length = (uint16)get_partition_field_store_length(*field);
DBUG_PRINT("info", ("part %u length %u store_length %u", part,
key_part->length, key_part->store_length));
key_part->field = (*field);
key_part->image_type = Field::itRAW;
/*
We set keypart flag to 0 here as the only HA_PART_KEY_SEG is checked
in the RangeAnalysisModule.
*/
key_part->flag = 0;
/* We don't set key_parts->null_bit as it will not be used */
ppar->is_part_keypart[part] = !in_subpart_fields;
ppar->is_subpart_keypart[part] = in_subpart_fields;
/*
Check if this was last field in this array, in this case we
switch to subpartitioning fields. (This will only happens if
there are subpartitioning fields to cater for).
*/
if (!*(++field)) {
field = part_info->subpart_field_array;
in_subpart_fields = true;
}
}
range_par->key_parts_end = key_part;
DBUG_EXECUTE("info", print_partitioning_index(range_par->key_parts,
range_par->key_parts_end););
return false;
}
#ifndef DBUG_OFF
static void print_partitioning_index(KEY_PART *parts, KEY_PART *parts_end) {
DBUG_TRACE;
DBUG_LOCK_FILE;
fprintf(DBUG_FILE, "partitioning INDEX(");
for (KEY_PART *p = parts; p != parts_end; p++) {
fprintf(DBUG_FILE, "%s%s", p == parts ? "" : " ,", p->field->field_name);
}
fputs(");\n", DBUG_FILE);
DBUG_UNLOCK_FILE;
}
/* Print a "c1 < keypartX < c2" - type interval into debug trace. */
static void dbug_print_segment_range(SEL_ARG *arg, KEY_PART *part) {
DBUG_TRACE;
DBUG_LOCK_FILE;
if (!(arg->min_flag & NO_MIN_RANGE)) {
store_key_image_to_rec(part->field, arg->min_value, part->length);
part->field->dbug_print();
if (arg->min_flag & NEAR_MIN)
fputs(" < ", DBUG_FILE);
else
fputs(" <= ", DBUG_FILE);
}
fprintf(DBUG_FILE, "%s", part->field->field_name);
if (!(arg->max_flag & NO_MAX_RANGE)) {
if (arg->max_flag & NEAR_MAX)
fputs(" < ", DBUG_FILE);
else
fputs(" <= ", DBUG_FILE);
store_key_image_to_rec(part->field, arg->max_value, part->length);
part->field->dbug_print();
}
fputs("\n", DBUG_FILE);
DBUG_UNLOCK_FILE;
}
/*
Print a singlepoint multi-keypart range interval to debug trace
SYNOPSIS
dbug_print_singlepoint_range()
start Array of SEL_ARG* ptrs representing conditions on key parts
num Number of elements in the array.
DESCRIPTION
This function prints a "keypartN=constN AND ... AND keypartK=constK"-type
interval to debug trace.
*/
static void dbug_print_singlepoint_range(SEL_ARG **start, uint num) {
DBUG_TRACE;
DBUG_LOCK_FILE;
SEL_ARG **end = start + num;
for (SEL_ARG **arg = start; arg != end; arg++) {
Field *field = (*arg)->field;
fprintf(DBUG_FILE, "%s%s=", (arg == start) ? "" : ", ", field->field_name);
field->dbug_print();
}
fputs("\n", DBUG_FILE);
DBUG_UNLOCK_FILE;
}
#endif
/****************************************************************************
* Partition pruning code ends
****************************************************************************/
/*
Get best plan for a SEL_IMERGE disjunctive expression.
SYNOPSIS
get_best_disjunct_quick()
param Parameter from check_quick_select function
imerge Expression to use
cost_est Don't create scans with cost > cost_est
NOTES
index_merge cost is calculated as follows:
index_merge_cost =
cost(index_reads) + (see #1)
cost(rowid_to_row_scan) + (see #2)
cost(unique_use) (see #3)
1. cost(index_reads) =SUM_i(cost(index_read_i))
For non-CPK scans,
cost(index_read_i) = {cost of ordinary 'index only' scan}
For CPK scan,
cost(index_read_i) = {cost of non-'index only' scan}
2. cost(rowid_to_row_scan)
If table PK is clustered then
cost(rowid_to_row_scan) =
{cost of ordinary clustered PK scan with n_ranges=n_rows}
Otherwise, we use the following model to calculate costs:
We need to retrieve n_rows rows from file that occupies n_blocks blocks.
We assume that offsets of rows we need are independent variates with
uniform distribution in [0..max_file_offset] range.
We'll denote block as "busy" if it contains row(s) we need to retrieve
and "empty" if doesn't contain rows we need.
Probability that a block is empty is (1 - 1/n_blocks)^n_rows (this
applies to any block in file). Let x_i be a variate taking value 1 if
block #i is empty and 0 otherwise.
Then E(x_i) = (1 - 1/n_blocks)^n_rows;
E(n_empty_blocks) = E(sum(x_i)) = sum(E(x_i)) =
= n_blocks * ((1 - 1/n_blocks)^n_rows) =
~= n_blocks * exp(-n_rows/n_blocks).
E(n_busy_blocks) = n_blocks*(1 - (1 - 1/n_blocks)^n_rows) =
~= n_blocks * (1 - exp(-n_rows/n_blocks)).
Average size of "hole" between neighbor non-empty blocks is
E(hole_size) = n_blocks/E(n_busy_blocks).
The total cost of reading all needed blocks in one "sweep" is:
E(n_busy_blocks) * disk_seek_cost(n_blocks/E(n_busy_blocks))
This cost estimate is calculated in get_sweep_read_cost().
3. Cost of Unique use is calculated in Unique::get_use_cost function.
ROR-union cost is calculated in the same way index_merge, but instead of
Unique a priority queue is used.
RETURN
Created read plan
NULL - Out of memory or no read scan could be built.
*/
static TABLE_READ_PLAN *get_best_disjunct_quick(PARAM *param,
SEL_IMERGE *imerge,
const Cost_estimate *cost_est) {
SEL_TREE **ptree;
TRP_INDEX_MERGE *imerge_trp = NULL;
uint n_child_scans = imerge->trees_next - imerge->trees;
TRP_RANGE **range_scans;
TRP_RANGE **cur_child;
TRP_RANGE **cpk_scan = NULL;
bool imerge_too_expensive = false;
Cost_estimate imerge_cost;
ha_rows cpk_scan_records = 0;
ha_rows non_cpk_scan_records = 0;
bool pk_is_clustered = param->table->file->primary_key_is_clustered();
bool all_scans_ror_able = true;
bool all_scans_rors = true;
size_t unique_calc_buff_size;
TABLE_READ_PLAN **roru_read_plans;
TABLE_READ_PLAN **cur_roru_plan;
ha_rows roru_total_records;
double roru_intersect_part = 1.0;
const Cost_model_table *const cost_model = param->table->cost_model();
Cost_estimate read_cost = *cost_est;
DBUG_TRACE;
DBUG_PRINT("info", ("Full table scan cost: %g", cost_est->total_cost()));
DBUG_ASSERT(param->table->file->stats.records);
const bool force_index_merge = hint_table_state(
param->thd, param->table->pos_in_table_list, INDEX_MERGE_HINT_ENUM, 0);
Opt_trace_context *const trace = &param->thd->opt_trace;
Opt_trace_object trace_best_disjunct(trace);
if (!(range_scans = (TRP_RANGE **)param->mem_root->Alloc(sizeof(TRP_RANGE *) *
n_child_scans)))
return NULL;
// Note: to_merge.end() is called to close this object after this for-loop.
Opt_trace_array to_merge(trace, "indexes_to_merge");
/*
Collect best 'range' scan for each of disjuncts, and, while doing so,
analyze possibility of ROR scans. Also calculate some values needed by
other parts of the code.
*/
for (ptree = imerge->trees, cur_child = range_scans;
ptree != imerge->trees_next; ptree++, cur_child++) {
DBUG_EXECUTE("info", print_sel_tree(param, *ptree, &(*ptree)->keys_map,
"tree in SEL_IMERGE"););
Opt_trace_object trace_idx(trace);
if (!(*cur_child =
get_key_scans_params(param, *ptree, true, false, &read_cost))) {
/*
One of index scans in this index_merge is more expensive than entire
table read for another available option. The entire index_merge (and
any possible ROR-union) will be more expensive then, too. We continue
here only to update SQL_SELECT members.
*/
imerge_too_expensive = true;
}
if (imerge_too_expensive) {
trace_idx.add("chosen", false).add_alnum("cause", "cost");
continue;
}
if (!((*cur_child)->is_imerge)) {
trace_idx.add("chosen", false)
.add_alnum("cause", "index has DESC key part");
continue;
}
const uint keynr_in_table = param->real_keynr[(*cur_child)->key_idx];
imerge_cost += (*cur_child)->cost_est;
all_scans_ror_able &= ((*ptree)->n_ror_scans > 0);
all_scans_rors &= (*cur_child)->is_ror;
if (pk_is_clustered && keynr_in_table == param->table->s->primary_key) {
cpk_scan = cur_child;
cpk_scan_records = (*cur_child)->records;
} else
non_cpk_scan_records += (*cur_child)->records;
trace_idx
.add_utf8("index_to_merge", param->table->key_info[keynr_in_table].name)
.add("cumulated_cost", imerge_cost);
}
// Note: to_merge trace object is closed here
to_merge.end();
trace_best_disjunct.add("cost_of_reading_ranges", imerge_cost);
if (imerge_too_expensive || (((imerge_cost > read_cost) ||
((non_cpk_scan_records + cpk_scan_records >=
param->table->file->stats.records) &&
!read_cost.is_max_cost())) &&
!force_index_merge)) {
/*
Bail out if it is obvious that both index_merge and ROR-union will be
more expensive
*/
DBUG_PRINT("info", ("Sum of index_merge scans is more expensive than "
"full table scan, bailing out"));
trace_best_disjunct.add("chosen", false).add_alnum("cause", "cost");
return NULL;
}
/*
If all scans happen to be ROR, proceed to generate a ROR-union plan (it's
guaranteed to be cheaper than non-ROR union), unless ROR-unions are
disabled in @@optimizer_switch
*/
if (all_scans_rors &&
(param->index_merge_union_allowed || force_index_merge)) {
roru_read_plans = (TABLE_READ_PLAN **)range_scans;
trace_best_disjunct.add("use_roworder_union", true)
.add_alnum("cause", "always_cheaper_than_not_roworder_retrieval");
goto skip_to_ror_scan;
}
if (cpk_scan) {
/*
Add one rowid/key comparison for each row retrieved on non-CPK
scan. (it is done in QUICK_RANGE_SELECT::row_in_ranges)
*/
const double rid_comp_cost =
cost_model->key_compare_cost(static_cast<double>(non_cpk_scan_records));
imerge_cost.add_cpu(rid_comp_cost);
trace_best_disjunct.add("cost_of_mapping_rowid_in_non_clustered_pk_scan",
rid_comp_cost);
}
/* Calculate cost(rowid_to_row_scan) */
{
Cost_estimate sweep_cost;
JOIN *join = param->thd->lex->select_lex->join;
const bool is_interrupted = join && join->tables != 1;
get_sweep_read_cost(param->table, non_cpk_scan_records, is_interrupted,
&sweep_cost);
imerge_cost += sweep_cost;
trace_best_disjunct.add("cost_sort_rowid_and_read_disk", sweep_cost);
}
DBUG_PRINT("info", ("index_merge cost with rowid-to-row scan: %g",
imerge_cost.total_cost()));
if ((imerge_cost > read_cost || !param->index_merge_sort_union_allowed) &&
!force_index_merge) {
trace_best_disjunct.add("use_roworder_index_merge", true)
.add_alnum("cause", "cost");
goto build_ror_index_merge;
}
/* Add Unique operations cost */
unique_calc_buff_size = Unique::get_cost_calc_buff_size(
(ulong)non_cpk_scan_records, param->table->file->ref_length,
param->thd->variables.sortbuff_size);
if (param->imerge_cost_buff.size() < unique_calc_buff_size) {
typedef Unique::Imerge_cost_buf_type::value_type element_type;
void *rawmem =
param->mem_root->Alloc(unique_calc_buff_size * sizeof(element_type));
if (!rawmem) return NULL;
param->imerge_cost_buff = Unique::Imerge_cost_buf_type(
static_cast<element_type *>(rawmem), unique_calc_buff_size);
}
{
const double dup_removal_cost = Unique::get_use_cost(
param->imerge_cost_buff, (uint)non_cpk_scan_records,
param->table->file->ref_length, param->thd->variables.sortbuff_size,
cost_model);
trace_best_disjunct.add("cost_duplicate_removal", dup_removal_cost);
imerge_cost.add_cpu(dup_removal_cost);
trace_best_disjunct.add("total_cost", imerge_cost);
DBUG_PRINT("info", ("index_merge total cost: %g (wanted: less then %g)",
imerge_cost.total_cost(), read_cost.total_cost()));
}
if (imerge_cost < read_cost || force_index_merge) {
if ((imerge_trp =
new (param->mem_root) TRP_INDEX_MERGE(force_index_merge))) {
imerge_trp->cost_est = imerge_cost;
imerge_trp->records = non_cpk_scan_records + cpk_scan_records;
imerge_trp->records =
min(imerge_trp->records, param->table->file->stats.records);
imerge_trp->range_scans = range_scans;
imerge_trp->range_scans_end = range_scans + n_child_scans;
read_cost = imerge_cost;
}
}
build_ror_index_merge:
if (!all_scans_ror_able || param->thd->lex->sql_command == SQLCOM_DELETE ||
(!param->index_merge_union_allowed && !force_index_merge))
return imerge_trp;
/* Ok, it is possible to build a ROR-union, try it. */
if (!(roru_read_plans = (TABLE_READ_PLAN **)param->mem_root->Alloc(
sizeof(TABLE_READ_PLAN *) * n_child_scans)))
return imerge_trp;
skip_to_ror_scan:
Cost_estimate roru_index_cost;
roru_total_records = 0;
cur_roru_plan = roru_read_plans;
/*
Note: trace_analyze_ror.end() is called to close this object after
this for-loop.
*/
Opt_trace_array trace_analyze_ror(trace, "analyzing_roworder_scans");
/* Find 'best' ROR scan for each of trees in disjunction */
for (ptree = imerge->trees, cur_child = range_scans;
ptree != imerge->trees_next; ptree++, cur_child++, cur_roru_plan++) {
Opt_trace_object trp_info(trace);
if (unlikely(trace->is_started()))
(*cur_child)->trace_basic_info(param, &trp_info);
/*
Assume the best ROR scan is the one that has cheapest
full-row-retrieval scan cost.
Also accumulate index_only scan costs as we'll need them to
calculate overall index_intersection cost.
*/
Cost_estimate scan_cost;
if ((*cur_child)->is_ror) {
/* Ok, we have index_only cost, now get full rows scan cost */
scan_cost = param->table->file->read_cost(
param->real_keynr[(*cur_child)->key_idx], 1,
static_cast<double>((*cur_child)->records));
scan_cost.add_cpu(
cost_model->row_evaluate_cost(rows2double((*cur_child)->records)));
} else
scan_cost = read_cost;
TABLE_READ_PLAN *prev_plan = *cur_child;
if (!(*cur_roru_plan =
get_best_ror_intersect(param, *ptree, &scan_cost, false))) {
if (prev_plan->is_ror)
*cur_roru_plan = prev_plan;
else
return imerge_trp;
roru_index_cost += (*cur_roru_plan)->cost_est;
} else {
roru_index_cost +=
((TRP_ROR_INTERSECT *)(*cur_roru_plan))->index_scan_cost;
}
roru_total_records += (*cur_roru_plan)->records;
roru_intersect_part *=
(*cur_roru_plan)->records / param->table->file->stats.records;
}
// Note: trace_analyze_ror trace object is closed here
trace_analyze_ror.end();
/*
rows to retrieve=
SUM(rows_in_scan_i) - table_rows * PROD(rows_in_scan_i / table_rows).
This is valid because index_merge construction guarantees that conditions
in disjunction do not share key parts.
*/
roru_total_records -=
(ha_rows)(roru_intersect_part * param->table->file->stats.records);
/* ok, got a ROR read plan for each of the disjuncts
Calculate cost:
cost(index_union_scan(scan_1, ... scan_n)) =
SUM_i(cost_of_index_only_scan(scan_i)) +
queue_use_cost(rowid_len, n) +
cost_of_row_retrieval
See get_merge_buffers_cost function for queue_use_cost formula derivation.
*/
Cost_estimate roru_total_cost;
{
JOIN *join = param->thd->lex->select_lex->join;
const bool is_interrupted = join && join->tables != 1;
get_sweep_read_cost(param->table, roru_total_records, is_interrupted,
&roru_total_cost);
roru_total_cost += roru_index_cost;
roru_total_cost.add_cpu(cost_model->key_compare_cost(
rows2double(roru_total_records) * std::log2(n_child_scans)));
}
trace_best_disjunct.add("index_roworder_union_cost", roru_total_cost)
.add("members", n_child_scans);
TRP_ROR_UNION *roru;
if (roru_total_cost < read_cost || force_index_merge) {
if ((roru = new (param->mem_root) TRP_ROR_UNION(force_index_merge))) {
trace_best_disjunct.add("chosen", true);
roru->first_ror = roru_read_plans;
roru->last_ror = roru_read_plans + n_child_scans;
roru->cost_est = roru_total_cost;
roru->records = roru_total_records;
return roru;
}
}
trace_best_disjunct.add("chosen", false);
return imerge_trp;
}
/*
Create ROR_SCAN_INFO* structure with a single ROR scan on index idx using
sel_arg set of intervals.
SYNOPSIS
make_ror_scan()
param Parameter from test_quick_select function
idx Index of key in param->keys
sel_root Set of intervals for a given key
RETURN
NULL - out of memory
ROR scan structure containing a scan for {idx, sel_arg}
*/
static ROR_SCAN_INFO *make_ror_scan(const PARAM *param, int idx,
SEL_ROOT *sel_root) {
ROR_SCAN_INFO *ror_scan;
my_bitmap_map *bitmap_buf1;
my_bitmap_map *bitmap_buf2;
uint keynr;
DBUG_TRACE;
if (!(ror_scan =
(ROR_SCAN_INFO *)param->mem_root->Alloc(sizeof(ROR_SCAN_INFO))))
return NULL;
ror_scan->idx = idx;
ror_scan->keynr = keynr = param->real_keynr[idx];
ror_scan->sel_root = sel_root;
ror_scan->records = param->table->quick_rows[keynr];
if (!(bitmap_buf1 =
(my_bitmap_map *)param->mem_root->Alloc(param->fields_bitmap_size)))
return NULL;
if (!(bitmap_buf2 =
(my_bitmap_map *)param->mem_root->Alloc(param->fields_bitmap_size)))
return NULL;
if (bitmap_init(&ror_scan->covered_fields, bitmap_buf1,
param->table->s->fields, false))
return NULL;
if (bitmap_init(&ror_scan->covered_fields_remaining, bitmap_buf2,
param->table->s->fields, false))
return NULL;
bitmap_clear_all(&ror_scan->covered_fields);
KEY_PART_INFO *key_part = param->table->key_info[keynr].key_part;
KEY_PART_INFO *key_part_end =
key_part + param->table->key_info[keynr].user_defined_key_parts;
for (; key_part != key_part_end; ++key_part) {
if (bitmap_is_set(&param->needed_fields, key_part->fieldnr - 1))
bitmap_set_bit(&ror_scan->covered_fields, key_part->fieldnr - 1);
}
bitmap_copy(&ror_scan->covered_fields_remaining, &ror_scan->covered_fields);
double rows = rows2double(param->table->quick_rows[ror_scan->keynr]);
ror_scan->index_read_cost =
param->table->file->index_scan_cost(ror_scan->keynr, 1, rows);
return ror_scan;
}
/**
Compare two ROR_SCAN_INFO* by
1. Number of fields in this index that are not already covered
by other indexes earlier in the intersect ordering: descending
2. E(Number of records): ascending
@param scan1 first ror scan to compare
@param scan2 second ror scan to compare
@return true if scan1 > scan2, false otherwise
*/
static bool is_better_intersect_match(const ROR_SCAN_INFO *scan1,
const ROR_SCAN_INFO *scan2) {
if (scan1 == scan2) return false;
if (scan1->num_covered_fields_remaining > scan2->num_covered_fields_remaining)
return false;
if (scan1->num_covered_fields_remaining < scan2->num_covered_fields_remaining)
return true;
return (scan1->records > scan2->records);
}
/**
Sort indexes in an order that is likely to be a good index merge
intersection order. After running this function, [start, ..., end-1]
is ordered according to this strategy:
1) Minimize the number of indexes that must be used in the
intersection. I.e., the index covering most fields not already
covered by other indexes earlier in the sort order is picked first.
2) When multiple indexes cover equally many uncovered fields, the
index with lowest E(Number of rows) is chosen.
Note that all permutations of index ordering are not tested, so this
function may not find the optimal order.
@param[in,out] start Pointer to the start of indexes that may
be used in index merge intersection
@param end Pointer past the last index that may be used.
@param param Parameter from test_quick_select function.
*/
static void find_intersect_order(ROR_SCAN_INFO **start, ROR_SCAN_INFO **end,
const PARAM *param) {
// nothing to sort if there are only zero or one ROR scans
if ((start == end) || (start + 1 == end)) return;
/*
Bitmap of fields we would like the ROR scans to cover. Will be
modified by the loop below so that when we're looking for a ROR
scan in position 'x' in the ordering, all fields covered by ROR
scans 0,...,x-1 have been removed.
*/
MY_BITMAP fields_to_cover;
my_bitmap_map *map;
if (!(map =
(my_bitmap_map *)param->mem_root->Alloc(param->fields_bitmap_size)))
return;
bitmap_init(&fields_to_cover, map, param->needed_fields.n_bits, false);
bitmap_copy(&fields_to_cover, &param->needed_fields);
// Sort ROR scans in [start,...,end-1]
for (ROR_SCAN_INFO **place = start; place < (end - 1); place++) {
/* Placeholder for the best ROR scan found for position 'place' so far */
ROR_SCAN_INFO **best = place;
ROR_SCAN_INFO **current = place + 1;
{
/*
Calculate how many fields in 'fields_to_cover' not already
covered by [start,...,place-1] the 'best' index covers. The
result is used in is_better_intersect_match() and is valid
when finding the best ROR scan for position 'place' only.
*/
bitmap_intersect(&(*best)->covered_fields_remaining, &fields_to_cover);
(*best)->num_covered_fields_remaining =
bitmap_bits_set(&(*best)->covered_fields_remaining);
}
for (; current < end; current++) {
{
/*
Calculate how many fields in 'fields_to_cover' not already
covered by [start,...,place-1] the 'current' index covers.
The result is used in is_better_intersect_match() and is
valid when finding the best ROR scan for position 'place' only.
*/
bitmap_intersect(&(*current)->covered_fields_remaining,
&fields_to_cover);
(*current)->num_covered_fields_remaining =
bitmap_bits_set(&(*current)->covered_fields_remaining);
/*
No need to compare with 'best' if 'current' does not
contribute with uncovered fields.
*/
if ((*current)->num_covered_fields_remaining == 0) continue;
}
if (is_better_intersect_match(*best, *current)) best = current;
}
/*
'best' is now the ROR scan that will be sorted in position
'place'. When searching for the best ROR scans later in the sort
sequence we do not need coverage of the fields covered by 'best'
*/
bitmap_subtract(&fields_to_cover, &(*best)->covered_fields);
if (best != place) std::swap(*best, *place);
if (bitmap_is_clear_all(&fields_to_cover))
return; // No more fields to cover
}
}
/* Auxiliary structure for incremental ROR-intersection creation */
typedef struct {
const PARAM *param;
MY_BITMAP covered_fields; /* union of fields covered by all scans */
/*
Fraction of table records that satisfies conditions of all scans.
This is the number of full records that will be retrieved if a
non-index_only index intersection will be employed.
*/
double out_rows;
/* true if covered_fields is a superset of needed_fields */
bool is_covering;
ha_rows index_records; /* sum(#records to look in indexes) */
Cost_estimate index_scan_cost; /* SUM(cost of 'index-only' scans) */
Cost_estimate total_cost;
} ROR_INTERSECT_INFO;
/*
Allocate a ROR_INTERSECT_INFO and initialize it to contain zero scans.
SYNOPSIS
ror_intersect_init()
param Parameter from test_quick_select
RETURN
allocated structure
NULL on error
*/
static ROR_INTERSECT_INFO *ror_intersect_init(const PARAM *param) {
ROR_INTERSECT_INFO *info;
my_bitmap_map *buf;
if (!(info = (ROR_INTERSECT_INFO *)param->mem_root->Alloc(
sizeof(ROR_INTERSECT_INFO))))
return NULL;
info->param = param;
if (!(buf =
(my_bitmap_map *)param->mem_root->Alloc(param->fields_bitmap_size)))
return NULL;
if (bitmap_init(&info->covered_fields, buf, param->table->s->fields, false))
return NULL;
info->is_covering = false;
info->index_scan_cost.reset();
info->total_cost.reset();
info->index_records = 0;
info->out_rows = (double)param->table->file->stats.records;
bitmap_clear_all(&info->covered_fields);
return info;
}
static void ror_intersect_cpy(ROR_INTERSECT_INFO *dst,
const ROR_INTERSECT_INFO *src) {
dst->param = src->param;
memcpy(dst->covered_fields.bitmap, src->covered_fields.bitmap,
no_bytes_in_map(&src->covered_fields));
dst->out_rows = src->out_rows;
dst->is_covering = src->is_covering;
dst->index_records = src->index_records;
dst->index_scan_cost = src->index_scan_cost;
dst->total_cost = src->total_cost;
}
/*
Get selectivity of adding a ROR scan to the ROR-intersection.
SYNOPSIS
ror_scan_selectivity()
info ROR-interection, an intersection of ROR index scans
scan ROR scan that may or may not improve the selectivity
of 'info'
NOTES
Suppose we have conditions on several keys
cond=k_11=c_11 AND k_12=c_12 AND ... // key_parts of first key in 'info'
k_21=c_21 AND k_22=c_22 AND ... // key_parts of second key in 'info'
...
k_n1=c_n1 AND k_n3=c_n3 AND ... (1) //key_parts of 'scan'
where k_ij may be the same as any k_pq (i.e. keys may have common parts).
Note that for ROR retrieval, only equality conditions are usable so there
are no open ranges (e.g., k_ij > c_ij) in 'scan' or 'info'.
FIXME: This isn't true in practice; e.g. i_main.costmodel_planchange ends
up calling this function with an inequality condition, and thus the
estimation is probably wrong (since the code assumes only one element in the
tree).
A full row is retrieved if entire condition holds.
The recursive procedure for finding P(cond) is as follows:
First step:
Pick 1st part of 1st key and break conjunction (1) into two parts:
cond= (k_11=c_11 AND R)
Here R may still contain condition(s) equivalent to k_11=c_11.
Nevertheless, the following holds:
P(k_11=c_11 AND R) = P(k_11=c_11) * P(R | k_11=c_11).
Mark k_11 as fixed field (and satisfied condition) F, save P(F),
save R to be cond and proceed to recursion step.
Recursion step:
We have a set of fixed fields/satisfied conditions) F, probability P(F),
and remaining conjunction R
Pick next key part on current key and its condition "k_ij=c_ij".
We will add "k_ij=c_ij" into F and update P(F).
Lets denote k_ij as t, R = t AND R1, where R1 may still contain t. Then
P((t AND R1)|F) = P(t|F) * P(R1|t|F) = P(t|F) * P(R1|(t AND F)) (2)
(where '|' mean conditional probability, not "or")
Consider the first multiplier in (2). One of the following holds:
a) F contains condition on field used in t (i.e. t AND F = F).
Then P(t|F) = 1
b) F doesn't contain condition on field used in t. Then F and t are
considered independent.
P(t|F) = P(t|(fields_before_t_in_key AND other_fields)) =
= P(t|fields_before_t_in_key).
P(t|fields_before_t_in_key) = #records(fields_before_t_in_key) /
#records(fields_before_t_in_key, t)
The second multiplier is calculated by applying this step recursively.
IMPLEMENTATION
This function calculates the result of application of the "recursion step"
described above for all fixed key members of a single key, accumulating set
of covered fields, selectivity, etc.
The calculation is conducted as follows:
Lets denote #records(keypart1, ... keypartK) as n_k. We need to calculate
n_{k1} n_{k2}
--------- * --------- * .... (3)
n_{k1-1} n_{k2-1}
where k1,k2,... are key parts which fields were not yet marked as fixed
( this is result of application of option b) of the recursion step for
parts of a single key).
Since it is reasonable to expect that most of the fields are not marked
as fixed, we calculate (3) as
n_{i1} n_{i2}
(3) = n_{max_key_part} / ( --------- * --------- * .... )
n_{i1-1} n_{i2-1}
where i1,i2, .. are key parts that were already marked as fixed.
In order to minimize number of expensive records_in_range calls we
group and reduce adjacent fractions. Note that on the optimizer's
request, index statistics may be used instead of records_in_range
@see RANGE_OPT_PARAM::use_index_statistics.
RETURN
Selectivity of given ROR scan, a number between 0 and 1. 1 means that
adding 'scan' to the intersection does not improve the selectivity.
*/
static double ror_scan_selectivity(const ROR_INTERSECT_INFO *info,
const ROR_SCAN_INFO *scan) {
double selectivity_mult = 1.0;
const TABLE *const table = info->param->table;
const KEY_PART_INFO *const key_part = table->key_info[scan->keynr].key_part;
/**
key values tuple, used to store both min_range.key and
max_range.key. This function is only called for equality ranges;
open ranges (e.g. "min_value < X < max_value") cannot be used for
rowid ordered retrieval, so in this function we know that
min_range.key == max_range.key
*/
uchar key_val[MAX_KEY_LENGTH + MAX_FIELD_WIDTH];
uchar *key_ptr = key_val;
SEL_ARG *tuple_arg = NULL;
key_part_map keypart_map = 0;
bool cur_covered;
bool prev_covered =
bitmap_is_set(&info->covered_fields, key_part->fieldnr - 1);
key_range min_range;
key_range max_range;
min_range.key = key_val;
min_range.flag = HA_READ_KEY_EXACT;
max_range.key = key_val;
max_range.flag = HA_READ_AFTER_KEY;
ha_rows prev_records = table->file->stats.records;
DBUG_TRACE;
for (SEL_ROOT *sel_root = scan->sel_root; sel_root;
sel_root = sel_root->root->next_key_part) {
DBUG_PRINT("info", ("sel_root step"));
cur_covered = bitmap_is_set(&info->covered_fields,
key_part[sel_root->root->part].fieldnr - 1);
if (cur_covered != prev_covered) {
/* create (part1val, ..., part{n-1}val) tuple. */
bool is_null_range = false;
ha_rows records;
if (!tuple_arg) {
tuple_arg = scan->sel_root->root;
/* Here we use the length of the first key part */
tuple_arg->store_min_value(key_part[0].store_length, &key_ptr, 0);
is_null_range |= tuple_arg->is_null_interval();
keypart_map = 1;
}
while (tuple_arg->next_key_part != sel_root) {
tuple_arg = tuple_arg->next_key_part->root;
tuple_arg->store_min_value(key_part[tuple_arg->part].store_length,
&key_ptr, 0);
is_null_range |= tuple_arg->is_null_interval();
keypart_map = (keypart_map << 1) | 1;
}
min_range.length = max_range.length = (size_t)(key_ptr - key_val);
min_range.keypart_map = max_range.keypart_map = keypart_map;
/*
Get the number of rows in this range. This is done by calling
records_in_range() unless all these are true:
1) The user has requested that index statistics should be used
for equality ranges to avoid the incurred overhead of
index dives in records_in_range()
2) The range is not on the form "x IS NULL". The reason is
that the number of rows with this value are likely to be
very different than the values in the index statistics
3) Index statistics is available.
@see key_val
*/
if (!info->param->use_index_statistics || // (1)
is_null_range || // (2)
!table->key_info[scan->keynr].has_records_per_key(
tuple_arg->part)) // (3)
{
DBUG_EXECUTE_IF("crash_records_in_range", DBUG_SUICIDE(););
DBUG_ASSERT(min_range.length > 0);
records =
table->file->records_in_range(scan->keynr, &min_range, &max_range);
} else {
// Use index statistics
records = static_cast<ha_rows>(
table->key_info[scan->keynr].records_per_key(tuple_arg->part));
}
if (cur_covered) {
/* uncovered -> covered */
double tmp = rows2double(records) / rows2double(prev_records);
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
selectivity_mult *= tmp;
prev_records = HA_POS_ERROR;
} else {
/* covered -> uncovered */
prev_records = records;
}
}
prev_covered = cur_covered;
}
if (!prev_covered) {
double tmp =
rows2double(table->quick_rows[scan->keynr]) / rows2double(prev_records);
DBUG_PRINT("info", ("Selectivity multiplier: %g", tmp));
selectivity_mult *= tmp;
}
// Todo: This assert fires in PB sysqa RQG tests.
// DBUG_ASSERT(selectivity_mult <= 1.0);
DBUG_PRINT("info", ("Returning multiplier: %g", selectivity_mult));
return selectivity_mult;
}
/*
Check if adding a ROR scan to a ROR-intersection reduces its cost of
ROR-intersection and if yes, update parameters of ROR-intersection,
including its cost.
SYNOPSIS
ror_intersect_add()
param Parameter from test_quick_select
info ROR-intersection structure to add the scan to.
ror_scan ROR scan info to add.
is_cpk_scan If true, add the scan as CPK scan (this can be inferred
from other parameters and is passed separately only to
avoid duplicating the inference code)
trace_costs Optimizer trace object cost details are added to
ignore_cost Ignore cost check due to use of INDEX_MERGE hint
NOTES
Adding a ROR scan to ROR-intersect "makes sense" iff the cost of ROR-
intersection decreases. The cost of ROR-intersection is calculated as
follows:
cost= SUM_i(key_scan_cost_i) + cost_of_full_rows_retrieval
When we add a scan the first increases and the second decreases.
cost_of_full_rows_retrieval=
(union of indexes used covers all needed fields) ?
cost_of_sweep_read(E(rows_to_retrieve), rows_in_table) :
0
E(rows_to_retrieve) = #rows_in_table * ror_scan_selectivity(null, scan1) *
ror_scan_selectivity({scan1}, scan2) * ... *
ror_scan_selectivity({scan1,...}, scanN).
RETURN
true ROR scan added to ROR-intersection, cost updated.
false It doesn't make sense to add this ROR scan to this ROR-intersection.
*/
static bool ror_intersect_add(ROR_INTERSECT_INFO *info, ROR_SCAN_INFO *ror_scan,
bool is_cpk_scan, Opt_trace_object *trace_costs,
bool ignore_cost) {
double selectivity_mult = 1.0;
DBUG_TRACE;
DBUG_PRINT("info", ("Current out_rows= %g", info->out_rows));
DBUG_PRINT("info", ("Adding scan on %s",
info->param->table->key_info[ror_scan->keynr].name));
DBUG_PRINT("info", ("is_cpk_scan: %d", is_cpk_scan));
selectivity_mult = ror_scan_selectivity(info, ror_scan);
if (selectivity_mult == 1.0 && !ignore_cost) {
/* Don't add this scan if it doesn't improve selectivity. */
DBUG_PRINT("info", ("The scan doesn't improve selectivity."));
return false;
}
info->out_rows *= selectivity_mult;
if (is_cpk_scan) {
/*
CPK scan is used to filter out rows. We apply filtering for each
record of every scan. For each record we assume that one key
compare is done:
*/
const Cost_model_table *const cost_model = info->param->table->cost_model();
const double idx_cost =
cost_model->key_compare_cost(rows2double(info->index_records));
info->index_scan_cost.add_cpu(idx_cost);
trace_costs->add("index_scan_cost", idx_cost);
} else {
info->index_records += info->param->table->quick_rows[ror_scan->keynr];
info->index_scan_cost += ror_scan->index_read_cost;
trace_costs->add("index_scan_cost", ror_scan->index_read_cost);
bitmap_union(&info->covered_fields, &ror_scan->covered_fields);
if (!info->is_covering &&
bitmap_is_subset(&info->param->needed_fields, &info->covered_fields)) {
DBUG_PRINT("info", ("ROR-intersect is covering now"));
info->is_covering = true;
}
}
info->total_cost = info->index_scan_cost;
trace_costs->add("cumulated_index_scan_cost", info->index_scan_cost);
if (!info->is_covering) {
Cost_estimate sweep_cost;
JOIN *join = info->param->thd->lex->select_lex->join;
const bool is_interrupted = join && join->tables != 1;
get_sweep_read_cost(info->param->table, double2rows(info->out_rows),
is_interrupted, &sweep_cost);
info->total_cost += sweep_cost;
trace_costs->add("disk_sweep_cost", sweep_cost);
} else
trace_costs->add("disk_sweep_cost", 0);
DBUG_PRINT("info", ("New out_rows: %g", info->out_rows));
DBUG_PRINT("info", ("New cost: %g, %scovering", info->total_cost.total_cost(),
info->is_covering ? "" : "non-"));
return true;
}
/*
Get best ROR-intersection plan using non-covering ROR-intersection search
algorithm. The returned plan may be covering.
SYNOPSIS
get_best_ror_intersect()
param Parameter from test_quick_select function.
tree Transformed restriction condition to be used to look
for ROR scans.
cost_est Do not return read plans with cost > cost_est.
are_all_covering [out] set to true if union of all scans covers all
fields needed by the query (and it is possible to build
a covering ROR-intersection)
force_index_merge_result true if the function must return cheapest
intersection object when INDEX_MERGE hint is
used without specified indexes, false otherwise.
NOTES
get_key_scans_params must be called before this function can be called.
When this function is called by ROR-union construction algorithm it
assumes it is building an uncovered ROR-intersection (and thus # of full
records to be retrieved is wrong here). This is a hack.
IMPLEMENTATION
The approximate best non-covering plan search algorithm is as follows:
find_min_ror_intersection_scan()
{
R= select all ROR scans;
order R by (E(#records_matched) * key_record_length).
S= first(R); -- set of scans that will be used for ROR-intersection
R= R-first(S);
min_cost= cost(S);
min_scan= make_scan(S);
while (R is not empty)
{
firstR= R - first(R);
if (!selectivity(S + firstR < selectivity(S)))
continue;
S= S + first(R);
if (cost(S) < min_cost)
{
min_cost= cost(S);
min_scan= make_scan(S);
}
}
return min_scan;
}
See ror_intersect_add function for ROR intersection costs.
Special handling for Clustered PK scans
Clustered PK contains all table fields, so using it as a regular scan in
index intersection doesn't make sense: a range scan on CPK will be less
expensive in this case.
Clustered PK scan has special handling in ROR-intersection: it is not used
to retrieve rows, instead its condition is used to filter row references
we get from scans on other keys.
RETURN
ROR-intersection table read plan
NULL if out of memory or no suitable plan found.
*/
static TRP_ROR_INTERSECT *get_best_ror_intersect(
const PARAM *param, SEL_TREE *tree, const Cost_estimate *cost_est,
bool force_index_merge_result) {
uint idx;
Cost_estimate min_cost;
Opt_trace_context *const trace = &param->thd->opt_trace;
DBUG_TRACE;
bool use_cheapest_index_merge = false;
bool force_index_merge =
idx_merge_hint_state(param->table, &use_cheapest_index_merge);
Opt_trace_object trace_ror(trace, "analyzing_roworder_intersect");
min_cost.set_max_cost();
if (tree->n_ror_scans < 2 || ((!param->table->file->stats.records ||
!param->index_merge_intersect_allowed) &&
!force_index_merge)) {
trace_ror.add("usable", false);
if (tree->n_ror_scans < 2)
trace_ror.add_alnum("cause", "too_few_roworder_scans");
else
trace_ror.add("need_tracing", true);
return NULL;
}
if (param->order_direction == ORDER_DESC) return NULL;
/*
Step1: Collect ROR-able SEL_ARGs and create ROR_SCAN_INFO for each of
them. Also find and save clustered PK scan if there is one.
*/
ROR_SCAN_INFO **cur_ror_scan;
ROR_SCAN_INFO *cpk_scan = NULL;
uint cpk_no;
bool cpk_scan_used = false;
if (!(tree->ror_scans = (ROR_SCAN_INFO **)param->mem_root->Alloc(
sizeof(ROR_SCAN_INFO *) * param->keys)))
return NULL;
cpk_no = ((param->table->file->primary_key_is_clustered())
? param->table->s->primary_key
: MAX_KEY);
for (idx = 0, cur_ror_scan = tree->ror_scans; idx < param->keys; idx++) {
ROR_SCAN_INFO *scan;
if (!tree->ror_scans_map.is_set(idx)) continue;
if (!(scan = make_ror_scan(param, idx, tree->keys[idx]))) return NULL;
if (param->real_keynr[idx] == cpk_no) {
cpk_scan = scan;
tree->n_ror_scans--;
} else
*(cur_ror_scan++) = scan;
}
tree->ror_scans_end = cur_ror_scan;
DBUG_EXECUTE("info",
print_ror_scans_arr(param->table, "original", tree->ror_scans,
tree->ror_scans_end););
/*
Ok, [ror_scans, ror_scans_end) is array of ptrs to initialized
ROR_SCAN_INFO's.
Step 2: Get best ROR-intersection using an approximate algorithm.
*/
find_intersect_order(tree->ror_scans, tree->ror_scans_end, param);
DBUG_EXECUTE("info",
print_ror_scans_arr(param->table, "ordered", tree->ror_scans,
tree->ror_scans_end););
ROR_SCAN_INFO **intersect_scans; /* ROR scans used in index intersection */
ROR_SCAN_INFO **intersect_scans_end;
if (!(intersect_scans = (ROR_SCAN_INFO **)param->mem_root->Alloc(
sizeof(ROR_SCAN_INFO *) * tree->n_ror_scans)))
return NULL;
intersect_scans_end = intersect_scans;
/* Create and incrementally update ROR intersection. */
ROR_INTERSECT_INFO *intersect, *intersect_best = nullptr;
if (!(intersect = ror_intersect_init(param)) ||
!(intersect_best = ror_intersect_init(param)))
return NULL;
/* [intersect_scans,intersect_scans_best) will hold the best intersection */
ROR_SCAN_INFO **intersect_scans_best;
cur_ror_scan = tree->ror_scans;
intersect_scans_best = intersect_scans;
/*
Note: trace_isect_idx.end() is called to close this object after
this while-loop.
*/
Opt_trace_array trace_isect_idx(trace, "intersecting_indexes");
while (cur_ror_scan != tree->ror_scans_end && !intersect->is_covering) {
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index",
param->table->key_info[(*cur_ror_scan)->keynr].name);
if (!compound_hint_key_enabled(param->table, (*cur_ror_scan)->keynr,
INDEX_MERGE_HINT_ENUM)) {
trace_idx.add("usable", false).add_alnum("cause", "index_merge_hint");
cur_ror_scan++;
continue;
}
/* S= S + first(R); R= R - first(R); */
if (!ror_intersect_add(intersect, *cur_ror_scan, false, &trace_idx,
force_index_merge && !use_cheapest_index_merge)) {
trace_idx.add("cumulated_total_cost", intersect->total_cost)
.add("usable", false)
.add_alnum("cause", "does_not_reduce_cost_of_intersect");
cur_ror_scan++;
continue;
}
trace_idx.add("cumulated_total_cost", intersect->total_cost)
.add("usable", true)
.add("matching_rows_now", intersect->out_rows)
.add("isect_covering_with_this_index", intersect->is_covering);
*(intersect_scans_end++) = *(cur_ror_scan++);
if (intersect->total_cost < min_cost ||
(force_index_merge &&
/*
If INDEX_MERGE hint is used without only specified index,
index merge is forced and the cheapest combination of indexes
will be chosen. Since ranges are sorted by index scan cost,
index merge is forced for first two ranges and next ranges are
added only if they reduce total cost and there is no clustered
primary key scan or intersection is covering. If there is
a range by clustered primary key and intersection is not covering,
combination of first index and primary key is considered as
a cheapest intersection.
*/
((intersect_scans_best - intersect_scans < 2 &&
force_index_merge_result && (!cpk_scan || intersect->is_covering)) ||
!use_cheapest_index_merge))) {
/* Local minimum found, save it */
ror_intersect_cpy(intersect_best, intersect);
intersect_scans_best = intersect_scans_end;
min_cost = intersect->total_cost;
trace_idx.add("chosen", true);
} else {
trace_idx.add("chosen", false).add_alnum("cause", "does_not_reduce_cost");
}
}
// Note: trace_isect_idx trace object is closed here
trace_isect_idx.end();
if (intersect_scans_best == intersect_scans) {
trace_ror.add("chosen", false)
.add_alnum("cause", "does_not_increase_selectivity");
DBUG_PRINT("info", ("None of scans increase selectivity"));
return NULL;
}
DBUG_EXECUTE("info",
print_ror_scans_arr(param->table, "best ROR-intersection",
intersect_scans, intersect_scans_best););
uint best_num = intersect_scans_best - intersect_scans;
ror_intersect_cpy(intersect, intersect_best);
/*
Ok, found the best ROR-intersection of non-CPK key scans.
Check if we should add a CPK scan. If the obtained ROR-intersection is
covering, it doesn't make sense to add CPK scan.
*/
{ // Scope for trace object
Opt_trace_object trace_cpk(trace, "clustered_pk");
if (cpk_scan && !intersect->is_covering &&
compound_hint_key_enabled(param->table, cpk_no,
INDEX_MERGE_HINT_ENUM)) {
if (ror_intersect_add(intersect, cpk_scan, true, &trace_cpk, true) &&
((intersect->total_cost < min_cost) ||
(force_index_merge &&
(!use_cheapest_index_merge ||
(best_num == 1 && force_index_merge_result))))) {
trace_cpk.add("clustered_pk_scan_added_to_intersect", true)
.add("cumulated_cost", intersect->total_cost);
cpk_scan_used = true;
intersect_best = intersect; // just set pointer here
} else
trace_cpk.add("clustered_pk_added_to_intersect", false)
.add_alnum("cause", "cost");
} else {
trace_cpk.add("clustered_pk_added_to_intersect", false)
.add_alnum("cause", cpk_scan ? "roworder_is_covering"
: "no_clustered_pk_index");
}
}
/* Ok, return ROR-intersect plan if we have found one */
TRP_ROR_INTERSECT *trp = NULL;
if ((min_cost < *cost_est || force_index_merge) &&
(cpk_scan_used || best_num > 1)) {
if (!(trp = new (param->mem_root) TRP_ROR_INTERSECT(force_index_merge)))
return trp;
if (!(trp->first_scan = (ROR_SCAN_INFO **)param->mem_root->Alloc(
sizeof(ROR_SCAN_INFO *) * best_num)))
return NULL;
memcpy(trp->first_scan, intersect_scans,
best_num * sizeof(ROR_SCAN_INFO *));
trp->last_scan = trp->first_scan + best_num;
trp->is_covering = intersect_best->is_covering;
trp->cost_est = intersect_best->total_cost;
/* Prevent divisons by zero */
ha_rows best_rows = double2rows(intersect_best->out_rows);
if (!best_rows) best_rows = 1;
set_if_smaller(param->table->quick_condition_rows, best_rows);
trp->records = best_rows;
trp->index_scan_cost = intersect_best->index_scan_cost;
trp->cpk_scan = cpk_scan_used ? cpk_scan : NULL;
trace_ror.add("rows", trp->records)
.add("cost", trp->cost_est)
.add("covering", trp->is_covering)
.add("chosen", true);
DBUG_PRINT("info", ("Returning non-covering ROR-intersect plan:"
"cost %g, records %lu",
trp->cost_est.total_cost(), (ulong)trp->records));
} else {
trace_ror.add("chosen", false)
.add_alnum("cause", (*cost_est > min_cost) ? "too_few_indexes_to_merge"
: "cost");
}
return trp;
}
/*
Get best "range" table read plan for given SEL_TREE, also update some info
SYNOPSIS
get_key_scans_params()
param Parameters from test_quick_select
tree Make range select for this SEL_TREE
index_read_must_be_used true <=> assume 'index only' option will be set
(except for clustered PK indexes)
update_tbl_stats true <=> update table->quick_* with information
about range scans we've evaluated.
cost_est Maximum cost. i.e. don't create read plans with
cost > cost_est.
DESCRIPTION
Find the best "range" table read plan for given SEL_TREE.
The side effects are
- tree->ror_scans is updated to indicate which scans are ROR scans.
- if update_tbl_stats=true then table->quick_* is updated with info
about every possible range scan.
RETURN
Best range read plan
NULL if no plan found or error occurred
*/
static TRP_RANGE *get_key_scans_params(PARAM *param, SEL_TREE *tree,
bool index_read_must_be_used,
bool update_tbl_stats,
const Cost_estimate *cost_est) {
uint idx, best_idx = 0;
SEL_ROOT *key, *key_to_read = NULL;
ha_rows best_records = 0; /* protected by key_to_read */
uint best_mrr_flags = 0, best_buf_size = 0;
TRP_RANGE *read_plan = NULL;
Cost_estimate read_cost = *cost_est;
DBUG_TRACE;
Opt_trace_context *const trace = &param->thd->opt_trace;
/*
Note that there may be trees that have type SEL_TREE::KEY but contain no
key reads at all, e.g. tree for expression "key1 is not null" where key1
is defined as "not null".
*/
DBUG_EXECUTE("info",
print_sel_tree(param, tree, &tree->keys_map, "tree scans"););
Opt_trace_array ota(trace, "range_scan_alternatives");
tree->ror_scans_map.clear_all();
tree->n_ror_scans = 0;
bool is_best_idx_imerge_scan = true;
bool use_cheapest_index_merge = false;
bool force_index_merge =
idx_merge_hint_state(param->table, &use_cheapest_index_merge);
for (idx = 0; idx < param->keys; idx++) {
key = tree->keys[idx];
if (key) {
ha_rows found_records;
Cost_estimate cost;
uint mrr_flags = 0, buf_size = 0;
uint keynr = param->real_keynr[idx];
if (key->type == SEL_ROOT::Type::MAYBE_KEY || key->root->maybe_flag)
param->needed_reg->set_bit(keynr);
bool read_index_only =
index_read_must_be_used
? true
: (bool)param->table->covering_keys.is_set(keynr);
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index", param->table->key_info[keynr].name);
found_records =
check_quick_select(param, idx, read_index_only, key, update_tbl_stats,
&mrr_flags, &buf_size, &cost);
if (!compound_hint_key_enabled(param->table, keynr,
INDEX_MERGE_HINT_ENUM)) {
trace_idx.add("chosen", false).add_alnum("cause", "index_merge_hint");
continue;
}
// check_quick_select() says don't use range if it returns HA_POS_ERROR
if (found_records != HA_POS_ERROR && param->thd->opt_trace.is_started()) {
Opt_trace_array trace_range(&param->thd->opt_trace, "ranges");
const KEY &cur_key = param->table->key_info[keynr];
const KEY_PART_INFO *key_part = cur_key.key_part;
String range_info;
range_info.set_charset(system_charset_info);
append_range_all_keyparts(&trace_range, NULL, &range_info, key,
key_part, false);
trace_range.end(); // NOTE: ends the tracing scope
/// No cost calculation when index dive is skipped.
if (param->skip_records_in_range)
trace_idx.add_alnum("index_dives_for_range_access",
"skipped_due_to_force_index");
else
trace_idx.add("index_dives_for_eq_ranges",
!param->use_index_statistics);
trace_idx.add("rowid_ordered", param->is_ror_scan)
.add("using_mrr", !(mrr_flags & HA_MRR_USE_DEFAULT_IMPL))
.add("index_only", read_index_only);
if (param->skip_records_in_range) {
trace_idx.add_alnum("rows", "not applicable")
.add_alnum("cost", "not applicable");
} else {
trace_idx.add("rows", found_records).add("cost", cost);
}
}
if ((found_records != HA_POS_ERROR) && param->is_ror_scan) {
tree->n_ror_scans++;
tree->ror_scans_map.set_bit(idx);
}
if (found_records != HA_POS_ERROR &&
(read_cost > cost ||
/*
Ignore cost check if INDEX_MERGE hint is used with
explicitly specified indexes or if INDEX_MERGE hint
is used without any specified indexes and no best
index is chosen yet.
*/
(force_index_merge &&
(!use_cheapest_index_merge || !key_to_read)))) {
trace_idx.add("chosen", true);
read_cost = cost;
best_records = found_records;
key_to_read = key;
best_idx = idx;
best_mrr_flags = mrr_flags;
best_buf_size = buf_size;
is_best_idx_imerge_scan = param->is_imerge_scan;
} else {
trace_idx.add("chosen", false);
if (found_records == HA_POS_ERROR)
if (key->type == SEL_ROOT::Type::MAYBE_KEY)
trace_idx.add_alnum("cause", "depends_on_unread_values");
else
trace_idx.add_alnum("cause", "no_valid_range_for_this_index");
else
trace_idx.add_alnum("cause", "cost");
}
}
}
DBUG_EXECUTE("info",
print_sel_tree(param, tree, &tree->ror_scans_map, "ROR scans"););
if (key_to_read) {
if ((read_plan = new (param->mem_root)
TRP_RANGE(key_to_read, best_idx, best_mrr_flags))) {
read_plan->records = best_records;
read_plan->is_ror = tree->ror_scans_map.is_set(best_idx);
read_plan->is_imerge = is_best_idx_imerge_scan;
read_plan->cost_est = read_cost;
read_plan->mrr_buf_size = best_buf_size;
DBUG_PRINT("info",
("Returning range plan for key %s, cost %g, records %lu",
param->table->key_info[param->real_keynr[best_idx]].name,
read_plan->cost_est.total_cost(), (ulong)read_plan->records));
}
} else
DBUG_PRINT("info", ("No 'range' table read plan found"));
return read_plan;
}
QUICK_SELECT_I *TRP_INDEX_MERGE::make_quick(PARAM *param, bool, MEM_ROOT *) {
QUICK_INDEX_MERGE_SELECT *quick_imerge;
QUICK_RANGE_SELECT *quick;
/* index_merge always retrieves full rows, ignore retrieve_full_rows */
if (!(quick_imerge = new QUICK_INDEX_MERGE_SELECT(param->thd, param->table)))
return NULL;
quick_imerge->records = records;
quick_imerge->cost_est = cost_est;
for (TRP_RANGE **range_scan = range_scans; range_scan != range_scans_end;
range_scan++) {
if (!(quick =
(QUICK_RANGE_SELECT *)((*range_scan)
->make_quick(param, false,
&quick_imerge->alloc))) ||
quick_imerge->push_quick_back(quick)) {
delete quick;
delete quick_imerge;
return NULL;
}
}
quick_imerge->forced_by_hint = forced_by_hint;
return quick_imerge;
}
QUICK_SELECT_I *TRP_ROR_INTERSECT::make_quick(PARAM *param,
bool retrieve_full_rows,
MEM_ROOT *parent_alloc) {
QUICK_ROR_INTERSECT_SELECT *quick_intrsect;
QUICK_RANGE_SELECT *quick;
DBUG_TRACE;
MEM_ROOT *alloc;
if ((quick_intrsect = new QUICK_ROR_INTERSECT_SELECT(
param->thd, param->table,
(retrieve_full_rows ? (!is_covering) : false), parent_alloc))) {
DBUG_EXECUTE("info",
print_ror_scans_arr(param->table, "creating ROR-intersect",
first_scan, last_scan););
alloc = parent_alloc ? parent_alloc : &quick_intrsect->alloc;
for (ROR_SCAN_INFO **current = first_scan; current != last_scan;
current++) {
if (!(quick =
get_quick_select(param, (*current)->idx, (*current)->sel_root,
HA_MRR_SORTED, 0, alloc)) ||
quick_intrsect->push_quick_back(quick)) {
delete quick_intrsect;
return NULL;
}
}
if (cpk_scan) {
if (!(quick = get_quick_select(param, cpk_scan->idx, cpk_scan->sel_root,
HA_MRR_SORTED, 0, alloc))) {
delete quick_intrsect;
return NULL;
}
quick->file = NULL;
quick_intrsect->cpk_quick = quick;
}
quick_intrsect->records = records;
quick_intrsect->cost_est = cost_est;
}
quick_intrsect->forced_by_hint = forced_by_hint;
return quick_intrsect;
}
QUICK_SELECT_I *TRP_ROR_UNION::make_quick(PARAM *param, bool, MEM_ROOT *) {
QUICK_ROR_UNION_SELECT *quick_roru;
TABLE_READ_PLAN **scan;
QUICK_SELECT_I *quick;
DBUG_TRACE;
/*
It is impossible to construct a ROR-union that will not retrieve full
rows, ignore retrieve_full_rows parameter.
*/
if ((quick_roru = new QUICK_ROR_UNION_SELECT(param->thd, param->table))) {
for (scan = first_ror; scan != last_ror; scan++) {
if (!(quick = (*scan)->make_quick(param, false, &quick_roru->alloc)) ||
quick_roru->push_quick_back(quick))
return NULL;
}
quick_roru->records = records;
quick_roru->cost_est = cost_est;
}
quick_roru->forced_by_hint = forced_by_hint;
return quick_roru;
}
/**
If EXPLAIN or if the --safe-updates option is enabled, add a warning that
the index cannot be used for range access due to either type conversion or
different collations on the field used for comparison
@param param PARAM from test_quick_select
@param key_num Key number
@param field Field in the predicate
*/
static void warn_index_not_applicable(const RANGE_OPT_PARAM *param,
const uint key_num, const Field *field) {
THD *thd = param->thd;
if (param->using_real_indexes &&
(thd->lex->is_explain() ||
thd->variables.option_bits & OPTION_SAFE_UPDATES))
push_warning_printf(thd, Sql_condition::SL_WARNING,
ER_WARN_INDEX_NOT_APPLICABLE,
ER_THD(thd, ER_WARN_INDEX_NOT_APPLICABLE), "range",
field->table->key_info[param->real_keynr[key_num]].name,
field->field_name);
}
/*
Build a SEL_TREE for <> or NOT BETWEEN predicate
SYNOPSIS
get_ne_mm_tree()
param PARAM from test_quick_select
cond_func item for the predicate
field field in the predicate
lt_value constant that field should be smaller
gt_value constant that field should be greaterr
RETURN
# Pointer to tree built tree
0 on error
*/
static SEL_TREE *get_ne_mm_tree(RANGE_OPT_PARAM *param, Item_func *cond_func,
Field *field, Item *lt_value, Item *gt_value) {
SEL_TREE *tree = NULL;
if (param->has_errors()) return NULL;
tree = get_mm_parts(param, cond_func, field, Item_func::LT_FUNC, lt_value);
if (tree) {
tree = tree_or(
param, tree,
get_mm_parts(param, cond_func, field, Item_func::GT_FUNC, gt_value));
}
return tree;
}
/**
Factory function to build a SEL_TREE from an @<in predicate@>
@param param Information on 'just about everything'.
@param predicand The @<in predicate's@> predicand, i.e. the left-hand
side of the @<in predicate@> expression.
@param op The 'in' operator itself.
@param is_negated If true, the operator is NOT IN, otherwise IN.
*/
static SEL_TREE *get_func_mm_tree_from_in_predicate(RANGE_OPT_PARAM *param,
Item *predicand,
Item_func_in *op,
bool is_negated) {
if (param->has_errors()) return NULL;
if (is_negated) {
// We don't support row constructors (multiple columns on lhs) here.
if (predicand->type() != Item::FIELD_ITEM) return NULL;
Field *field = static_cast<Item_field *>(predicand)->field;
if (op->array && !op->array->is_row_result()) {
/*
We get here for conditions on the form "t.key NOT IN (c1, c2, ...)",
where c{i} are constants. Our goal is to produce a SEL_TREE that
represents intervals:
($MIN<t.key<c1) OR (c1<t.key<c2) OR (c2<t.key<c3) OR ... (*)
where $MIN is either "-inf" or NULL.
The most straightforward way to produce it is to convert NOT
IN into "(t.key != c1) AND (t.key != c2) AND ... " and let the
range analyzer build a SEL_TREE from that. The problem is that
the range analyzer will use O(N^2) memory (which is probably a
bug), and people who do use big NOT IN lists (e.g. see
BUG#15872, BUG#21282), will run out of memory.
Another problem with big lists like (*) is that a big list is
unlikely to produce a good "range" access, while considering
that range access will require expensive CPU calculations (and
for MyISAM even index accesses). In short, big NOT IN lists
are rarely worth analyzing.
Considering the above, we'll handle NOT IN as follows:
- if the number of entries in the NOT IN list is less than
NOT_IN_IGNORE_THRESHOLD, construct the SEL_TREE (*)
manually.
- Otherwise, don't produce a SEL_TREE.
*/
const uint NOT_IN_IGNORE_THRESHOLD = 1000;
// If we have t.key NOT IN (null, null, ...) or the list is too long
if (op->array->used_count == 0 ||
op->array->used_count > NOT_IN_IGNORE_THRESHOLD)
return NULL;
/*
Create one Item_type constant object. We'll need it as
get_mm_parts only accepts constant values wrapped in Item_Type
objects.
We create the Item on param->old_root which points to
per-statement mem_root (while thd->mem_root is currently pointing
to mem_root local to range optimizer).
*/
Item_basic_constant *value_item = op->array->create_item(param->old_root);
if (!value_item) return NULL;
/* Get a SEL_TREE for "(-inf|NULL) < X < c_0" interval. */
uint i = 0;
SEL_TREE *tree = NULL;
do {
op->array->value_to_item(i, value_item);
tree = get_mm_parts(param, op, field, Item_func::LT_FUNC, value_item);
if (!tree) break;
i++;
} while (i < op->array->used_count && tree->type == SEL_TREE::IMPOSSIBLE);
if (!tree || tree->type == SEL_TREE::IMPOSSIBLE)
/* We get here in cases like "t.unsigned NOT IN (-1,-2,-3) */
return NULL;
SEL_TREE *tree2 = NULL;
for (; i < op->array->used_count; i++) {
if (op->array->compare_elems(i, i - 1)) {
/* Get a SEL_TREE for "-inf < X < c_i" interval */
op->array->value_to_item(i, value_item);
tree2 =
get_mm_parts(param, op, field, Item_func::LT_FUNC, value_item);
if (!tree2) {
tree = NULL;
break;
}
/* Change all intervals to be "c_{i-1} < X < c_i" */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ARG *last_val;
if (tree->keys[idx] && tree2->keys[idx] &&
((last_val = tree->keys[idx]->root->last()))) {
SEL_ARG *new_interval = tree2->keys[idx]->root;
new_interval->min_value = last_val->max_value;
new_interval->min_flag = NEAR_MIN;
/*
If the interval is over a partial keypart, the
interval must be "c_{i-1} <= X < c_i" instead of
"c_{i-1} < X < c_i". Reason:
Consider a table with a column "my_col VARCHAR(3)",
and an index with definition
"INDEX my_idx my_col(1)". If the table contains rows
with my_col values "f" and "foo", the index will not
distinguish the two rows.
Note that tree_or() below will effectively merge
this range with the range created for c_{i-1} and
we'll eventually end up with only one range:
"NULL < X".
Partitioning indexes are never partial.
*/
if (param->using_real_indexes) {
const KEY key = param->table->key_info[param->real_keynr[idx]];
const KEY_PART_INFO *kpi = key.key_part + new_interval->part;
if (kpi->key_part_flag & HA_PART_KEY_SEG)
new_interval->min_flag = 0;
}
}
}
/*
The following doesn't try to allocate memory so no need to
check for NULL.
*/
tree = tree_or(param, tree, tree2);
}
}
if (tree && tree->type != SEL_TREE::IMPOSSIBLE) {
/*
Get the SEL_TREE for the last "c_last < X < +inf" interval
(value_item cotains c_last already)
*/
tree2 = get_mm_parts(param, op, field, Item_func::GT_FUNC, value_item);
tree = tree_or(param, tree, tree2);
}
return tree;
} else {
SEL_TREE *tree = get_ne_mm_tree(param, op, field, op->arguments()[1],
op->arguments()[1]);
if (tree) {
Item **arg, **end;
for (arg = op->arguments() + 2, end = arg + op->argument_count() - 2;
arg < end; arg++) {
tree = tree_and(param, tree,
get_ne_mm_tree(param, op, field, *arg, *arg));
}
}
return tree;
}
return NULL;
}
// The expression is IN, not negated.
if (predicand->type() == Item::FIELD_ITEM) {
// The expression is (<column>) IN (...)
Field *field = static_cast<Item_field *>(predicand)->field;
SEL_TREE *tree =
get_mm_parts(param, op, field, Item_func::EQ_FUNC, op->arguments()[1]);
if (tree) {
Item **arg, **end;
for (arg = op->arguments() + 2, end = arg + op->argument_count() - 2;
arg < end; arg++) {
tree =
tree_or(param, tree,
get_mm_parts(param, op, field, Item_func::EQ_FUNC, *arg));
}
}
return tree;
}
if (predicand->type() == Item::ROW_ITEM) {
/*
The expression is (<column>,...) IN (...)
We iterate over the rows on the rhs of the in predicate,
building an OR tree of ANDs, a.k.a. a DNF expression out of this. E.g:
(col1, col2) IN ((const1, const2), (const3, const4))
becomes
(col1 = const1 AND col2 = const2) OR (col1 = const3 AND col2 = const4)
*/
SEL_TREE *or_tree = &null_sel_tree;
Item_row *row_predicand = static_cast<Item_row *>(predicand);
// Iterate over the rows on the rhs of the in predicate, building an OR.
for (uint i = 1; i < op->argument_count(); ++i) {
/*
We only support row value expressions. Some optimizations rewrite
the Item tree, and we don't handle that.
*/
Item *in_list_item = op->arguments()[i];
if (in_list_item->type() != Item::ROW_ITEM) return NULL;
Item_row *row = static_cast<Item_row *>(in_list_item);
// Iterate over the columns, building an AND tree.
SEL_TREE *and_tree = NULL;
for (uint j = 0; j < row_predicand->cols(); ++j) {
Item *item = row_predicand->element_index(j);
// We only support columns in the row on the lhs of the in predicate.
if (item->type() != Item::FIELD_ITEM) return NULL;
Field *field = static_cast<Item_field *>(item)->field;
Item *value = row->element_index(j);
SEL_TREE *and_expr =
get_mm_parts(param, op, field, Item_func::EQ_FUNC, value);
and_tree = tree_and(param, and_tree, and_expr);
/*
Short-circuit evaluation: If and_expr is NULL then no key part in
this disjunct can be used as a search key. Or in other words the
condition is always true. Hence the whole disjunction is always true.
*/
if (and_tree == NULL) return NULL;
}
or_tree = tree_or(param, and_tree, or_tree);
}
return or_tree;
}
return NULL;
}
/**
Factory function to build a SEL_TREE from a JSON_OVERLAPS or JSON_CONTAINS
functions
@details
\verbatim
This function builds SEL_TREE out of JSON_OEVRLAPS() of form:
JSON_OVERLAPS(typed_array_field, "[<val>,...,<val>]")
JSON_OVERLAPS("[<val>,...,<val>]", typed_array_field)
JSON_CONTAINS(typed_array_field, "[<val>,...,<val>]")
where
typed_array_field is a field which has multi-valued index defined on it
<val> each value in the array is coercible to the array's
type
These conditions are pre-checked in substitute_gc().
\endverbatim
@param param Information on 'just about everything'.
@param predicand the typed array JSON_CONTAIN's argument
@param op The 'JSON_OVERLAPS' operator itself.
@returns
non-NULL constructed SEL_TREE
NULL in case of any error
*/
static SEL_TREE *get_func_mm_tree_from_json_overlaps_contains(
RANGE_OPT_PARAM *param, Item *predicand, Item_func *op) {
if (param->has_errors()) return NULL;
// The expression is JSON_OVERLAPS(<array_field>,<JSON array/scalar>), or
// The expression is JSON_OVERLAPS(<JSON array/scalar>, <array_field>), or
// The expression is JSON_CONTAINS(<array_field>, <JSON array/scalar>)
if (predicand->type() == Item::FIELD_ITEM && predicand->returns_array()) {
Json_wrapper wr, elt;
String str;
uint values;
if (op->functype() == Item_func::JSON_OVERLAPS) {
// If the predicand is the 1st arg, then the values arg is 2nd.
values = (predicand == op->arguments()[0]) ? 1 : 0;
} else {
DBUG_ASSERT(op->functype() == Item_func::JSON_CONTAINS);
values = 1;
}
if (get_json_wrapper(op->arguments(), values, &str, op->func_name(), &wr))
return NULL; /* purecov: inspected */
// Should be pre-checked already
DBUG_ASSERT(!(op->arguments()[values])->null_value &&
wr.type() != enum_json_type::J_OBJECT &&
wr.type() != enum_json_type::J_ERROR);
if (wr.length() == 0) return NULL;
Field_typed_array *field = down_cast<Field_typed_array *>(
static_cast<Item_field *>(predicand)->field);
if (wr.type() == enum_json_type::J_ARRAY)
wr.remove_duplicates(
field->type() == MYSQL_TYPE_VARCHAR ? field->charset() : nullptr);
size_t i = 0;
const size_t len = (wr.type() == enum_json_type::J_ARRAY) ? wr.length() : 1;
// Skip leading JSON null values as they can't be indexed and thus doesn't
// exist in index.
while (i < len && wr[i].type() == enum_json_type::J_NULL) ++i;
// No non-null values were found.
if (i == len) return nullptr;
// Fake const table for get_mm_parts, as we're using constants from JSON
// array
const bool save_const = field->table->const_table;
field->table->const_table = true;
field->set_notnull();
// Get the SEL_ARG tree for the first non-null element..
elt = wr[i++];
field->coerce_json_value(&elt, true, nullptr);
SEL_TREE *tree = get_mm_parts(param, op, field, Item_func::EQ_FUNC,
static_cast<Item_field *>(predicand));
// .. and OR with others
if (tree) {
for (; i < len; i++) {
elt = wr[i];
field->coerce_json_value(&elt, true, nullptr);
tree = tree_or(param, tree,
get_mm_parts(param, op, field, Item_func::EQ_FUNC,
static_cast<Item_field *>(predicand)));
if (!tree) // OOM
break;
}
}
field->table->const_table = save_const;
return tree;
}
return NULL;
}
/**
Build a SEL_TREE for a simple predicate.
@param param PARAM from test_quick_select
@param predicand field in the predicate
@param cond_func item for the predicate
@param value constant in the predicate
@param inv true <> NOT cond_func is considered
(makes sense only when cond_func is BETWEEN or IN)
@return Pointer to the built tree.
@todo Remove the appaling hack that 'value' can be a 1 cast to an Item*.
*/
static SEL_TREE *get_func_mm_tree(RANGE_OPT_PARAM *param, Item *predicand,
Item_func *cond_func, Item *value, bool inv) {
SEL_TREE *tree = 0;
DBUG_TRACE;
if (param->has_errors()) return 0;
switch (cond_func->functype()) {
case Item_func::XOR_FUNC:
return NULL; // Always true (don't use range access on XOR).
break; // See WL#5800
case Item_func::NE_FUNC:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = static_cast<Item_field *>(predicand)->field;
tree = get_ne_mm_tree(param, cond_func, field, value, value);
}
break;
case Item_func::BETWEEN:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = static_cast<Item_field *>(predicand)->field;
if (!value) {
if (inv) {
tree = get_ne_mm_tree(param, cond_func, field,
cond_func->arguments()[1],
cond_func->arguments()[2]);
} else {
tree = get_mm_parts(param, cond_func, field, Item_func::GE_FUNC,
cond_func->arguments()[1]);
if (tree) {
tree = tree_and(
param, tree,
get_mm_parts(param, cond_func, field, Item_func::LE_FUNC,
cond_func->arguments()[2]));
}
}
} else
tree = get_mm_parts(
param, cond_func, field,
(inv ? (value == reinterpret_cast<Item *>(1) ? Item_func::GT_FUNC
: Item_func::LT_FUNC)
: (value == reinterpret_cast<Item *>(1)
? Item_func::LE_FUNC
: Item_func::GE_FUNC)),
cond_func->arguments()[0]);
}
break;
case Item_func::IN_FUNC: {
Item_func_in *in_pred = static_cast<Item_func_in *>(cond_func);
tree = get_func_mm_tree_from_in_predicate(param, predicand, in_pred, inv);
} break;
case Item_func::JSON_CONTAINS:
case Item_func::JSON_OVERLAPS: {
tree = get_func_mm_tree_from_json_overlaps_contains(param, predicand,
cond_func);
} break;
default:
if (predicand->type() == Item::FIELD_ITEM) {
Field *field = static_cast<Item_field *>(predicand)->field;
/*
Here the function for the following predicates are processed:
<, <=, =, >=, >, LIKE, IS NULL, IS NOT NULL and GIS functions.
If the predicate is of the form (value op field) it is handled
as the equivalent predicate (field rev_op value), e.g.
2 <= a is handled as a >= 2.
*/
Item_func::Functype func_type =
(value != cond_func->arguments()[0])
? cond_func->functype()
: ((Item_bool_func2 *)cond_func)->rev_functype();
tree = get_mm_parts(param, cond_func, field, func_type, value);
}
}
return tree;
}
/*
Build conjunction of all SEL_TREEs for a simple predicate applying equalities
SYNOPSIS
get_full_func_mm_tree()
param PARAM from test_quick_select
predicand column or row constructor in the predicate's left-hand side.
op Item for the predicate operator
value constant in the predicate (or a field already read from
a table in the case of dynamic range access)
For BETWEEN it contains the number of the field argument.
inv If true, the predicate is negated, e.g. NOT IN.
(makes sense only when cond_func is BETWEEN or IN)
DESCRIPTION
For a simple SARGable predicate of the form (f op c), where f is a field and
c is a constant, the function builds a conjunction of all SEL_TREES that can
be obtained by the substitution of f for all different fields equal to f.
NOTES
If the WHERE condition contains a predicate (fi op c),
then not only SELL_TREE for this predicate is built, but
the trees for the results of substitution of fi for
each fj belonging to the same multiple equality as fi
are built as well.
E.g. for WHERE t1.a=t2.a AND t2.a > 10
a SEL_TREE for t2.a > 10 will be built for quick select from t2
and
a SEL_TREE for t1.a > 10 will be built for quick select from t1.
A BETWEEN predicate of the form (fi [NOT] BETWEEN c1 AND c2) is treated
in a similar way: we build a conjuction of trees for the results
of all substitutions of fi for equal fj.
Yet a predicate of the form (c BETWEEN f1i AND f2i) is processed
differently. It is considered as a conjuction of two SARGable
predicates (f1i <= c) and (f2i <=c) and the function get_full_func_mm_tree
is called for each of them separately producing trees for
AND j (f1j <=c ) and AND j (f2j <= c)
After this these two trees are united in one conjunctive tree.
It's easy to see that the same tree is obtained for
AND j,k (f1j <=c AND f2k<=c)
which is equivalent to
AND j,k (c BETWEEN f1j AND f2k).
The validity of the processing of the predicate (c NOT BETWEEN f1i AND f2i)
which equivalent to (f1i > c OR f2i < c) is not so obvious. Here the
function get_full_func_mm_tree is called for (f1i > c) and (f2i < c)
producing trees for AND j (f1j > c) and AND j (f2j < c). Then this two
trees are united in one OR-tree. The expression
(AND j (f1j > c) OR AND j (f2j < c)
is equivalent to the expression
AND j,k (f1j > c OR f2k < c)
which is just a translation of
AND j,k (c NOT BETWEEN f1j AND f2k)
In the cases when one of the items f1, f2 is a constant c1 we do not create
a tree for it at all. It works for BETWEEN predicates but does not
work for NOT BETWEEN predicates as we have to evaluate the expression
with it. If it is true then the other tree can be completely ignored.
We do not do it now and no trees are built in these cases for
NOT BETWEEN predicates.
As to IN predicates only ones of the form (f IN (c1,...,cn)),
where f1 is a field and c1,...,cn are constant, are considered as
SARGable. We never try to narrow the index scan using predicates of
the form (c IN (c1,...,f,...,cn)).
RETURN
Pointer to the tree representing the built conjunction of SEL_TREEs
*/
static SEL_TREE *get_full_func_mm_tree(RANGE_OPT_PARAM *param, Item *predicand,
Item_func *op, Item *value, bool inv) {
SEL_TREE *tree = 0;
SEL_TREE *ftree = 0;
const table_map param_comp =
~(param->prev_tables | param->read_tables | param->current_table);
DBUG_TRACE;
if (param->has_errors()) return NULL;
/*
Here we compute a set of tables that we consider as constants
suppliers during execution of the SEL_TREE that we produce below.
*/
table_map ref_tables = 0;
for (uint i = 0; i < op->arg_count; i++) {
Item *arg = op->arguments()[i]->real_item();
if (arg != predicand) ref_tables |= arg->used_tables();
}
if (predicand->type() == Item::FIELD_ITEM) {
Item_field *item_field = static_cast<Item_field *>(predicand);
Field *field = item_field->field;
if (!((ref_tables | item_field->table_ref->map()) & param_comp))
ftree = get_func_mm_tree(param, predicand, op, value, inv);
Item_equal *item_equal = item_field->item_equal;
if (item_equal != NULL) {
Item_equal_iterator it(*item_equal);
Item_field *item;
while ((item = it++)) {
Field *f = item->field;
if (!field->eq(f) &&
!((ref_tables | item->table_ref->map()) & param_comp)) {
tree = get_func_mm_tree(param, item, op, value, inv);
ftree = !ftree ? tree : tree_and(param, ftree, tree);
}
}
}
} else if (predicand->type() == Item::ROW_ITEM) {
ftree = get_func_mm_tree(param, predicand, op, value, inv);
return ftree;
}
return ftree;
}
/**
The Range Analysis Module, which finds range access alternatives
applicable to single or multi-index (UNION) access. The function
does not calculate or care about the cost of the different
alternatives.
get_mm_tree() employs a relaxed boolean algebra where the solution
may be bigger than what the rules of boolean algebra accept. In
other words, get_mm_tree() may return range access plans that will
read more rows than the input conditions dictate. In it's simplest
form, consider a condition on two fields indexed by two different
indexes:
"WHERE fld1 > 'x' AND fld2 > 'y'"
In this case, there are two single-index range access alternatives.
No matter which access path is chosen, rows that are not in the
result set may be read.
In the case above, get_mm_tree() will create range access
alternatives for both indexes, so boolean algebra is still correct.
In other cases, however, the conditions are too complex to be used
without relaxing the rules. This typically happens when ORing a
conjunction to a multi-index disjunctions (@see e.g.
imerge_list_or_tree()). When this happens, the range optimizer may
choose to ignore conjunctions (any condition connected with AND). The
effect of this is that the result includes a "bigger" solution than
neccessary. This is OK since all conditions will be used as filters
after row retrieval.
@see SEL_TREE::keys and SEL_TREE::merges for details of how single
and multi-index range access alternatives are stored.
*/
static SEL_TREE *get_mm_tree(RANGE_OPT_PARAM *param, Item *cond) {
SEL_TREE *tree = 0;
SEL_TREE *ftree = 0;
Item_field *field_item = 0;
bool inv = false;
Item *value = 0;
DBUG_TRACE;
if (param->has_errors()) return NULL;
if (cond->type() == Item::COND_ITEM) {
List_iterator<Item> li(*((Item_cond *)cond)->argument_list());
if (((Item_cond *)cond)->functype() == Item_func::COND_AND_FUNC) {
tree = NULL;
Item *item;
while ((item = li++)) {
SEL_TREE *new_tree = get_mm_tree(param, item);
if (param->has_errors()) return NULL;
tree = tree_and(param, tree, new_tree);
dbug_print_tree("after_and", tree, param);
if (tree && tree->type == SEL_TREE::IMPOSSIBLE) break;
}
} else { // Item OR
tree = get_mm_tree(param, li++);
if (param->has_errors()) return NULL;
if (tree) {
Item *item;
while ((item = li++)) {
SEL_TREE *new_tree = get_mm_tree(param, item);
if (new_tree == NULL || param->has_errors()) return NULL;
tree = tree_or(param, tree, new_tree);
dbug_print_tree("after_or", tree, param);
if (tree == NULL || tree->type == SEL_TREE::ALWAYS) break;
}
}
}
dbug_print_tree("tree_returned", tree, param);
return tree;
}
if (cond->const_item() && !cond->is_expensive()) {
/*
During the cond->val_int() evaluation we can come across a subselect
item which may allocate memory on the thd->mem_root and assumes
all the memory allocated has the same life span as the subselect
item itself. So we have to restore the thread's mem_root here.
*/
MEM_ROOT *tmp_root = param->mem_root;
param->thd->mem_root = param->old_root;
const SEL_TREE::Type type =
cond->val_int() ? SEL_TREE::ALWAYS : SEL_TREE::IMPOSSIBLE;
tree = new (tmp_root) SEL_TREE(type, tmp_root, param->keys);
param->thd->mem_root = tmp_root;
if (param->has_errors()) return NULL;
dbug_print_tree("tree_returned", tree, param);
return tree;
}
table_map ref_tables = 0;
table_map param_comp =
~(param->prev_tables | param->read_tables | param->current_table);
if (cond->type() != Item::FUNC_ITEM) { // Should be a field
ref_tables = cond->used_tables();
if ((ref_tables & param->current_table) ||
(ref_tables & ~(param->prev_tables | param->read_tables)))
return 0;
return new (param->mem_root)
SEL_TREE(SEL_TREE::MAYBE, param->mem_root, param->keys);
}
Item_func *cond_func = (Item_func *)cond;
if (cond_func->functype() == Item_func::BETWEEN ||
cond_func->functype() == Item_func::IN_FUNC)
inv = ((Item_func_opt_neg *)cond_func)->negated;
else {
/*
During the cond_func->select_optimize() evaluation we can come across a
subselect item which may allocate memory on the thd->mem_root and assumes
all the memory allocated has the same life span as the subselect item
itself. So we have to restore the thread's mem_root here.
*/
MEM_ROOT *tmp_root = param->mem_root;
param->thd->mem_root = param->old_root;
Item_func::optimize_type opt_type = cond_func->select_optimize(param->thd);
param->thd->mem_root = tmp_root;
if (opt_type == Item_func::OPTIMIZE_NONE) return NULL;
}
param->cond = cond;
/*
Notice that all fields that are outer references are const during
the execution and should not be considered for range analysis like
fields coming from the local query block are.
*/
switch (cond_func->functype()) {
case Item_func::BETWEEN: {
Item *const arg_left = cond_func->arguments()[0];
if (!(arg_left->used_tables() & OUTER_REF_TABLE_BIT) &&
arg_left->real_item()->type() == Item::FIELD_ITEM) {
field_item = (Item_field *)arg_left->real_item();
ftree = get_full_func_mm_tree(param, field_item, cond_func, NULL, inv);
}
/*
Concerning the code below see the NOTES section in
the comments for the function get_full_func_mm_tree()
*/
for (uint i = 1; i < cond_func->arg_count; i++) {
Item *const arg = cond_func->arguments()[i];
if (!(arg->used_tables() & OUTER_REF_TABLE_BIT) &&
arg->real_item()->type() == Item::FIELD_ITEM) {
field_item = (Item_field *)arg->real_item();
SEL_TREE *tmp = get_full_func_mm_tree(
param, field_item, cond_func, reinterpret_cast<Item *>(i), inv);
if (inv) {
tree = !tree ? tmp : tree_or(param, tree, tmp);
if (tree == NULL) break;
} else
tree = tree_and(param, tree, tmp);
} else if (inv) {
tree = 0;
break;
}
}
ftree = tree_and(param, ftree, tree);
break;
} // end case Item_func::BETWEEN
case Item_func::JSON_CONTAINS:
case Item_func::JSON_OVERLAPS:
case Item_func::IN_FUNC: {
Item *predicand = cond_func->key_item();
if (!predicand) return nullptr;
predicand = predicand->real_item();
if (predicand->type() != Item::FIELD_ITEM &&
predicand->type() != Item::ROW_ITEM)
return NULL;
ftree = get_full_func_mm_tree(param, predicand, cond_func, NULL, inv);
break;
} // end case Item_func::IN_FUNC
case Item_func::MULT_EQUAL_FUNC: {
Item_equal *item_equal = (Item_equal *)cond;
if (!(value = item_equal->get_const())) return 0;
Item_equal_iterator it(*item_equal);
ref_tables = value->used_tables();
while ((field_item = it++)) {
Field *field = field_item->field;
if (!((ref_tables | field_item->table_ref->map()) & param_comp)) {
tree =
get_mm_parts(param, item_equal, field, Item_func::EQ_FUNC, value);
ftree = !ftree ? tree : tree_and(param, ftree, tree);
}
}
dbug_print_tree("tree_returned", ftree, param);
return ftree;
} // end case Item_func::MULT_EQUAL_FUNC
default: {
Item *const arg_left = cond_func->arguments()[0];
DBUG_ASSERT(!ftree);
if (!(arg_left->used_tables() & OUTER_REF_TABLE_BIT) &&
arg_left->real_item()->type() == Item::FIELD_ITEM) {
field_item = (Item_field *)arg_left->real_item();
value = cond_func->arg_count > 1 ? cond_func->arguments()[1] : NULL;
ftree = get_full_func_mm_tree(param, field_item, cond_func, value, inv);
}
/*
Even if get_full_func_mm_tree() was executed above and did not
return a range predicate it may still be possible to create one
by reversing the order of the operands. Note that this only
applies to predicates where both operands are fields. Example: A
query of the form
WHERE t1.a OP t2.b
In this case, arguments()[0] == t1.a and arguments()[1] == t2.b.
When creating range predicates for t2, get_full_func_mm_tree()
above will return NULL because 'field' belongs to t1 and only
predicates that applies to t2 are of interest. In this case a
call to get_full_func_mm_tree() with reversed operands (see
below) may succeed.
*/
Item *arg_right;
if (!ftree && cond_func->have_rev_func() &&
(arg_right = cond_func->arguments()[1]) &&
!(arg_right->used_tables() & OUTER_REF_TABLE_BIT) &&
arg_right->real_item()->type() == Item::FIELD_ITEM) {
field_item = (Item_field *)arg_right->real_item();
value = arg_left;
ftree = get_full_func_mm_tree(param, field_item, cond_func, value, inv);
}
} // end case default
} // end switch
dbug_print_tree("tree_returned", ftree, param);
return ftree;
}
/**
Test whether a comparison operator is a spatial comparison
operator, i.e. Item_func::SP_*.
Used to check if range access using operator 'op_type' is applicable
for a non-spatial index.
@param op_type The comparison operator.
@return true if 'op_type' is a spatial comparison operator, false otherwise.
*/
static bool is_spatial_operator(Item_func::Functype op_type) {
switch (op_type) {
case Item_func::SP_EQUALS_FUNC:
case Item_func::SP_DISJOINT_FUNC:
case Item_func::SP_INTERSECTS_FUNC:
case Item_func::SP_TOUCHES_FUNC:
case Item_func::SP_CROSSES_FUNC:
case Item_func::SP_WITHIN_FUNC:
case Item_func::SP_CONTAINS_FUNC:
case Item_func::SP_COVEREDBY_FUNC:
case Item_func::SP_COVERS_FUNC:
case Item_func::SP_OVERLAPS_FUNC:
case Item_func::SP_STARTPOINT:
case Item_func::SP_ENDPOINT:
case Item_func::SP_EXTERIORRING:
case Item_func::SP_POINTN:
case Item_func::SP_GEOMETRYN:
case Item_func::SP_INTERIORRINGN:
return true;
default:
return false;
}
}
/**
Test if 'value' is comparable to 'field' when setting up range
access for predicate "field OP value". 'field' is a field in the
table being optimized for while 'value' is whatever 'field' is
compared to.
@param cond_func the predicate item that compares 'field' with 'value'
@param field field in the predicate
@param itype itMBR if indexed field is spatial, itRAW otherwise
@param comp_type comparator for the predicate
@param value whatever 'field' is compared to
@return true if 'field' and 'value' are comparable, false otherwise
*/
static bool comparable_in_index(Item *cond_func, const Field *field,
const Field::imagetype itype,
Item_func::Functype comp_type,
const Item *value) {
/*
Usually an index cannot be used if the column collation differs
from the operation collation. However, a case insensitive index
may be used for some binary searches:
WHERE latin1_swedish_ci_column = 'a' COLLATE lati1_bin;
WHERE latin1_swedish_ci_colimn = BINARY 'a '
*/
if ((field->result_type() == STRING_RESULT &&
field->match_collation_to_optimize_range() &&
value->result_type() == STRING_RESULT && itype == Field::itRAW &&
field->charset() != cond_func->compare_collation() &&
!(cond_func->compare_collation()->state & MY_CS_BINSORT &&
(comp_type == Item_func::EQUAL_FUNC ||
comp_type == Item_func::EQ_FUNC))))
return false;
/*
Temporal values: Cannot use range access if:
'indexed_varchar_column = temporal_value'
because there are many ways to represent the same date as a
string. A few examples: "01-01-2001", "1-1-2001", "2001-01-01",
"2001#01#01". The same problem applies to time. Thus, we cannot
create a useful range predicate for temporal values into VARCHAR
column indexes. @see add_key_field()
*/
if (!field->is_temporal() && value->is_temporal()) return false;
/*
Temporal values: Cannot use range access if
'indexed_time = temporal_value_with_date_part'
because:
- without index, a TIME column with value '48:00:00' is
equal to a DATETIME column with value
'CURDATE() + 2 days'
- with range access into the TIME column, CURDATE() + 2
days becomes "00:00:00" (Field_timef::store_internal()
simply extracts the time part from the datetime) which
is a lookup key which does not match "48:00:00". On the other
hand, we can do ref access for IndexedDatetimeComparedToTime
because Field_temporal_with_date::store_time() will convert
48:00:00 to CURDATE() + 2 days which is the correct lookup
key.
*/
if (field_time_cmp_date(field, value)) return false;
/*
We can't always use indexes when comparing a string index to a
number. cmp_type() is checked to allow comparison of dates and
numbers.
*/
if (field->result_type() == STRING_RESULT &&
value->result_type() != STRING_RESULT &&
field->cmp_type() != value->result_type())
return false;
/*
We can't use indexes when comparing to a JSON value. For example,
the string '{}' should compare equal to the JSON string "{}". If
we use a string index to compare the two strings, we will be
comparing '{}' and '"{}"', which don't compare equal.
*/
if (value->result_type() == STRING_RESULT &&
value->data_type() == MYSQL_TYPE_JSON)
return false;
return true;
}
static SEL_TREE *get_mm_parts(RANGE_OPT_PARAM *param, Item_func *cond_func,
Field *field, Item_func::Functype type,
Item *value) {
DBUG_TRACE;
if (param->has_errors()) return 0;
if (field->table != param->table) return 0;
KEY_PART *key_part = param->key_parts;
KEY_PART *end = param->key_parts_end;
SEL_TREE *tree = 0;
if (value &&
value->used_tables() & ~(param->prev_tables | param->read_tables))
return 0;
for (; key_part != end; key_part++) {
if (field->eq(key_part->field)) {
/*
Cannot do range access for spatial operators when a
non-spatial index is used.
*/
if (key_part->image_type != Field::itMBR &&
is_spatial_operator(cond_func->functype()))
continue;
SEL_ROOT *sel_root = nullptr;
if (!tree && !(tree = new (param->mem_root)
SEL_TREE(param->mem_root, param->keys)))
return 0; // OOM
if (!value || !(value->used_tables() & ~param->read_tables)) {
sel_root = get_mm_leaf(param, cond_func, key_part->field, key_part,
type, value);
if (!sel_root) continue;
if (sel_root->type == SEL_ROOT::Type::IMPOSSIBLE) {
tree->type = SEL_TREE::IMPOSSIBLE;
return tree;
}
} else {
/*
The index may not be used by dynamic range access unless
'field' and 'value' are comparable.
*/
if (!comparable_in_index(cond_func, key_part->field,
key_part->image_type, type, value)) {
warn_index_not_applicable(param, key_part->key, field);
return NULL;
}
if (!(sel_root = new (param->mem_root)
SEL_ROOT(param->mem_root, SEL_ROOT::Type::MAYBE_KEY)))
return NULL; // OOM
}
sel_root->root->part = (uchar)key_part->part;
tree->set_key(key_part->key,
sel_add(tree->release_key(key_part->key), sel_root));
tree->keys_map.set_bit(key_part->key);
}
}
if (tree && tree->merges.is_empty() && tree->keys_map.is_clear_all())
tree = NULL;
return tree;
}
/**
Saves 'value' in 'field' and handles potential type conversion
problems.
@param [out] tree The SEL_ROOT leaf under construction. If
an always false predicate is found it is
modified to point to a SEL_ROOT with
type == SEL_ROOT::Type::IMPOSSIBLE.
@param value The Item that contains a value that shall
be stored in 'field'.
@param comp_op Comparison operator: >, >=, <=> etc.
@param field The field that 'value' is stored into.
@param [out] impossible_cond_cause Set to a descriptive string if an
impossible condition is found.
@param memroot Memroot for creation of new SEL_ARG.
@retval false if saving went fine and it makes sense to continue
optimizing for this predicate.
@retval true if always true/false predicate was found, in which
case 'tree' has been modified to reflect this: NULL
pointer if always true, SEL_ARG with type IMPOSSIBLE
if always false.
*/
static bool save_value_and_handle_conversion(SEL_ROOT **tree, Item *value,
const Item_func::Functype comp_op,
Field *field,
const char **impossible_cond_cause,
MEM_ROOT *memroot) {
// A SEL_ARG should not have been created for this predicate yet.
DBUG_ASSERT(*tree == NULL);
THD *const thd = field->table->in_use;
if (!(value->const_item() || thd->lex->is_query_tables_locked())) {
/*
We cannot evaluate the value yet (i.e. required tables are not yet
locked.)
This is the case of prune_partitions() called during
SELECT_LEX::prepare().
*/
return true;
}
/*
Don't evaluate subqueries during optimization if they are disabled. This
function can be called during execution when doing dynamic range access, and
we only want to disable subquery evaluation during optimization, so check if
we're in the optimization phase by calling SELECT_LEX_UNIT::is_optimized().
*/
const SELECT_LEX *const select = thd->lex->current_select();
if (!select->master_unit()->is_optimized() &&
!evaluate_during_optimization(value, select))
return true;
// For comparison purposes allow invalid dates like 2000-01-32
const sql_mode_t orig_sql_mode = thd->variables.sql_mode;
thd->variables.sql_mode |= MODE_INVALID_DATES;
/*
We want to change "field > value" to "field OP V"
where:
* V is what is in "field" after we stored "value" in it via
save_in_field_no_warning() (such store operation may have done
rounding...)
* OP is > or >=, depending on what's correct.
For example, if c is an INT column,
"c > 2.9" is changed to "c OP 3"
where OP is ">=" (">" would not be correct, as 3 > 2.9, a comparison
done with stored_field_cmp_to_item()). And
"c > 3.1" is changed to "c OP 3" where OP is ">" (3 < 3.1...).
*/
// Note that value may be a stored function call, executed here.
const type_conversion_status err =
value->save_in_field_no_warnings(field, true);
thd->variables.sql_mode = orig_sql_mode;
switch (err) {
case TYPE_OK:
case TYPE_NOTE_TRUNCATED:
case TYPE_WARN_TRUNCATED:
return false;
case TYPE_WARN_INVALID_STRING:
/*
An invalid string does not produce any rows when used with
equality operator.
*/
if (comp_op == Item_func::EQUAL_FUNC || comp_op == Item_func::EQ_FUNC) {
*impossible_cond_cause = "invalid_characters_in_string";
goto impossible_cond;
}
/*
For other operations on invalid strings, we assume that the range
predicate is always true and let evaluate_join_record() decide
the outcome.
*/
return true;
case TYPE_ERR_BAD_VALUE:
/*
In the case of incompatible values, MySQL's SQL dialect has some
strange interpretations. For example,
"int_col > 'foo'" is interpreted as "int_col > 0"
instead of always false. Because of this, we assume that the
range predicate is always true instead of always false and let
evaluate_join_record() decide the outcome.
*/
return true;
case TYPE_ERR_NULL_CONSTRAINT_VIOLATION:
// Checking NULL value on a field that cannot contain NULL.
*impossible_cond_cause = "null_field_in_non_null_column";
goto impossible_cond;
case TYPE_WARN_OUT_OF_RANGE:
/*
value to store was either higher than field::max_value or lower
than field::min_value. The field's max/min value has been stored
instead.
*/
if (comp_op == Item_func::EQUAL_FUNC || comp_op == Item_func::EQ_FUNC) {
/*
Independent of data type, "out_of_range_value =/<=> field" is
always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
// If the field is numeric, we can interpret the out of range value.
if ((field->type() != FIELD_TYPE_BIT) &&
(field->result_type() == REAL_RESULT ||
field->result_type() == INT_RESULT ||
field->result_type() == DECIMAL_RESULT)) {
/*
value to store was higher than field::max_value if
a) field has a value greater than 0, or
b) if field is unsigned and has a negative value (which, when
cast to unsigned, means some value higher than LLONG_MAX).
*/
if ((field->val_int() > 0) || // a)
(static_cast<Field_num *>(field)->unsigned_flag &&
field->val_int() < 0)) // b)
{
if (comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC) {
/*
'<' or '<=' compared to a value higher than the field
can store is always true.
*/
return true;
}
if (comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC) {
/*
'>' or '>=' compared to a value higher than the field can
store is always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
} else // value is lower than field::min_value
{
if (comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC) {
/*
'>' or '>=' compared to a value lower than the field
can store is always true.
*/
return true;
}
if (comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC) {
/*
'<' or '=' compared to a value lower than the field can
store is always false.
*/
*impossible_cond_cause = "value_out_of_range";
goto impossible_cond;
}
}
}
/*
Value is out of range on a datatype where it can't be decided if
it was underflow or overflow. It is therefore not possible to
determine whether or not the condition is impossible or always
true and we have to assume always true.
*/
return true;
case TYPE_NOTE_TIME_TRUNCATED:
if (field->type() == FIELD_TYPE_DATE &&
(comp_op == Item_func::GT_FUNC || comp_op == Item_func::GE_FUNC ||
comp_op == Item_func::LT_FUNC || comp_op == Item_func::LE_FUNC)) {
/*
We were saving DATETIME into a DATE column, the conversion went ok
but a non-zero time part was cut off.
In MySQL's SQL dialect, DATE and DATETIME are compared as datetime
values. Index over a DATE column uses DATE comparison. Changing
from one comparison to the other is possible:
datetime(date_col)< '2007-12-10 12:34:55' -> date_col<='2007-12-10'
datetime(date_col)<='2007-12-10 12:34:55' -> date_col<='2007-12-10'
datetime(date_col)> '2007-12-10 12:34:55' -> date_col>='2007-12-10'
datetime(date_col)>='2007-12-10 12:34:55' -> date_col>='2007-12-10'
but we'll need to convert '>' to '>=' and '<' to '<='. This will
be done together with other types at the end of get_mm_leaf()
(grep for stored_field_cmp_to_item)
*/
return false;
}
if (comp_op == Item_func::EQ_FUNC || comp_op == Item_func::EQUAL_FUNC) {
// Equality comparison is always false when time info has been
// truncated.
goto impossible_cond;
}
return true;
case TYPE_ERR_OOM:
return true;
/*
No default here to avoid adding new conversion status codes that are
unhandled in this function.
*/
}
DBUG_ASSERT(false); // Should never get here.
impossible_cond:
*tree = new (memroot) SEL_ROOT(memroot, SEL_ROOT::Type::IMPOSSIBLE);
return true;
}
#ifndef DBUG_OFF
/**
Debugging function to print out a SEL_ROOT and everything it points to,
recursively. Used only when tracking bugs in the range optimizer
(for printf debugging); will not normally have any calls to it.
*/
static void debug_print_tree(SEL_ROOT *origin) MY_ATTRIBUTE((unused));
static void debug_print_tree(SEL_ROOT *origin) {
if (!origin) return;
std::set<SEL_ROOT *> seen;
std::queue<SEL_ROOT *> to_print;
to_print.push(origin);
while (!to_print.empty()) {
SEL_ROOT *key = to_print.front();
to_print.pop();
if (seen.count(key)) continue;
printf("Printing %p:\n", key);
for (SEL_ARG *arg = key->root->first(); arg; arg = arg->next) {
printf(" %p (next_key_part=%p) ", arg, arg->next_key_part);
if (arg->next_key_part) to_print.push(arg->next_key_part);
String tmp;
tmp.length(0);
KEY_PART_INFO fake_key_part;
fake_key_part.field = arg->field;
fake_key_part.length = 0;
append_range(&tmp, &fake_key_part, arg->min_value, arg->max_value,
arg->min_flag | arg->max_flag);
printf("%s\n", tmp.ptr());
}
printf("\n");
}
}
#endif // !defined(DBUG_OFF)
static SEL_ROOT *get_mm_leaf(RANGE_OPT_PARAM *param, Item *conf_func,
Field *field, KEY_PART *key_part,
Item_func::Functype type, Item *value) {
uint maybe_null = (uint)field->real_maybe_null();
bool optimize_range;
SEL_ROOT *tree = 0;
MEM_ROOT *alloc = param->mem_root;
uchar *str;
const char *impossible_cond_cause = NULL;
DBUG_TRACE;
if (param->has_errors()) goto end;
/*
We need to restore the runtime mem_root of the thread in this
function because it evaluates the value of its argument, while
the argument can be any, e.g. a subselect. The subselect
items, in turn, assume that all the memory allocated during
the evaluation has the same life span as the item itself.
TODO: opt_range.cc should not reset thd->mem_root at all.
*/
param->thd->mem_root = param->old_root;
if (!value) // IS NULL or IS NOT NULL
{
if (field->table->pos_in_table_list->outer_join)
/*
Range scan cannot be used to scan the inner table of an outer
join if the predicate is IS NULL.
*/
goto end;
if (!maybe_null) // NOT NULL column
{
if (type == Item_func::ISNULL_FUNC)
tree =
new (alloc) SEL_ROOT(param->mem_root, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
uchar *null_string =
static_cast<uchar *>(alloc->Alloc(key_part->store_length + 1));
if (!null_string) goto end; // out of memory
TRASH(null_string, key_part->store_length + 1);
memcpy(null_string, is_null_string, sizeof(is_null_string));
SEL_ARG *root;
if (!(root = new (alloc) SEL_ARG(field, null_string, null_string,
!(key_part->flag & HA_REVERSE_SORT))))
goto end; // out of memory
if (!(tree = new (alloc) SEL_ROOT(root))) goto end; // out of memory
if (type == Item_func::ISNOTNULL_FUNC) {
root->min_flag = NEAR_MIN; /* IS NOT NULL -> X > NULL */
root->max_flag = NO_MAX_RANGE;
}
goto end;
}
/*
The range access method cannot be used unless 'field' and 'value'
are comparable in the index. Examples of non-comparable
field/values: different collation, DATETIME vs TIME etc.
*/
if (!comparable_in_index(conf_func, field, key_part->image_type, type,
value)) {
warn_index_not_applicable(param, key_part->key, field);
goto end;
}
if (key_part->image_type == Field::itMBR) {
// @todo: use is_spatial_operator() instead?
switch (type) {
case Item_func::SP_EQUALS_FUNC:
case Item_func::SP_DISJOINT_FUNC:
case Item_func::SP_INTERSECTS_FUNC:
case Item_func::SP_TOUCHES_FUNC:
case Item_func::SP_CROSSES_FUNC:
case Item_func::SP_WITHIN_FUNC:
case Item_func::SP_CONTAINS_FUNC:
case Item_func::SP_OVERLAPS_FUNC:
break;
default:
/*
We cannot involve spatial indexes for queries that
don't use MBREQUALS(), MBRDISJOINT(), etc. functions.
*/
goto end;
}
}
if (param->using_real_indexes)
optimize_range =
field->optimize_range(param->real_keynr[key_part->key], key_part->part);
else
optimize_range = true;
if (type == Item_func::LIKE_FUNC) {
bool like_error;
char buff1[MAX_FIELD_WIDTH];
uchar *min_str, *max_str;
String tmp(buff1, sizeof(buff1), value->collation.collation), *res;
size_t length, offset, min_length, max_length;
size_t field_length = field->pack_length() + maybe_null;
if (!optimize_range) goto end;
if (!(res = value->val_str(&tmp))) {
tree = new (alloc) SEL_ROOT(param->mem_root, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
/*
TODO:
Check if this was a function. This should have be optimized away
in the sql_select.cc
*/
if (res != &tmp) {
tmp.copy(*res); // Get own copy
res = &tmp;
}
if (field->cmp_type() != STRING_RESULT)
goto end; // Can only optimize strings
offset = maybe_null;
length = key_part->store_length;
if (length != key_part->length + maybe_null) {
/* key packed with length prefix */
offset += HA_KEY_BLOB_LENGTH;
field_length = length - HA_KEY_BLOB_LENGTH;
} else {
if (unlikely(length < field_length)) {
/*
This can only happen in a table created with UNIREG where one key
overlaps many fields
*/
length = field_length;
} else
field_length = length;
}
length += offset;
if (!(min_str = (uchar *)alloc->Alloc(length * 2))) goto end;
max_str = min_str + length;
if (maybe_null) max_str[0] = min_str[0] = 0;
Item_func_like *like_func = down_cast<Item_func_like *>(param->cond);
// We can only optimize with LIKE if the escape string is known.
if (!like_func->escape_is_evaluated()) goto end;
field_length -= maybe_null;
like_error = my_like_range(
field->charset(), res->ptr(), res->length(), like_func->escape,
wild_one, wild_many, field_length, (char *)min_str + offset,
(char *)max_str + offset, &min_length, &max_length);
if (like_error) // Can't optimize with LIKE
goto end;
if (offset != maybe_null) // BLOB or VARCHAR
{
int2store(min_str + maybe_null, static_cast<uint16>(min_length));
int2store(max_str + maybe_null, static_cast<uint16>(max_length));
}
SEL_ARG *root = new (alloc)
SEL_ARG(field, min_str, max_str, !(key_part->flag & HA_REVERSE_SORT));
if (!root || !(tree = new (alloc) SEL_ROOT(root)))
goto end; // out of memory
goto end;
}
if (!optimize_range && type != Item_func::EQ_FUNC &&
type != Item_func::EQUAL_FUNC)
goto end; // Can't optimize this
/*
Geometry operations may mix geometry types, e.g., we may be
checking ST_Contains(<polygon field>, <point>). In such cases,
field->geom_type will be a different type than the value we're
trying to store in it, and the conversion will fail. Therefore,
set the most general geometry type while saving, and revert to the
original geometry type afterwards.
*/
{
const Field::geometry_type save_geom_type =
(field->type() == MYSQL_TYPE_GEOMETRY) ? field->get_geometry_type()
: Field::GEOM_GEOMETRY;
if (field->type() == MYSQL_TYPE_GEOMETRY) {
down_cast<Field_geom *>(field)->geom_type = Field::GEOM_GEOMETRY;
}
bool always_true_or_false = save_value_and_handle_conversion(
&tree, value, type, field, &impossible_cond_cause, alloc);
if (field->type() == MYSQL_TYPE_GEOMETRY &&
save_geom_type != Field::GEOM_GEOMETRY) {
down_cast<Field_geom *>(field)->geom_type = save_geom_type;
}
if (always_true_or_false) goto end;
}
/*
Any sargable predicate except "<=>" involving NULL as a constant is always
false
*/
if (type != Item_func::EQUAL_FUNC && field->is_real_null()) {
impossible_cond_cause = "comparison_with_null_always_false";
tree = new (alloc) SEL_ROOT(param->mem_root, SEL_ROOT::Type::IMPOSSIBLE);
goto end;
}
str = (uchar *)alloc->Alloc(key_part->store_length + 1);
if (!str) goto end;
if (maybe_null) *str = (uchar)field->is_real_null(); // Set to 1 if null
field->get_key_image(str + maybe_null, key_part->length,
key_part->image_type);
SEL_ARG *root;
root =
new (alloc) SEL_ARG(field, str, str, !(key_part->flag & HA_REVERSE_SORT));
if (!root || !(tree = new (alloc) SEL_ROOT(root))) goto end; // out of memory
/*
Check if we are comparing an UNSIGNED integer with a negative constant.
In this case we know that:
(a) (unsigned_int [< | <=] negative_constant) == false
(b) (unsigned_int [> | >=] negative_constant) == true
In case (a) the condition is false for all values, and in case (b) it
is true for all values, so we can avoid unnecessary retrieval and condition
testing, and we also get correct comparison of unsinged integers with
negative integers (which otherwise fails because at query execution time
negative integers are cast to unsigned if compared with unsigned).
*/
if (field->result_type() == INT_RESULT &&
value->result_type() == INT_RESULT &&
((field->type() == FIELD_TYPE_BIT || field->unsigned_flag) &&
!(value)->unsigned_flag)) {
longlong item_val = value->val_int();
if (item_val < 0) {
if (type == Item_func::LT_FUNC || type == Item_func::LE_FUNC) {
impossible_cond_cause = "unsigned_int_cannot_be_negative";
tree->type = SEL_ROOT::Type::IMPOSSIBLE;
goto end;
}
if (type == Item_func::GT_FUNC || type == Item_func::GE_FUNC) {
tree = nullptr;
goto end;
}
}
}
switch (type) {
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
/* Don't use open ranges for partial key_segments */
if (!(key_part->flag & HA_PART_KEY_SEG)) {
/*
Set NEAR_MAX to read values lesser than the stored value.
*/
const int cmp_value =
stored_field_cmp_to_item(param->thd, field, value);
if ((type == Item_func::LT_FUNC && cmp_value >= 0) ||
(type == Item_func::LE_FUNC && cmp_value > 0))
tree->root->max_flag = NEAR_MAX;
}
if (!maybe_null)
tree->root->min_flag = NO_MIN_RANGE; /* From start */
else { // > NULL
if (!(tree->root->min_value = static_cast<uchar *>(
alloc->Alloc(key_part->store_length + 1))))
goto end;
TRASH(tree->root->min_value, key_part->store_length + 1);
memcpy(tree->root->min_value, is_null_string, sizeof(is_null_string));
tree->root->min_flag = NEAR_MIN;
}
break;
case Item_func::GT_FUNC:
case Item_func::GE_FUNC:
/* Don't use open ranges for partial key_segments */
if (!(key_part->flag & HA_PART_KEY_SEG)) {
/*
Set NEAR_MIN to read values greater than the stored value.
*/
const int cmp_value =
stored_field_cmp_to_item(param->thd, field, value);
if ((type == Item_func::GT_FUNC && cmp_value <= 0) ||
(type == Item_func::GE_FUNC && cmp_value < 0))
tree->root->min_flag = NEAR_MIN;
}
tree->root->max_flag = NO_MAX_RANGE;
break;
case Item_func::SP_EQUALS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_EQUAL);
break;
case Item_func::SP_DISJOINT_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_DISJOINT);
break;
case Item_func::SP_INTERSECTS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_TOUCHES_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_CROSSES_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
case Item_func::SP_WITHIN_FUNC:
/*
Adjust the rkey_func_flag as it's assumed and observed that both
MyISAM and Innodb implement this function in reverse order.
*/
tree->root->set_gis_index_read_function(HA_READ_MBR_CONTAIN);
break;
case Item_func::SP_CONTAINS_FUNC:
/*
Adjust the rkey_func_flag as it's assumed and observed that both
MyISAM and Innodb implement this function in reverse order.
*/
tree->root->set_gis_index_read_function(HA_READ_MBR_WITHIN);
break;
case Item_func::SP_OVERLAPS_FUNC:
tree->root->set_gis_index_read_function(HA_READ_MBR_INTERSECT);
break;
default:
break;
}
end:
if (impossible_cond_cause != NULL) {
Opt_trace_object wrapper(&param->thd->opt_trace);
Opt_trace_object(&param->thd->opt_trace, "impossible_condition",
Opt_trace_context::RANGE_OPTIMIZER)
.add_alnum("cause", impossible_cond_cause);
}
param->thd->mem_root = alloc;
return tree;
}
/**
Add a new key test to a key when scanning through all keys
This will never be called for same key parts.
@param key1 Old root of key
@param key2 Element to insert (must be a single element)
@return New root of key
*/
static SEL_ROOT *sel_add(SEL_ROOT *key1, SEL_ROOT *key2) {
if (!key1) return key2;
if (!key2) return key1;
// key2 is assumed to be a single element.
DBUG_ASSERT(!key2->root->next_key_part);
if (key2->root->part < key1->root->part) {
// key2 fits in the start of the list.
key2->root->set_next_key_part(key1);
return key2;
}
// Find out where in the chain in key1 to put key2.
SEL_ARG *node = key1->root;
while (node->next_key_part &&
node->next_key_part->root->part > key2->root->part)
node = node->next_key_part->root;
key2->root->set_next_key_part(node->release_next_key_part());
node->set_next_key_part(key2);
return key1;
}
static SEL_TREE *tree_and(RANGE_OPT_PARAM *param, SEL_TREE *tree1,
SEL_TREE *tree2) {
DBUG_TRACE;
if (param->has_errors()) return 0;
if (!tree1) return tree2;
if (!tree2) return tree1;
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
return tree1;
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
return tree2;
if (tree1->type == SEL_TREE::MAYBE) {
if (tree2->type == SEL_TREE::KEY) tree2->type = SEL_TREE::KEY_SMALLER;
return tree2;
}
if (tree2->type == SEL_TREE::MAYBE) {
tree1->type = SEL_TREE::KEY_SMALLER;
return tree1;
}
dbug_print_tree("tree1", tree1, param);
dbug_print_tree("tree2", tree2, param);
Key_map result_keys;
/* Join the trees key per key */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ROOT *key1 = tree1->release_key(idx);
SEL_ROOT *key2 = tree2->release_key(idx);
if (key1 || key2) {
SEL_ROOT *new_key = key_and(param, key1, key2);
tree1->set_key(idx, new_key);
if (new_key) {
if (new_key->type == SEL_ROOT::Type::IMPOSSIBLE) {
tree1->type = SEL_TREE::IMPOSSIBLE;
return tree1;
}
result_keys.set_bit(idx);
#ifndef DBUG_OFF
/*
Do not test use_count if there is a large range tree created.
It takes too much time to traverse the tree.
*/
if (param->mem_root->allocated_size() < 2097152)
new_key->test_use_count(new_key);
#endif
}
}
}
tree1->keys_map = result_keys;
/* ok, both trees are index_merge trees */
imerge_list_and_list(&tree1->merges, &tree2->merges);
return tree1;
}
/*
Check if two SEL_TREES can be combined into one (i.e. a single key range
read can be constructed for "cond_of_tree1 OR cond_of_tree2" ) without
using index_merge.
*/
static bool sel_trees_can_be_ored(SEL_TREE *tree1, SEL_TREE *tree2,
RANGE_OPT_PARAM *param) {
Key_map common_keys = tree1->keys_map;
DBUG_TRACE;
common_keys.intersect(tree2->keys_map);
dbug_print_tree("tree1", tree1, param);
dbug_print_tree("tree2", tree2, param);
if (common_keys.is_clear_all()) return false;
/* trees have a common key, check if they refer to same key part */
for (uint key_no = 0; key_no < param->keys; key_no++) {
if (common_keys.is_set(key_no)) {
const SEL_ROOT *key1 = tree1->keys[key_no];
const SEL_ROOT *key2 = tree2->keys[key_no];
/* GIS_OPTIMIZER_FIXME: temp solution. key1 could be all nulls */
if (key1 && key2 && key1->root->part == key2->root->part) return true;
}
}
return false;
}
/*
Remove the trees that are not suitable for record retrieval.
SYNOPSIS
param Range analysis parameter
tree Tree to be processed, tree->type is KEY or KEY_SMALLER
DESCRIPTION
This function walks through tree->keys[] and removes the SEL_ARG* trees
that are not "maybe" trees (*) and cannot be used to construct quick range
selects.
(*) - have type MAYBE or MAYBE_KEY. Perhaps we should remove trees of
these types here as well.
A SEL_ARG* tree cannot be used to construct quick select if it has
tree->part != 0. (e.g. it could represent "keypart2 < const").
WHY THIS FUNCTION IS NEEDED
Normally we allow construction of SEL_TREE objects that have SEL_ARG
trees that do not allow quick range select construction. For example for
" keypart1=1 AND keypart2=2 " the execution will proceed as follows:
tree1= SEL_TREE { SEL_ARG{keypart1=1} }
tree2= SEL_TREE { SEL_ARG{keypart2=2} } -- can't make quick range select
from this
call tree_and(tree1, tree2) -- this joins SEL_ARGs into a usable SEL_ARG
tree.
There is an exception though: when we construct index_merge SEL_TREE,
any SEL_ARG* tree that cannot be used to construct quick range select can
be removed, because current range analysis code doesn't provide any way
that tree could be later combined with another tree.
Consider an example: we should not construct
st1 = SEL_TREE {
merges = SEL_IMERGE {
SEL_TREE(t.key1part1 = 1),
SEL_TREE(t.key2part2 = 2) -- (*)
}
};
because
- (*) cannot be used to construct quick range select,
- There is no execution path that would cause (*) to be converted to
a tree that could be used.
The latter is easy to verify: first, notice that the only way to convert
(*) into a usable tree is to call tree_and(something, (*)).
Second look at what tree_and/tree_or function would do when passed a
SEL_TREE that has the structure like st1 tree has, and conlcude that
tree_and(something, (*)) will not be called.
RETURN
0 Ok, some suitable trees left
1 No tree->keys[] left.
*/
static bool remove_nonrange_trees(RANGE_OPT_PARAM *param, SEL_TREE *tree) {
bool res = false;
for (uint i = 0; i < param->keys; i++) {
if (tree->keys[i]) {
if (tree->keys[i]->root->part) {
tree->keys[i] = NULL;
tree->keys_map.clear_bit(i);
} else
res = true;
}
}
return !res;
}
static SEL_TREE *tree_or(RANGE_OPT_PARAM *param, SEL_TREE *tree1,
SEL_TREE *tree2) {
DBUG_TRACE;
if (param->has_errors()) return 0;
if (!tree1 || !tree2) return 0;
if (tree1->type == SEL_TREE::IMPOSSIBLE || tree2->type == SEL_TREE::ALWAYS)
return tree2;
if (tree2->type == SEL_TREE::IMPOSSIBLE || tree1->type == SEL_TREE::ALWAYS)
return tree1;
if (tree1->type == SEL_TREE::MAYBE) return tree1; // Can't use this
if (tree2->type == SEL_TREE::MAYBE) return tree2;
/*
It is possible that a tree contains both
a) simple range predicates (in tree->keys[]) and
b) index merge range predicates (in tree->merges)
If a tree has both, they represent equally *valid* range
predicate alternatives; both will return all relevant rows from
the table but one may return more unnecessary rows than the
other (additional rows will be filtered later). However, doing
an OR operation on trees with both types of predicates is too
complex at the time. We therefore remove the index merge
predicates (if we have both types) before OR'ing the trees.
TODO: enable tree_or() for trees with both simple and index
merge range predicates.
*/
if (!tree1->merges.is_empty()) {
for (uint i = 0; i < param->keys; i++)
if (tree1->keys[i] != NULL &&
tree1->keys[i]->type == SEL_ROOT::Type::KEY_RANGE) {
tree1->merges.empty();
break;
}
}
if (!tree2->merges.is_empty()) {
for (uint i = 0; i < param->keys; i++)
if (tree2->keys[i] != NULL &&
tree2->keys[i]->type == SEL_ROOT::Type::KEY_RANGE) {
tree2->merges.empty();
break;
}
}
SEL_TREE *result = 0;
Key_map result_keys;
if (sel_trees_can_be_ored(tree1, tree2, param)) {
/* Join the trees key per key */
for (uint idx = 0; idx < param->keys; idx++) {
SEL_ROOT *key1 = tree1->release_key(idx);
SEL_ROOT *key2 = tree2->release_key(idx);
SEL_ROOT *new_key = key_or(param, key1, key2);
tree1->set_key(idx, new_key);
if (new_key) {
result = tree1; // Added to tree1
result_keys.set_bit(idx);
#ifndef DBUG_OFF
/*
Do not test use count if there is a large range tree created.
It takes too much time to traverse the tree.
*/
if (param->mem_root->allocated_size() < 2097152)
new_key->test_use_count(new_key);
#endif
}
}
if (result) result->keys_map = result_keys;
} else {
/* ok, two trees have KEY type but cannot be used without index merge */
if (tree1->merges.is_empty() && tree2->merges.is_empty()) {
if (param->remove_jump_scans) {
bool no_trees = remove_nonrange_trees(param, tree1);
no_trees = no_trees || remove_nonrange_trees(param, tree2);
if (no_trees)
return new (param->mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->mem_root, param->keys);
}
SEL_IMERGE *merge;
/* both trees are "range" trees, produce new index merge structure */
if (!(result =
new (param->mem_root) SEL_TREE(param->mem_root, param->keys)) ||
!(merge = new (param->mem_root) SEL_IMERGE()) ||
(result->merges.push_back(merge)) ||
(merge->or_sel_tree(param, tree1)) ||
(merge->or_sel_tree(param, tree2)))
result = NULL;
else
result->type = tree1->type;
} else if (!tree1->merges.is_empty() && !tree2->merges.is_empty()) {
if (imerge_list_or_list(param, &tree1->merges, &tree2->merges))
result = new (param->mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->mem_root, param->keys);
else
result = tree1;
} else {
/* one tree is index merge tree and another is range tree */
if (tree1->merges.is_empty()) std::swap(tree1, tree2);
if (param->remove_jump_scans && remove_nonrange_trees(param, tree2))
return new (param->mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->mem_root, param->keys);
/* add tree2 to tree1->merges, checking if it collapses to ALWAYS */
if (imerge_list_or_tree(param, &tree1->merges, tree2))
result = new (param->mem_root)
SEL_TREE(SEL_TREE::ALWAYS, param->mem_root, param->keys);
else
result = tree1;
}
}
return result;
}
/**
And key trees where key1->part < key2->part
key2 will be connected to every key in key1, and thus
have its use_count incremented many times. The returned node
will not have its use_count increased; you are supposed to do
that yourself when you connect it to a root.
@param param Range analysis context (needed to track if we have allocated
too many SEL_ARGs)
@param key1 Root of first tree to AND together
@param key2 Root of second tree to AND together
@return Root of (key1 AND key2)
*/
static SEL_ROOT *and_all_keys(RANGE_OPT_PARAM *param, SEL_ROOT *key1,
SEL_ROOT *key2) {
SEL_ARG *next;
// We will be modifying key1, so clone it if we need to.
if (key1->use_count > 0) {
if (!(key1 = key1->clone_tree(param))) return nullptr; // OOM
}
/*
We will be using key2 several times, so temporarily increase
its use_count artificially to keep key_and() below from modifying
it in-place.
Note that this makes test_use_count() fail since our use_count is
now higher than the actual number of references, but that is only ever
called from tree_and() and tree_or(), not from anything below this,
and we undo it below.
*/
++key2->use_count;
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) {
// See todo for left/right pointers
DBUG_ASSERT(!key1->root->left);
DBUG_ASSERT(!key1->root->right);
key1->root->next = key1->root->prev = 0;
}
for (next = key1->root->first(); next; next = next->next) {
if (next->next_key_part) {
/*
The more complicated case; there's already another AND clause,
so we cannot connect key2 to key1 directly, but need to recurse.
*/
SEL_ROOT *tmp = key_and(param, next->release_next_key_part(), key2);
next->set_next_key_part(tmp);
if (tmp && tmp->type == SEL_ROOT::Type::IMPOSSIBLE) {
key1->tree_delete(next);
}
} else {
// The trivial case.
next->set_next_key_part(key2);
}
}
// Undo the temporary use_count modification above.
--key2->use_count;
return key1;
}
/*
Produce a SEL_ARG graph that represents "key1 AND key2"
SYNOPSIS
key_and()
param Range analysis context (needed to track if we have allocated
too many SEL_ARGs)
key1 First argument, root of its RB-tree
key2 Second argument, root of its RB-tree
key_and() does not modify key1 nor key2 if they are in use by other roots
(although typical use is that key1 has been disconnected from its root
and thus can be modified in-place). Thus, it does not change their use_count
in the typical case.
The returned node will not have its use_count increased; you are supposed
to do that yourself when you connect it to a root.
RETURN
RB-tree root of the resulting SEL_ARG graph.
NULL if the result of AND operation is an empty interval {0}.
*/
static SEL_ROOT *key_and(RANGE_OPT_PARAM *param, SEL_ROOT *key1,
SEL_ROOT *key2) {
if (param->has_errors()) return 0;
if (key1 == NULL || key1->is_always()) {
if (key1) key1->free_tree();
return key2;
}
if (key2 == NULL || key2->is_always()) {
if (key2) key2->free_tree();
return key1;
}
if (key1->root->part != key2->root->part) {
if (key1->root->part > key2->root->part) {
std::swap(key1, key2);
}
DBUG_ASSERT(key1->root->part < key2->root->part);
return and_all_keys(param, key1, key2);
}
if ((!key2->simple_key() && key1->simple_key() &&
key2->type != SEL_ROOT::Type::MAYBE_KEY) ||
key1->type == SEL_ROOT::Type::MAYBE_KEY) { // Put simple key in key2
std::swap(key1, key2);
}
/* If one of the key is MAYBE_KEY then the found region may be smaller */
if (key2->type == SEL_ROOT::Type::MAYBE_KEY) {
if (key1->use_count > 0) {
// We are going to modify key1, so we need to clone it.
if (!(key1 = key1->clone_tree(param))) return 0; // OOM
}
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) { // Both are maybe key
SEL_ROOT *new_part = key_and(param, key1->root->release_next_key_part(),
key2->root->next_key_part);
key1->root->set_next_key_part(new_part);
return key1;
} else {
key1->root->maybe_smaller();
if (key2->root->next_key_part) {
return and_all_keys(param, key1, key2);
} else {
/*
key2 is MAYBE_KEY and nothing more; simply discard it,
since we've now moved that information into key1's maybe_flag.
*/
key2->free_tree();
return key1;
}
}
// Unreachable.
DBUG_ASSERT(false);
return nullptr;
}
if ((key1->root->min_flag | key2->root->min_flag) & GEOM_FLAG) {
/*
Cannot optimize geometry ranges. The next best thing is to keep
one of them.
*/
key2->free_tree();
return key1;
}
SEL_ARG *e1 = key1->root->first(), *e2 = key2->root->first();
SEL_ROOT *new_tree = nullptr;
while (e1 && e2) {
int cmp = e1->cmp_min_to_min(e2);
if (cmp < 0) {
if (get_range(&e1, &e2, key1)) continue;
} else if (get_range(&e2, &e1, key2))
continue;
/*
NOTE: We don't destroy e1->next_key_part nor e2->next_key_part
(if used at all, the return value here goes into a brand new element;
it does not overwrite either of them), so we keep their use_counts
intact here.
*/
SEL_ROOT *next = key_and(param, e1->next_key_part, e2->next_key_part);
if (next && next->type == SEL_ROOT::Type::IMPOSSIBLE)
next->free_tree();
else {
SEL_ARG *new_arg = e1->clone_and(e2, param->mem_root);
if (!new_arg) return nullptr; // End of memory
new_arg->set_next_key_part(next);
if (!new_tree) {
new_tree = new (param->mem_root) SEL_ROOT(new_arg);
} else
new_tree->insert(new_arg);
}
if (e1->cmp_max_to_max(e2) < 0)
e1 = e1->next; // e1 can't overlap next e2
else
e2 = e2->next;
}
key1->free_tree();
key2->free_tree();
if (!new_tree)
// Impossible range
return new (param->mem_root)
SEL_ROOT(param->mem_root, SEL_ROOT::Type::IMPOSSIBLE);
return new_tree;
}
static bool get_range(SEL_ARG **e1, SEL_ARG **e2, const SEL_ROOT *root1) {
(*e1) = root1->find_range(*e2); // first e1->min < e2->min
if ((*e1)->cmp_max_to_min(*e2) < 0) {
if (!((*e1) = (*e1)->next)) return 1;
if ((*e1)->cmp_min_to_max(*e2) > 0) {
(*e2) = (*e2)->next;
return 1;
}
}
return 0;
}
/**
Combine two range expression under a common OR. On a logical level, the
transformation is key_or( expr1, expr2 ) => expr1 OR expr2.
Both expressions are assumed to be in the SEL_ARG format. In a logic sense,
the format is reminiscent of DNF, since an expression such as the following
( 1 < kp1 < 10 AND p1 ) OR ( 10 <= kp2 < 20 AND p2 )
where there is a key consisting of keyparts ( kp1, kp2, ..., kpn ) and p1
and p2 are valid SEL_ARG expressions over keyparts kp2 ... kpn, is a valid
SEL_ARG condition. The disjuncts appear ordered by the minimum endpoint of
the first range and ranges must not overlap. It follows that they are also
ordered by maximum endpoints. Thus
( 1 < kp1 <= 2 AND ( kp2 = 2 OR kp2 = 3 ) ) OR kp1 = 3
Is a a valid SER_ARG expression for a key of at least 2 keyparts.
For simplicity, we will assume that expr2 is a single range predicate,
i.e. on the form ( a < x < b AND ... ). It is easy to generalize to a
disjunction of several predicates by subsequently call key_or for each
disjunct.
The algorithm iterates over each disjunct of expr1, and for each disjunct
where the first keypart's range overlaps with the first keypart's range in
expr2:
If the predicates are equal for the rest of the keyparts, or if there are
no more, the range in expr2 has its endpoints copied in, and the SEL_ARG
node in expr2 is deallocated. If more ranges became connected in expr1, the
surplus is also dealocated. If they differ, two ranges are created.
- The range leading up to the overlap. Empty if endpoints are equal.
- The overlapping sub-range. May be the entire range if they are equal.
Finally, there may be one more range if expr2's first keypart's range has a
greater maximum endpoint than the last range in expr1.
For the overlapping sub-range, we recursively call key_or. Thus in order to
compute key_or of
(1) ( 1 < kp1 < 10 AND 1 < kp2 < 10 )
(2) ( 2 < kp1 < 20 AND 4 < kp2 < 20 )
We create the ranges 1 < kp <= 2, 2 < kp1 < 10, 10 <= kp1 < 20. For the
first one, we simply hook on the condition for the second keypart from (1)
: 1 < kp2 < 10. For the second range 2 < kp1 < 10, key_or( 1 < kp2 < 10, 4
< kp2 < 20 ) is called, yielding 1 < kp2 < 20. For the last range, we reuse
the range 4 < kp2 < 20 from (2) for the second keypart. The result is thus
( 1 < kp1 <= 2 AND 1 < kp2 < 10 ) OR
( 2 < kp1 < 10 AND 1 < kp2 < 20 ) OR
( 10 <= kp1 < 20 AND 4 < kp2 < 20 )
key_or() does not modify key1 nor key2 if they are in use by other roots
(although typical use is that key1 has been disconnected from its root
and thus can be modified in-place). Thus, it does not change their
use_count.
The returned node will not have its use_count increased; you are supposed
to do that yourself when you connect it to a root.
@param param PARAM from test_quick_select
@param key1 Root of RB-tree of SEL_ARGs to be ORed with key2
@param key2 Root of RB-tree of SEL_ARGs to be ORed with key1
*/
static SEL_ROOT *key_or(RANGE_OPT_PARAM *param, SEL_ROOT *key1,
SEL_ROOT *key2) {
if (param->has_errors()) return 0;
if (key1 == NULL || key1->is_always()) {
if (key2) key2->free_tree();
return key1;
}
if (key2 == NULL || key2->is_always())
// Case is symmetric to the one above, just flip parameters.
return key_or(param, key2, key1);
if (key1->root->part != key2->root->part ||
(key1->root->min_flag | key2->root->min_flag) & GEOM_FLAG) {
key1->free_tree();
key2->free_tree();
return 0; // Can't optimize this
}
// If one of the key is MAYBE_KEY then the found region may be bigger
if (key1->type == SEL_ROOT::Type::MAYBE_KEY) {
key2->free_tree();
return key1;
}
if (key2->type == SEL_ROOT::Type::MAYBE_KEY) {
key1->free_tree();
return key2;
}
// (cond) OR (IMPOSSIBLE) <=> (cond).
if (key1->type == SEL_ROOT::Type::IMPOSSIBLE) {
key1->free_tree();
return key2;
}
if (key2->type == SEL_ROOT::Type::IMPOSSIBLE) {
key2->free_tree();
return key1;
}
/*
We need to modify one of key1 or key2 (whichever we choose, we will
call it key1 afterwards). If either is used only by us (use_count == 0),
we can use that directly. If not, we need to clone one of them; we pick
the one with the fewest elements since that is the cheapest.
*/
if (key1->use_count > 0) {
if (key2->use_count == 0 || key1->elements > key2->elements) {
std::swap(key1, key2);
}
if (key1->use_count > 0 && (key1 = key1->clone_tree(param)) == NULL)
return 0; // OOM
}
DBUG_ASSERT(key1->use_count == 0);
/*
Add tree at key2 to tree at key1. If key2 is used by nobody else,
we can cannibalize its nodes and add them directly into key1.
If not, we'll need to make copies of them.
*/
const bool key2_shared = (key2->use_count != 0);
key1->root->maybe_flag |= key2->root->maybe_flag;
/*
Notation for illustrations used in the rest of this function:
Range: [--------]
^ ^
start stop
Two overlapping ranges:
[-----] [----] [--]
[---] or [---] or [-------]
Ambiguity: ***
The range starts or stops somewhere in the "***" range.
Example: a starts before b and may end before/the same place/after b
a: [----***]
b: [---]
Adjacent ranges:
Ranges that meet but do not overlap. Example: a = "x < 3", b = "x >= 3"
a: ----]
b: [----
*/
SEL_ARG *cur_key2 = key2->root->first();
while (cur_key2) {
/*
key1 consists of one or more ranges. cur_key1 is the
range currently being handled.
initialize cur_key1 to the latest range in key1 that starts the
same place or before the range in cur_key2 starts
cur_key2: [------]
key1: [---] [-----] [----]
^
cur_key1
*/
SEL_ARG *cur_key1 = key1->find_range(cur_key2);
/*
Used to describe how two key values are positioned compared to
each other. Consider key_value_a.<cmp_func>(key_value_b):
-2: key_value_a is smaller than key_value_b, and they are adjacent
-1: key_value_a is smaller than key_value_b (not adjacent)
0: the key values are equal
1: key_value_a is bigger than key_value_b (not adjacent)
2: key_value_a is bigger than key_value_b, and they are adjacent
Example: "cmp= cur_key1->cmp_max_to_min(cur_key2)"
cur_key2: [-------- (10 <= x ... )
cur_key1: -----] ( ... x < 10) => cmp==-2
cur_key1: ----] ( ... x < 9) => cmp==-1
cur_key1: ------] ( ... x <= 10) => cmp== 0
cur_key1: --------] ( ... x <= 12) => cmp== 1
(cmp == 2 does not make sense for cmp_max_to_min())
*/
int cmp = 0;
if (!cur_key1) {
/*
The range in cur_key2 starts before the first range in key1. Use
the first range in key1 as cur_key1.
cur_key2: [--------]
key1: [****--] [----] [-------]
^
cur_key1
*/
cur_key1 = key1->root->first();
cmp = -1;
} else if ((cmp = cur_key1->cmp_max_to_min(cur_key2)) < 0) {
/*
This is the case:
cur_key2: [-------]
cur_key1: [----**]
*/
SEL_ARG *next_key1 = cur_key1->next;
if (cmp == -2 &&
eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
/*
Adjacent (cmp==-2) and equal next_key_parts => ranges can be merged
This is the case:
cur_key2: [-------]
cur_key1: [----]
Result:
cur_key2: [-------------] => inserted into key1 below
cur_key1: => deleted
*/
SEL_ARG *next_key2 = cur_key2->next;
if (key2_shared) {
if (!(cur_key2 = new (param->mem_root) SEL_ARG(*cur_key2)))
return 0; // out of memory
cur_key2->next = next_key2; // New copy of cur_key2
}
if (cur_key2->copy_min(cur_key1)) {
// cur_key2 is full range: [-inf <= cur_key2 <= +inf]
key1->free_tree();
key2->free_tree();
if (key1->root->maybe_flag)
return new (param->mem_root)
SEL_ROOT(param->mem_root, SEL_ROOT::Type::MAYBE_KEY);
return 0;
}
key1->tree_delete(cur_key1);
if (key1->type == SEL_ROOT::Type::IMPOSSIBLE) {
/*
cur_key1 was the last range in key1; move the cur_key2
range that was merged above to key1
*/
key1->insert(cur_key2);
cur_key2 = next_key2;
break;
}
}
// Move to next range in key1. Now cur_key1.min > cur_key2.min
if (!(cur_key1 = next_key1))
break; // No more ranges in key1. Copy rest of key2
}
if (cmp < 0) {
/*
This is the case:
cur_key2: [--***]
cur_key1: [----]
*/
int cur_key1_cmp;
if ((cur_key1_cmp = cur_key1->cmp_min_to_max(cur_key2)) > 0) {
/*
This is the case:
cur_key2: [------**]
cur_key1: [----]
*/
if (cur_key1_cmp == 2 &&
eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
/*
Adjacent ranges with equal next_key_part. Merge like this:
This is the case:
cur_key2: [------]
cur_key1: [-----]
Result:
cur_key2: [------]
cur_key1: [-------------]
Then move on to next key2 range.
*/
cur_key1->copy_min_to_min(cur_key2);
key1->root->merge_flags(cur_key2); // should be cur_key1->merge...()
// ?
if (cur_key1->min_flag & NO_MIN_RANGE &&
cur_key1->max_flag & NO_MAX_RANGE) {
key1->free_tree();
key2->free_tree();
if (key1->root->maybe_flag)
return new (param->mem_root)
SEL_ROOT(param->mem_root, SEL_ROOT::Type::MAYBE_KEY);
return 0;
}
cur_key2->release_next_key_part(); // Free not used tree
cur_key2 = cur_key2->next;
continue;
} else {
/*
cur_key2 not adjacent to cur_key1 or has different next_key_part.
Insert into key1 and move to next range in key2
This is the case:
cur_key2: [------**]
cur_key1: [----]
Result:
key1: [------**][----]
^ ^
insert cur_key1
*/
SEL_ARG *next_key2 = cur_key2->next;
if (key2_shared) {
SEL_ARG *cpy =
new (param->mem_root) SEL_ARG(*cur_key2); // Must make copy
if (!cpy) return 0; // OOM
key1->insert(cpy);
} else
key1->insert(cur_key2);
cur_key2 = next_key2;
continue;
}
}
}
/*
The ranges in cur_key1 and cur_key2 are overlapping:
cur_key2: [----------]
cur_key1: [*****-----*****]
Corollary: cur_key1.min <= cur_key2.max
*/
if (eq_tree(cur_key1->next_key_part, cur_key2->next_key_part)) {
// Merge overlapping ranges with equal next_key_part
if (cur_key1->is_same(cur_key2)) {
/*
cur_key1 covers exactly the same range as cur_key2
Use the relevant range in key1.
*/
cur_key1->merge_flags(cur_key2); // Copy maybe flags
cur_key2->release_next_key_part(); // Free not used tree
} else {
SEL_ARG *last = cur_key1;
SEL_ARG *first = cur_key1;
/*
Find the last range in key1 that overlaps cur_key2 and
where all ranges first...last have the same next_key_part as
cur_key2.
cur_key2: [****----------------------*******]
key1: [--] [----] [---] [-----] [xxxx]
^ ^ ^
first last different next_key_part
Since cur_key2 covers them, the ranges between first and last
are merged into one range by deleting first...last-1 from
the key1 tree. In the figure, this applies to first and the
two consecutive ranges. The range of last is then extended:
* last.min: Set to min(cur_key2.min, first.min)
* last.max: If there is a last->next that overlaps cur_key2
(i.e., last->next has a different next_key_part):
Set adjacent to last->next.min
Otherwise: Set to max(cur_key2.max, last.max)
Result:
cur_key2: [****----------------------*******]
[--] [----] [---] => deleted from key1
key1: [**------------------------***][xxxx]
^ ^
cur_key1=last different next_key_part
*/
while (last->next && last->next->cmp_min_to_max(cur_key2) <= 0 &&
eq_tree(last->next->next_key_part, cur_key2->next_key_part)) {
/*
last->next is covered by cur_key2 and has same next_key_part.
last can be deleted
*/
SEL_ARG *save = last;
last = last->next;
key1->tree_delete(save);
}
// Redirect cur_key1 to last which will cover the entire range
cur_key1 = last;
/*
Extend last to cover the entire range of
[min(first.min_value,cur_key2.min_value)...last.max_value].
If this forms a full range (the range covers all possible
values) we return no SEL_ARG RB-tree.
*/
bool full_range = last->copy_min(first);
if (!full_range) full_range = last->copy_min(cur_key2);
if (!full_range) {
if (last->next && cur_key2->cmp_max_to_min(last->next) >= 0) {
/*
This is the case:
cur_key2: [-------------]
key1: [***------] [xxxx]
^ ^
last different next_key_part
Extend range of last up to last->next:
cur_key2: [-------------]
key1: [***--------][xxxx]
*/
last->copy_min_to_max(last->next);
} else
/*
This is the case:
cur_key2: [--------*****]
key1: [***---------] [xxxx]
^ ^
last different next_key_part
Extend range of last up to max(last.max, cur_key2.max):
cur_key2: [--------*****]
key1: [***----------**] [xxxx]
*/
full_range = last->copy_max(cur_key2);
}
if (full_range) { // Full range
key1->free_tree();
cur_key2->release_next_key_part();
if (key1->root->maybe_flag)
return new (param->mem_root)
SEL_ROOT(param->mem_root, SEL_ROOT::Type::MAYBE_KEY);
return 0;
}
}
}
if (cmp >= 0 && cur_key1->cmp_min_to_min(cur_key2) < 0) {
/*
This is the case ("cmp>=0" means that cur_key1.max >= cur_key2.min):
cur_key2: [-------]
cur_key1: [----------*******]
*/
if (!cur_key1->next_key_part) {
/*
cur_key1->next_key_part is empty: cut the range that
is covered by cur_key1 from cur_key2.
Reason: (cur_key2->next_key_part OR
cur_key1->next_key_part) will be empty and therefore
equal to cur_key1->next_key_part. Thus, this part of
the cur_key2 range is completely covered by cur_key1.
*/
if (cur_key1->cmp_max_to_max(cur_key2) >= 0) {
/*
cur_key1 covers the entire range in cur_key2.
cur_key2: [-------]
cur_key1: [-----------------]
Move on to next range in key2
*/
cur_key2 = cur_key2->next;
continue;
} else {
/*
This is the case:
cur_key2: [-------]
cur_key1: [---------]
Result:
cur_key2: [---]
cur_key1: [---------]
*/
cur_key2->copy_max_to_min(cur_key1);
// FIXME: what if key2_shared?
continue;
}
}
/*
The ranges are overlapping but have not been merged because
next_key_part of cur_key1 and cur_key2 differ.
cur_key2: [----]
cur_key1: [------------*****]
Split cur_key1 in two where cur_key2 starts:
cur_key2: [----]
key1: [--------][--*****]
^ ^
insert cur_key1
*/
SEL_ARG *new_arg = cur_key1->clone_first(cur_key2, param->mem_root);
if (!new_arg) return 0; // OOM
new_arg->set_next_key_part(cur_key1->next_key_part);
cur_key1->copy_min_to_min(cur_key2);
key1->insert(new_arg);
} // cur_key1.min >= cur_key2.min due to this if()
/*
Now cur_key2.min <= cur_key1.min <= cur_key2.max:
cur_key2: [---------]
cur_key1: [****---*****]
*/
/*
Get a copy we can modify. Note that this will keep an extra reference
to its next_key_part (if any), but the destructor will clean that up
when we exit from the function. key2_cpy is ephemeral and will not be
inserted in any tree, although copies of it might be.
*/
SEL_ARG key2_cpy(*cur_key2);
for (;;) {
if (cur_key1->cmp_min_to_min(&key2_cpy) > 0) {
/*
This is the case:
key2_cpy: [------------]
key1: [-*****]
^
cur_key1
Result:
key2_cpy: [---]
key1: [-------][-*****]
^ ^
insert cur_key1
*/
SEL_ARG *new_arg = key2_cpy.clone_first(cur_key1, param->mem_root);
if (!new_arg) return 0; // OOM
new_arg->set_next_key_part(key2_cpy.next_key_part);
key1->insert(new_arg);
key2_cpy.copy_min_to_min(cur_key1);
}
// Now key2_cpy.min == cur_key1.min
if ((cmp = cur_key1->cmp_max_to_max(&key2_cpy)) <= 0) {
/*
cur_key1.max <= key2_cpy.max:
key2_cpy: a) [-------] or b) [----]
cur_key1: [----] [----]
Steps:
1) Update next_key_part of cur_key1: OR it with
key2_cpy->next_key_part.
2) If case a: Insert range [cur_key1.max, key2_cpy.max]
into key1 using next_key_part of key2_cpy
Result:
key1: a) [----][-] or b) [----]
*/
cur_key1->maybe_flag |= key2_cpy.maybe_flag;
cur_key1->set_next_key_part(key_or(
param, cur_key1->release_next_key_part(), key2_cpy.next_key_part));
if (!cmp) break; // case b: done with this key2 range
// Make key2_cpy the range [cur_key1.max, key2_cpy.max]
key2_cpy.copy_max_to_min(cur_key1);
if (!(cur_key1 = cur_key1->next)) {
/*
No more ranges in key1. Insert key2_cpy and go to "end"
label to insert remaining ranges in key2 if any.
*/
SEL_ARG *new_key1_range = new (param->mem_root) SEL_ARG(key2_cpy);
if (!new_key1_range) return 0; // OOM
key1->insert(new_key1_range);
cur_key2 = cur_key2->next;
goto end;
}
if (cur_key1->cmp_min_to_max(&key2_cpy) > 0) {
/*
The next range in key1 does not overlap with key2_cpy.
Insert this range into key1 and move on to the next range
in key2.
*/
SEL_ARG *new_key1_range = new (param->mem_root) SEL_ARG(key2_cpy);
if (!new_key1_range) return 0; // OOM
key1->insert(new_key1_range);
break;
}
/*
key2_cpy overlaps with the next range in key1 and the case
is now "cur_key2.min <= cur_key1.min <= cur_key2.max". Go back
to for(;;) to handle this situation.
*/
continue;
} else {
/*
This is the case:
key2_cpy: [-------]
cur_key1: [------------]
Result:
key1: [-------][---]
^ ^
new_arg cur_key1
Steps:
0) If cur_key1->next_key_part is empty: do nothing.
Reason: (key2_cpy->next_key_part OR
cur_key1->next_key_part) will be empty and
therefore equal to cur_key1->next_key_part. Thus,
the range in key2_cpy is completely covered by
cur_key1
1) Make new_arg with range [cur_key1.min, key2_cpy.max].
new_arg->next_key_part is OR between next_key_part of
cur_key1 and key2_cpy
2) Make cur_key1 the range [key2_cpy.max, cur_key1.max]
3) Insert new_arg into key1
*/
if (!cur_key1->next_key_part) // Step 0
{
key2_cpy.release_next_key_part(); // Free not used tree
break;
}
SEL_ARG *new_arg = cur_key1->clone_last(&key2_cpy, param->mem_root);
if (!new_arg) return 0; // OOM
cur_key1->copy_max_to_min(&key2_cpy);
new_arg->set_next_key_part(
key_or(param, cur_key1->next_key_part, key2_cpy.next_key_part));
key1->insert(new_arg);
break;
}
}
// Move on to next range in key2
cur_key2 = cur_key2->next;
}
end:
/*
Add key2 ranges that are non-overlapping with and higher than the
highest range in key1.
*/
while (cur_key2) {
SEL_ARG *next = cur_key2->next;
if (key2_shared) {
SEL_ARG *key2_cpy =
new (param->mem_root) SEL_ARG(*cur_key2); // Must make copy
if (!key2_cpy) return 0;
key1->insert(key2_cpy);
} else
key1->insert(cur_key2);
cur_key2 = next;
}
/*
TODO: We should call key2->free_tree() here, since this might be the
last reference to the tree (if !key2_shared). However, the tree might
be in an invalid state since we may have inserted nodes into key1 without
taking them out of key2, so we need to clean that up first. As a temporary
measure, we TRASH() it to expose any bugs where people hold on to it
where we thought they wouldn't.
*/
#ifndef DBUG_OFF
if (!key2_shared) TRASH(key2, sizeof(*key2));
#endif
return key1;
}
/**
Compare if two trees are equal, recursively (not necessarily the same
elements, but in terms of structure and values in each leaf).
NOTE: The demand for the same structure means that some trees that are
equivalent could be deemed inequal by this function, depending on insertion
order.
@param a First tree to compare.
@param b Second tree to compare.
@return true iff they are equivalent.
*/
static bool eq_tree(const SEL_ROOT *a, const SEL_ROOT *b) {
if (a == b) return true;
if (!a || !b) return false;
if (a->type == SEL_ROOT::Type::KEY_RANGE &&
b->type == SEL_ROOT::Type::KEY_RANGE)
return eq_tree(a->root, b->root);
else
return a->type == b->type;
}
static bool eq_tree(const SEL_ARG *a, const SEL_ARG *b) {
if (a == b) return 1;
if (!a || !b || !a->is_same(b)) return 0;
if (a->left != null_element && b->left != null_element) {
if (!eq_tree(a->left, b->left)) return 0;
} else if (a->left != null_element || b->left != null_element)
return 0;
if (a->right != null_element && b->right != null_element) {
if (!eq_tree(a->right, b->right)) return 0;
} else if (a->right != null_element || b->right != null_element)
return 0;
if (a->next_key_part != b->next_key_part) { // Sub range
if (!a->next_key_part != !b->next_key_part ||
!eq_tree(a->next_key_part, b->next_key_part))
return 0;
}
return 1;
}
void SEL_ROOT::insert(SEL_ARG *key) {
SEL_ARG *element, **par = NULL, *last_element = NULL;
if (type == Type::IMPOSSIBLE) {
/*
Used to be impossible, but now gets a new range; remove the dummy node
that exists in that kind of tree, and set this one as the root
(and sole element) instead.
*/
root->release_next_key_part();
uint8 maybe_flag = root->maybe_flag;
root = key;
root->maybe_flag = maybe_flag;
root->make_root();
type = Type::KEY_RANGE;
return;
}
DBUG_ASSERT(type == Type::KEY_RANGE);
DBUG_ASSERT(root->parent == nullptr);
DBUG_ASSERT(root != null_element);
for (element = root; element != null_element;) {
last_element = element;
if (key->cmp_min_to_min(element) > 0) {
par = &element->right;
element = element->right;
} else {
par = &element->left;
element = element->left;
}
}
*par = key;
key->parent = last_element;
/* Link in list */
if (par == &last_element->left) {
key->next = last_element;
if ((key->prev = last_element->prev)) key->prev->next = key;
last_element->prev = key;
} else {
if ((key->next = last_element->next)) key->next->prev = key;
key->prev = last_element;
last_element->next = key;
}
key->left = key->right = null_element;
uint8 maybe_flag = root->maybe_flag;
root = root->rb_insert(key); // rebalance tree
root->maybe_flag = maybe_flag;
++elements;
}
SEL_ARG *SEL_ROOT::find_range(const SEL_ARG *key) const {
SEL_ARG *element = root, *found = 0;
for (;;) {
if (element == null_element) return found;
int cmp = element->cmp_min_to_min(key);
if (cmp == 0) return element;
if (cmp < 0) {
found = element;
element = element->right;
} else
element = element->left;
}
}
/*
Remove a element from the tree
SYNOPSIS
tree_delete()
key Key that is to be deleted from tree (this)
NOTE
This also frees all sub trees that is used by the element
*/
void SEL_ROOT::tree_delete(SEL_ARG *key) {
enum SEL_ARG::leaf_color remove_color;
SEL_ARG *nod, **par, *fix_par;
DBUG_TRACE;
DBUG_ASSERT(this->type == Type::KEY_RANGE);
DBUG_ASSERT(this->root->parent == nullptr);
/*
If deleting the last element, we are now of type IMPOSSIBLE.
Keep the element around so that we have somewhere to store
next_key_part etc. if needed in the future.
*/
if (elements == 1) {
DBUG_ASSERT(key == root);
type = Type::IMPOSSIBLE;
key->release_next_key_part();
return;
}
/* Unlink from list */
if (key->prev) key->prev->next = key->next;
if (key->next) key->next->prev = key->prev;
if (key->next_key_part) --key->next_key_part->use_count;
if (!key->parent)
par = &root;
else
par = key->parent_ptr();
if (key->left == null_element) {
*par = nod = key->right;
fix_par = key->parent;
if (nod != null_element) nod->parent = fix_par;
remove_color = key->color;
} else if (key->right == null_element) {
*par = nod = key->left;
nod->parent = fix_par = key->parent;
remove_color = key->color;
} else {
SEL_ARG *tmp = key->next; // next bigger key (exist!)
nod = *tmp->parent_ptr() = tmp->right; // unlink tmp from tree
fix_par = tmp->parent;
if (nod != null_element) nod->parent = fix_par;
remove_color = tmp->color;
tmp->parent = key->parent; // Move node in place of key
(tmp->left = key->left)->parent = tmp;
if ((tmp->right = key->right) != null_element) tmp->right->parent = tmp;
tmp->color = key->color;
*par = tmp;
if (fix_par == key) // key->right == key->next
fix_par = tmp; // new parent of nod
}
--elements;
if (root == null_element) return; // Maybe root later
if (remove_color == SEL_ARG::BLACK) {
uint8 maybe_flag = root->maybe_flag;
root = rb_delete_fixup(root, nod, fix_par);
root->maybe_flag = maybe_flag;
}
#ifndef DBUG_OFF
test_rb_tree(root, root->parent);
#endif
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(SEL_ARG **root, SEL_ARG *leaf) {
SEL_ARG *y = leaf->right;
leaf->right = y->left;
if (y->left != null_element) y->left->parent = leaf;
if (!(y->parent = leaf->parent))
*root = y;
else
*leaf->parent_ptr() = y;
y->left = leaf;
leaf->parent = y;
}
static void right_rotate(SEL_ARG **root, SEL_ARG *leaf) {
SEL_ARG *y = leaf->left;
leaf->left = y->right;
if (y->right != null_element) y->right->parent = leaf;
if (!(y->parent = leaf->parent))
*root = y;
else
*leaf->parent_ptr() = y;
y->right = leaf;
leaf->parent = y;
}
SEL_ARG *SEL_ARG::rb_insert(SEL_ARG *leaf) {
SEL_ARG *y, *par, *par2, *root;
root = this;
DBUG_ASSERT(!root->parent);
DBUG_ASSERT(root->color == BLACK);
leaf->color = RED;
while (leaf != root && (par = leaf->parent)->color ==
RED) { // This can't be root or 1 level under
DBUG_ASSERT(leaf->parent->parent);
if (par == (par2 = leaf->parent->parent)->left) {
y = par2->right;
if (y->color == RED) {
par->color = BLACK;
y->color = BLACK;
leaf = par2;
leaf->color = RED; /* And the loop continues */
} else {
if (leaf == par->right) {
left_rotate(&root, leaf->parent);
par = leaf; /* leaf is now parent to old leaf */
}
par->color = BLACK;
par2->color = RED;
right_rotate(&root, par2);
break;
}
} else {
y = par2->left;
if (y->color == RED) {
par->color = BLACK;
y->color = BLACK;
leaf = par2;
leaf->color = RED; /* And the loop continues */
} else {
if (leaf == par->left) {
right_rotate(&root, par);
par = leaf;
}
par->color = BLACK;
par2->color = RED;
left_rotate(&root, par2);
break;
}
}
}
root->color = BLACK;
#ifndef DBUG_OFF
test_rb_tree(root, root->parent);
#endif
return root;
}
static SEL_ARG *rb_delete_fixup(SEL_ARG *root, SEL_ARG *key, SEL_ARG *par) {
SEL_ARG *x, *w;
root->parent = 0;
x = key;
while (x != root && x->color == SEL_ARG::BLACK) {
if (x == par->left) {
w = par->right;
if (w->color == SEL_ARG::RED) {
w->color = SEL_ARG::BLACK;
par->color = SEL_ARG::RED;
left_rotate(&root, par);
w = par->right;
}
if (w->left->color == SEL_ARG::BLACK &&
w->right->color == SEL_ARG::BLACK) {
w->color = SEL_ARG::RED;
x = par;
} else {
if (w->right->color == SEL_ARG::BLACK) {
w->left->color = SEL_ARG::BLACK;
w->color = SEL_ARG::RED;
right_rotate(&root, w);
w = par->right;
}
w->color = par->color;
par->color = SEL_ARG::BLACK;
w->right->color = SEL_ARG::BLACK;
left_rotate(&root, par);
x = root;
break;
}
} else {
w = par->left;
if (w->color == SEL_ARG::RED) {
w->color = SEL_ARG::BLACK;
par->color = SEL_ARG::RED;
right_rotate(&root, par);
w = par->left;
}
if (w->right->color == SEL_ARG::BLACK &&
w->left->color == SEL_ARG::BLACK) {
w->color = SEL_ARG::RED;
x = par;
} else {
if (w->left->color == SEL_ARG::BLACK) {
w->right->color = SEL_ARG::BLACK;
w->color = SEL_ARG::RED;
left_rotate(&root, w);
w = par->left;
}
w->color = par->color;
par->color = SEL_ARG::BLACK;
w->left->color = SEL_ARG::BLACK;
right_rotate(&root, par);
x = root;
break;
}
}
par = x->parent;
}
x->color = SEL_ARG::BLACK;
return root;
}
#ifndef DBUG_OFF
/* Test that the properties for a red-black tree hold */
static int test_rb_tree(SEL_ARG *element, SEL_ARG *parent) {
int count_l, count_r;
if (element == null_element) return 0; // Found end of tree
if (element->parent != parent) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_PARENT_SHOULD_POINT_AT_PARENT);
return -1;
}
if (!parent && element->color != SEL_ARG::BLACK) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_ROOT_SHOULD_BE_BLACK);
return -1;
}
if (element->color == SEL_ARG::RED &&
(element->left->color == SEL_ARG::RED ||
element->right->color == SEL_ARG::RED)) {
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_2_CONSECUTIVE_REDS);
return -1;
}
if (element->left == element->right &&
element->left != null_element) { // Dummy test
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_RIGHT_IS_LEFT);
return -1;
}
count_l = test_rb_tree(element->left, element);
count_r = test_rb_tree(element->right, element);
if (count_l >= 0 && count_r >= 0) {
if (count_l == count_r) return count_l + (element->color == SEL_ARG::BLACK);
LogErr(ERROR_LEVEL, ER_TREE_CORRUPT_INCORRECT_BLACK_COUNT, count_l,
count_r);
}
return -1; // Error, no more warnings
}
#endif
/**
Count how many times SEL_ARG graph "root" refers to its part "key" via
transitive closure.
@param root An RB-Root node in a SEL_ARG graph.
@param key Another RB-Root node in that SEL_ARG graph.
@param seen Which SEL_ARGs we have already seen in this traversal.
Used for deduplication, so that we only count each
SEL_ARG once.
The passed "root" node may refer to "key" node via root->next_key_part,
root->next->n
This function counts how many times the node "key" is referred (via
SEL_ARG::next_key_part) by
- intervals of RB-tree pointed by "root",
- intervals of RB-trees that are pointed by SEL_ARG::next_key_part from
intervals of RB-tree pointed by "root",
- and so on.
Here is an example (horizontal links represent next_key_part pointers,
vertical links - next/prev prev pointers):
+----+ $
|root|-----------------+
+----+ $ |
| $ |
| $ |
+----+ +---+ $ | +---+ Here the return value
| |- ... -| |---$-+--+->|key| will be 4.
+----+ +---+ $ | | +---+
| $ | |
... $ | |
| $ | |
+----+ +---+ $ | |
| |---| |---------+ |
+----+ +---+ $ |
| | $ |
... +---+ $ |
| |------------+
+---+ $
@return
Number of links to "key" from nodes reachable from "root".
*/
static ulong count_key_part_usage(const SEL_ROOT *root, const SEL_ROOT *key,
std::set<const SEL_ROOT *> *seen) {
// Don't count paths from a given key twice.
if (seen->count(root)) return 0;
seen->insert(root);
ulong count = 0;
for (SEL_ARG *node = root->root->first(); node; node = node->next) {
if (node->next_key_part) {
if (node->next_key_part == key) count++;
if (node->next_key_part->root->part < key->root->part)
count += count_key_part_usage(node->next_key_part, key, seen);
}
}
return count;
}
bool SEL_ROOT::test_use_count(const SEL_ROOT *origin) const {
uint e_count = 0;
if (this == origin && use_count != 1) {
LogErr(INFORMATION_LEVEL, ER_WRONG_COUNT_FOR_ORIGIN, use_count, this);
DBUG_ASSERT(false);
return true;
}
if (type != SEL_ROOT::Type::KEY_RANGE) return false;
for (SEL_ARG *pos = root->first(); pos; pos = pos->next) {
e_count++;
if (pos->next_key_part) {
std::set<const SEL_ROOT *> seen;
ulong count = count_key_part_usage(origin, pos->next_key_part, &seen);
/*
This cannot be a strict equality test, since there might be
connections from the keys[] array that we don't see.
*/
if (count > pos->next_key_part->use_count) {
LogErr(INFORMATION_LEVEL, ER_WRONG_COUNT_FOR_KEY, pos->next_key_part,
pos->next_key_part->use_count, count);
DBUG_ASSERT(false);
return true;
}
pos->next_key_part->test_use_count(origin);
}
}
if (e_count != elements) {
LogErr(WARNING_LEVEL, ER_WRONG_COUNT_OF_ELEMENTS, e_count, elements, this);
DBUG_ASSERT(false);
return true;
}
return false;
}
inline bool SEL_ROOT::simple_key() const {
return elements == 1 && !root->next_key_part;
}
/****************************************************************************
MRR Range Sequence Interface implementation that walks a SEL_ARG* tree.
****************************************************************************/
/* MRR range sequence, SEL_ARG* implementation: stack entry */
struct RANGE_SEQ_ENTRY {
/*
Pointers in min and max keys. They point to right-after-end of key
images. The 0-th entry has these pointing to key tuple start.
*/
uchar *min_key, *max_key;
/*
Flags, for {keypart0, keypart1, ... this_keypart} subtuple.
min_key_flag may have NULL_RANGE set.
*/
uint min_key_flag, max_key_flag;
enum ha_rkey_function rkey_func_flag;
/* Number of key parts */
uint min_key_parts, max_key_parts;
/**
Pointer into the R-B tree for this keypart. It points to the
currently active range for the keypart, so calling next on it will
get to the next range. sel_arg_range_seq_next() uses this to avoid
reparsing the R-B range trees each time a new range is fetched.
*/
SEL_ARG *key_tree;
};
/*
MRR range sequence, SEL_ARG* implementation: SEL_ARG graph traversal context
*/
class Sel_arg_range_sequence {
private:
/**
Stack of ranges for the curr_kp first keyparts. Used by
sel_arg_range_seq_next() so that if the next range is equal to the
previous one for the first x keyparts, stack[x-1] can be
accumulated with the new range in keyparts > x to quickly form
the next range to return.
Notation used below: "x:y" means a range where
"column_in_keypart_0=x" and "column_in_keypart_1=y". For
simplicity, only equality (no BETWEEN, < etc) is considered in the
example but the same principle applies to other range predicate
operators too.
Consider a query with these range predicates:
(kp0=1 and kp1=2 and kp2=3) or
(kp0=1 and kp1=2 and kp2=4) or
(kp0=1 and kp1=3 and kp2=5) or
(kp0=1 and kp1=3 and kp2=6)
1) sel_arg_range_seq_next() is called the first time
- traverse the R-B tree (see SEL_ARG) to find the first range
- returns range "1:2:3"
- values in stack after this: stack[1, 1:2, 1:2:3]
2) sel_arg_range_seq_next() is called second time
- keypart 2 has another range, so the next range in
keypart 2 is appended to stack[1] and saved
in stack[2]
- returns range "1:2:4"
- values in stack after this: stack[1, 1:2, 1:2:4]
3) sel_arg_range_seq_next() is called the third time
- no more ranges in keypart 2, but keypart 1 has
another range, so the next range in keypart 1 is
appended to stack[0] and saved in stack[1]. The first
range in keypart 2 is then appended to stack[1] and
saved in stack[2]
- returns range "1:3:5"
- values in stack after this: stack[1, 1:3, 1:3:5]
4) sel_arg_range_seq_next() is called the fourth time
- keypart 2 has another range, see 2)
- returns range "1:3:6"
- values in stack after this: stack[1, 1:3, 1:3:6]
*/
RANGE_SEQ_ENTRY stack[MAX_REF_PARTS];
/*
Index of last used element in the above array. A value of -1 means
that the stack is empty.
*/
int curr_kp;
public:
uint keyno; /* index of used tree in SEL_TREE structure */
uint real_keyno; /* Number of the index in tables */
PARAM *const param;
SEL_ARG *start; /* Root node of the traversed SEL_ARG* graph */
Sel_arg_range_sequence(PARAM *param_arg) : param(param_arg) { reset(); }
void reset() {
stack[0].key_tree = NULL;
stack[0].min_key = (uchar *)param->min_key;
stack[0].min_key_flag = 0;
stack[0].min_key_parts = 0;
stack[0].rkey_func_flag = HA_READ_INVALID;
stack[0].max_key = (uchar *)param->max_key;
stack[0].max_key_flag = 0;
stack[0].max_key_parts = 0;
curr_kp = -1;
}
bool stack_empty() const { return (curr_kp == -1); }
void stack_push_range(SEL_ARG *key_tree);
void stack_pop_range() {
DBUG_ASSERT(!stack_empty());
if (curr_kp == 0)
reset();
else
curr_kp--;
}
int stack_size() const { return curr_kp + 1; }
RANGE_SEQ_ENTRY *stack_top() {
return stack_empty() ? NULL : &stack[curr_kp];
}
};
/*
Range sequence interface, SEL_ARG* implementation: Initialize the traversal
SYNOPSIS
init()
init_params SEL_ARG tree traversal context
RETURN
Value of init_param
*/
static range_seq_t sel_arg_range_seq_init(void *init_param, uint, uint) {
Sel_arg_range_sequence *seq =
static_cast<Sel_arg_range_sequence *>(init_param);
seq->reset();
return init_param;
}
void Sel_arg_range_sequence::stack_push_range(SEL_ARG *key_tree) {
DBUG_ASSERT((uint)curr_kp + 1 < MAX_REF_PARTS);
RANGE_SEQ_ENTRY *push_position = &stack[curr_kp + 1];
RANGE_SEQ_ENTRY *last_added_kp = stack_top();
if (stack_empty()) {
/*
If we get here this is either
a) the first time a range sequence is constructed for this
range access method (in which case stack[0] has not been
modified since the constructor was called), or
b) there are multiple ranges for the first keypart in the
condition (and we have called stack_pop_range() to empty
the stack).
In both cases, reset() has been called and all fields in
push_position have been reset. All we need to do is to copy the
min/max key flags from the predicate we're about to add to
stack[0].
*/
push_position->min_key_flag = key_tree->get_min_flag();
push_position->max_key_flag = key_tree->get_max_flag();
push_position->rkey_func_flag = key_tree->rkey_func_flag;
} else {
push_position->min_key = last_added_kp->min_key;
push_position->max_key = last_added_kp->max_key;
push_position->min_key_parts = last_added_kp->min_key_parts;
push_position->max_key_parts = last_added_kp->max_key_parts;
push_position->min_key_flag =
last_added_kp->min_key_flag | key_tree->get_min_flag();
push_position->max_key_flag =
last_added_kp->max_key_flag | key_tree->get_max_flag();
push_position->rkey_func_flag = key_tree->rkey_func_flag;
}
push_position->key_tree = key_tree;
/* psergey-merge-done:
key_tree->store(arg->param->key[arg->keyno][key_tree->part].store_length,
&cur->min_key, prev->min_key_flag,
&cur->max_key, prev->max_key_flag);
*/
key_tree->store_min_max_values(
param->key[keyno][key_tree->part].store_length, &push_position->min_key,
(last_added_kp ? last_added_kp->min_key_flag : 0),
&push_position->max_key,
(last_added_kp ? last_added_kp->max_key_flag : 0),
(int *)&push_position->min_key_parts,
(int *)&push_position->max_key_parts);
if (key_tree->is_null_interval()) push_position->min_key_flag |= NULL_RANGE;
curr_kp++;
}
/*
Range sequence interface, SEL_ARG* implementation: get the next interval
in the R-B tree
SYNOPSIS
sel_arg_range_seq_next()
rseq Value returned from sel_arg_range_seq_init
range OUT Store information about the range here
DESCRIPTION
This is "get_next" function for Range sequence interface implementation
for SEL_ARG* tree.
IMPLEMENTATION
The traversal also updates those param members:
- is_ror_scan
- range_count
- max_key_part
RETURN
0 Ok
1 No more ranges in the sequence
NOTE: append_range_all_keyparts(), which is used to e.g. print
ranges to Optimizer Trace in a human readable format, mimics the
behavior of this function.
*/
// psergey-merge-todo: support check_quick_keys:max_keypart
static uint sel_arg_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range) {
SEL_ARG *key_tree;
Sel_arg_range_sequence *seq = static_cast<Sel_arg_range_sequence *>(rseq);
if (seq->stack_empty()) {
/*
This is the first time sel_arg_range_seq_next is called.
seq->start points to the root of the R-B tree for the first
keypart
*/
key_tree = seq->start;
/*
Move to the first range for the first keypart. Save this range
in seq->stack[0] and carry on to ranges in the next keypart if
any
*/
key_tree = key_tree->first();
seq->stack_push_range(key_tree);
} else {
/*
This is not the first time sel_arg_range_seq_next is called, so
seq->stack is populated with the range the last call to this
function found. seq->stack[current_keypart].key_tree points to a
leaf in the R-B tree of the last keypart that was part of the
former range. This is the starting point for finding the next
range. @see Sel_arg_range_sequence::stack
*/
// See if there are more ranges in this or any of the previous keyparts
while (true) {
key_tree = seq->stack_top()->key_tree;
seq->stack_pop_range();
if (key_tree->next) {
/* This keypart has more ranges */
DBUG_ASSERT(key_tree->next != null_element);
key_tree = key_tree->next;
/*
save the next range for this keypart and carry on to ranges in
the next keypart if any
*/
seq->stack_push_range(key_tree);
seq->param->is_ror_scan = false;
break;
}
if (seq->stack_empty()) {
// There are no more ranges for the first keypart: we're done
return 1;
}
/*
There are no more ranges for the current keypart. Step back
to the previous keypart and see if there are more ranges
there.
*/
}
}
DBUG_ASSERT(!seq->stack_empty());
/*
Add range info for the next keypart if
1) there is a range predicate for a later keypart
2) the range predicate is for the next keypart in the index: a
range predicate on keypartX+1 can only be used if there is a
range predicate on keypartX.
3) the range predicate on the next keypart is usable
*/
while (key_tree->next_key_part && // 1)
key_tree->next_key_part->root != null_element && // 1)
key_tree->next_key_part->root->part == key_tree->part + 1 && // 2)
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE) // 3)
{
{
DBUG_PRINT("info", ("while(): key_tree->part %d", key_tree->part));
RANGE_SEQ_ENTRY *cur = seq->stack_top();
const size_t min_key_total_length = cur->min_key - seq->param->min_key;
const size_t max_key_total_length = cur->max_key - seq->param->max_key;
/*
Check if more ranges can be added. This is the case if all
predicates for keyparts handled so far are equality
predicates. If either of the following apply, there are
non-equality predicates in stack[]:
1) min_key_total_length != max_key_total_length (because
equality ranges are stored as "min_key = max_key = <value>")
2) memcmp(<min_key_values>,<max_key_values>) != 0 (same argument as 1)
3) A min or max flag has been set: Because flags denote ranges
('<', '<=' etc), any value but 0 indicates a non-equality
predicate.
*/
uchar *min_key_start;
uchar *max_key_start;
size_t cur_key_length;
if (seq->stack_size() == 1) {
min_key_start = seq->param->min_key;
max_key_start = seq->param->max_key;
cur_key_length = min_key_total_length;
} else {
const RANGE_SEQ_ENTRY prev = cur[-1];
min_key_start = prev.min_key;
max_key_start = prev.max_key;
cur_key_length = cur->min_key - prev.min_key;
}
if ((min_key_total_length != max_key_total_length) || // 1)
(memcmp(min_key_start, max_key_start, cur_key_length)) || // 2)
(key_tree->min_flag || key_tree->max_flag)) // 3)
{
DBUG_PRINT("info", ("while(): inside if()"));
/*
The range predicate up to and including the one in key_tree
is usable by range access but does not allow subranges made
up from predicates in later keyparts. This may e.g. be
because the predicate operator is "<". Since there are range
predicates on more keyparts, we use those to more closely
specify the start and stop locations for the range. Example:
"SELECT * FROM t1 WHERE a >= 2 AND b >= 3":
t1 content:
-----------
1 1
2 1 <- 1)
2 2
2 3 <- 2)
2 4
3 1
3 2
3 3
The predicate cannot be translated into something like
"(a=2 and b>=3) or (a=3 and b>=3) or ..."
I.e., it cannot be divided into subranges, but by storing
min/max key below we can at least start the scan from 2)
instead of 1)
*/
seq->param->is_ror_scan = false;
key_tree->store_next_min_max_keys(
seq->param->key[seq->keyno], &cur->min_key, &cur->min_key_flag,
&cur->max_key, &cur->max_key_flag, (int *)&cur->min_key_parts,
(int *)&cur->max_key_parts);
break;
}
}
/*
There are usable range predicates for the next keypart and the
range predicate for the current keypart allows us to make use of
them. Move to the first range predicate for the next keypart.
Push this range predicate to seq->stack and move on to the next
keypart (if any). @see Sel_arg_range_sequence::stack
*/
key_tree = key_tree->next_key_part->root->first();
seq->stack_push_range(key_tree);
}
DBUG_ASSERT(!seq->stack_empty() && (seq->stack_top() != NULL));
// We now have a full range predicate in seq->stack_top()
RANGE_SEQ_ENTRY *cur = seq->stack_top();
PARAM *param = seq->param;
size_t min_key_length = cur->min_key - param->min_key;
if (cur->min_key_flag & GEOM_FLAG) {
range->range_flag = cur->min_key_flag;
/* Here minimum contains also function code bits, and maximum is +inf */
range->start_key.key = param->min_key;
range->start_key.length = min_key_length;
range->start_key.keypart_map = make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag = cur->rkey_func_flag;
/*
Spatial operators are only allowed on spatial indexes, and no
spatial index can at the moment return rows in ROWID order
*/
DBUG_ASSERT(!param->is_ror_scan);
} else {
const KEY *cur_key_info = &param->table->key_info[seq->real_keyno];
range->range_flag = cur->min_key_flag | cur->max_key_flag;
range->start_key.key = param->min_key;
range->start_key.length = cur->min_key - param->min_key;
range->start_key.keypart_map = make_prev_keypart_map(cur->min_key_parts);
range->start_key.flag =
(cur->min_key_flag & NEAR_MIN ? HA_READ_AFTER_KEY : HA_READ_KEY_EXACT);
range->end_key.key = param->max_key;
range->end_key.length = cur->max_key - param->max_key;
range->end_key.keypart_map = make_prev_keypart_map(cur->max_key_parts);
range->end_key.flag =
(cur->max_key_flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
/*
This is an equality range (keypart_0=X and ... and keypart_n=Z) if
1) There are no flags indicating open range (e.g.,
"keypart_x > y") or GIS.
2) The lower bound and the upper bound of the range has the
same value (min_key == max_key).
*/
const uint is_open_range =
(NO_MIN_RANGE | NO_MAX_RANGE | NEAR_MIN | NEAR_MAX | GEOM_FLAG);
const bool is_eq_range_pred =
!(cur->min_key_flag & is_open_range) && // 1)
!(cur->max_key_flag & is_open_range) && // 1)
range->start_key.length == range->end_key.length && // 2)
!memcmp(param->min_key, param->max_key, range->start_key.length);
if (is_eq_range_pred) {
range->range_flag = EQ_RANGE;
/*
Use statistics instead of index dives for estimates of rows in
this range if the user requested it
*/
if (param->use_index_statistics)
range->range_flag |= SKIP_RECORDS_IN_RANGE;
/*
An equality range is a unique range (0 or 1 rows in the range)
if the index is unique (1) and all keyparts are used (2).
Note that keys which are extended with PK parts have no
HA_NOSAME flag. So we can use user_defined_key_parts.
*/
if (cur_key_info->flags & HA_NOSAME && // 1)
(uint)key_tree->part + 1 ==
cur_key_info->user_defined_key_parts) // 2)
range->range_flag |= UNIQUE_RANGE | (cur->min_key_flag & NULL_RANGE);
}
if (param->is_ror_scan) {
const uint key_part_number = key_tree->part + 1;
/*
If we get here, the condition on the key was converted to form
"(keyXpart1 = c1) AND ... AND (keyXpart{key_tree->part - 1} = cN) AND
somecond(keyXpart{key_tree->part})"
Check if
somecond is "keyXpart{key_tree->part} = const" and
uncovered "tail" of KeyX parts is either empty or is identical to
first members of clustered primary key.
If last key part is PK part added to the key as an extension
and is_key_scan_ror() result is true then it's possible to
use ROR scan.
*/
if ((!is_eq_range_pred &&
key_part_number <= cur_key_info->user_defined_key_parts) ||
!is_key_scan_ror(param, seq->real_keyno, key_part_number))
param->is_ror_scan = false;
}
}
seq->param->range_count++;
seq->param->max_key_part =
max<uint>(seq->param->max_key_part, key_tree->part);
if (seq->param->skip_records_in_range)
range->range_flag |= SKIP_RECORDS_IN_RANGE;
return 0;
}
/*
Calculate estimate of number records that will be retrieved by a range
scan on given index using given SEL_ARG intervals tree.
SYNOPSIS
check_quick_select()
param Parameter from test_quick_select
idx Number of index to use in PARAM::key SEL_TREE::key
index_only true - assume only index tuples will be accessed
false - assume full table rows will be read
tree Transformed selection condition, tree->key[idx] holds
the intervals for the given index.
update_tbl_stats true <=> update table->quick_* with information
about range scan we've evaluated.
mrr_flags INOUT MRR access flags
cost OUT Scan cost
NOTES
param->is_ror_scan is set to reflect if the key scan is a ROR (see
is_key_scan_ror function for more info)
param->table->quick_*, param->range_count (and maybe others) are
updated with data of given key scan, see quick_range_seq_next for details.
RETURN
Estimate # of records to be retrieved.
HA_POS_ERROR if estimate calculation failed due to table handler problems.
*/
static ha_rows check_quick_select(PARAM *param, uint idx, bool index_only,
SEL_ROOT *tree, bool update_tbl_stats,
uint *mrr_flags, uint *bufsize,
Cost_estimate *cost) {
Sel_arg_range_sequence seq(param);
RANGE_SEQ_IF seq_if = {sel_arg_range_seq_init, sel_arg_range_seq_next, 0, 0};
handler *file = param->table->file;
ha_rows rows;
uint keynr = param->real_keynr[idx];
DBUG_TRACE;
/* Handle cases when we don't have a valid non-empty list of range */
if (!tree) return HA_POS_ERROR;
if (tree->type == SEL_ROOT::Type::IMPOSSIBLE) return 0L;
if (tree->type != SEL_ROOT::Type::KEY_RANGE || tree->root->part != 0)
return HA_POS_ERROR; // Don't use tree
seq.keyno = idx;
seq.real_keyno = keynr;
seq.start = tree->root;
param->range_count = 0;
param->max_key_part = 0;
/*
If there are more equality ranges than specified by the
eq_range_index_dive_limit variable we switches from using index
dives to use statistics.
*/
uint range_count = 0;
param->use_index_statistics = eq_ranges_exceeds_limit(
tree, &range_count, param->thd->variables.eq_range_index_dive_limit);
param->is_ror_scan = true;
param->is_imerge_scan = true;
if (file->index_flags(keynr, 0, true) & HA_KEY_SCAN_NOT_ROR)
param->is_ror_scan = false;
*mrr_flags = param->force_default_mrr ? HA_MRR_USE_DEFAULT_IMPL : 0;
*mrr_flags |= HA_MRR_NO_ASSOCIATION;
/*
Pass HA_MRR_SORTED to see if MRR implementation can handle sorting.
*/
if (param->order_direction != ORDER_NOT_RELEVANT) *mrr_flags |= HA_MRR_SORTED;
bool pk_is_clustered = file->primary_key_is_clustered();
if (index_only &&
(file->index_flags(keynr, param->max_key_part, 1) & HA_KEYREAD_ONLY) &&
!(pk_is_clustered && keynr == param->table->s->primary_key))
*mrr_flags |= HA_MRR_INDEX_ONLY;
if (current_thd->lex->sql_command != SQLCOM_SELECT)
*mrr_flags |= HA_MRR_SORTED; // Assumed to give faster ins/upd/del
*bufsize = param->thd->variables.read_rnd_buff_size;
// Sets is_ror_scan to false for some queries, e.g. multi-ranges
rows = file->multi_range_read_info_const(keynr, &seq_if, (void *)&seq, 0,
bufsize, mrr_flags, cost);
if (rows != HA_POS_ERROR) {
param->table->quick_rows[keynr] = rows;
if (update_tbl_stats) {
param->table->quick_keys.set_bit(keynr);
param->table->quick_key_parts[keynr] = param->max_key_part + 1;
param->table->quick_n_ranges[keynr] = param->range_count;
param->table->quick_condition_rows =
min(param->table->quick_condition_rows, rows);
}
param->table->possible_quick_keys.set_bit(keynr);
}
/*
Check whether ROR scan could be used. It cannot be used if
1. Index algo is not HA_KEY_ALG_BTREE or HA_KEY_ALG_SE_SPECIFIC
(this mostly covers engines like Archive/Federated.)
TODO: Don't have this logic here, make table engines return
appropriate flags instead.
2. Any of the keyparts in the index chosen is descending. Desc
indexes do not work well for ROR scans, except for clustered PK.
3. SE states the index can't be used for ROR. We need 2nd check
here to avoid enabling it for a non-ROR PK.
4. Index contains virtual columns. QUICK_ROR_INTERSECT_SELECT
and QUICK_ROR_UNION_SELECT do read_set manipulations in reset(),
which breaks virtual generated column's computation logic, which
is used when reading index values. So, disable index merge
intersection/union for any index on such column.
@todo lift this implementation restriction
*/
// Get the index key algorithm
enum ha_key_alg key_alg = param->table->key_info[seq.real_keyno].algorithm;
// Check if index has desc keypart
KEY_PART_INFO *key_part = param->table->key_info[keynr].key_part;
KEY_PART_INFO *key_part_end =
key_part + param->table->key_info[keynr].user_defined_key_parts;
for (; key_part != key_part_end; ++key_part) {
if (key_part->key_part_flag & HA_REVERSE_SORT) {
// ROR will be enabled again for clustered PK, see 'else if' below.
param->is_ror_scan = false; // 2
param->is_imerge_scan = false;
break;
}
}
if (((key_alg != HA_KEY_ALG_BTREE) &&
(key_alg != HA_KEY_ALG_SE_SPECIFIC)) || // 1
(file->index_flags(keynr, 0, true) & HA_KEY_SCAN_NOT_ROR) || // 3
param->table->index_contains_some_virtual_gcol(keynr)) // 4
{
param->is_ror_scan = false;
} else if (param->table->s->primary_key == keynr && pk_is_clustered) {
/*
Clustered PK scan is always a ROR scan (TODO: same as above).
This can enable ROR back if it was disabled by multi_range_read_info_const
call.
*/
param->is_ror_scan = true;
}
DBUG_PRINT("exit", ("Records: %lu", (ulong)rows));
return rows;
}
/*
Check if key scan on given index with equality conditions on first n key
parts is a ROR scan.
SYNOPSIS
is_key_scan_ror()
param Parameter from test_quick_select
keynr Number of key in the table. The key must not be a clustered
primary key.
nparts Number of first key parts for which equality conditions
are present.
NOTES
ROR (Rowid Ordered Retrieval) key scan is a key scan that produces
ordered sequence of rowids (ha_xxx::cmp_ref is the comparison function)
This function is needed to handle a practically-important special case:
an index scan is a ROR scan if it is done using a condition in form
"key1_1=c_1 AND ... AND key1_n=c_n"
where the index is defined on (key1_1, ..., key1_N [,a_1, ..., a_n])
and the table has a clustered Primary Key defined as
PRIMARY KEY(a_1, ..., a_n, b1, ..., b_k)
i.e. the first key parts of it are identical to uncovered parts ot the
key being scanned. This function assumes that the index flags do not
include HA_KEY_SCAN_NOT_ROR flag (that is checked elsewhere).
Check (1) is made in quick_range_seq_next()
RETURN
true The scan is ROR-scan
false Otherwise
*/
static bool is_key_scan_ror(PARAM *param, uint keynr, uint nparts) {
KEY *table_key = param->table->key_info + keynr;
/*
Range predicates on hidden key parts do not change the fact
that a scan is rowid ordered, so we only care about user
defined keyparts
*/
const uint user_defined_nparts =
std::min<uint>(nparts, table_key->user_defined_key_parts);
KEY_PART_INFO *key_part = table_key->key_part + user_defined_nparts;
KEY_PART_INFO *key_part_end =
(table_key->key_part + table_key->user_defined_key_parts);
uint pk_number;
for (KEY_PART_INFO *kp = table_key->key_part; kp < key_part; kp++) {
uint16 fieldnr = param->table->key_info[keynr]
.key_part[kp - table_key->key_part]
.fieldnr -
1;
if (param->table->field[fieldnr]->key_length() != kp->length) return false;
}
if (key_part == key_part_end) return true;
key_part = table_key->key_part + user_defined_nparts;
pk_number = param->table->s->primary_key;
if (!param->table->file->primary_key_is_clustered() || pk_number == MAX_KEY)
return false;
KEY_PART_INFO *pk_part = param->table->key_info[pk_number].key_part;
KEY_PART_INFO *pk_part_end =
pk_part + param->table->key_info[pk_number].user_defined_key_parts;
for (; (key_part != key_part_end) && (pk_part != pk_part_end);
++key_part, ++pk_part) {
if ((key_part->field != pk_part->field) ||
(key_part->length != pk_part->length))
return false;
}
return (key_part == key_part_end);
}
/*
Create a QUICK_RANGE_SELECT from given key and SEL_ARG tree for that key.
SYNOPSIS
get_quick_select()
param
idx Index of used key in param->key.
key_tree SEL_ARG tree for the used key
mrr_flags MRR parameter for quick select
mrr_buf_size MRR parameter for quick select
parent_alloc If not NULL, use it to allocate memory for
quick select data. Otherwise use quick->alloc.
NOTES
The caller must call QUICK_SELECT::init for returned quick select.
CAUTION! This function may change thd->mem_root to a MEM_ROOT which will be
deallocated when the returned quick select is deleted.
RETURN
NULL on error
otherwise created quick select
*/
QUICK_RANGE_SELECT *get_quick_select(PARAM *param, uint idx, SEL_ROOT *key_tree,
uint mrr_flags, uint mrr_buf_size,
MEM_ROOT *parent_alloc) {
QUICK_RANGE_SELECT *quick;
bool create_err = false;
DBUG_TRACE;
if (param->table->key_info[param->real_keynr[idx]].flags & HA_SPATIAL)
quick = new QUICK_RANGE_SELECT_GEOM(
param->thd, param->table, param->real_keynr[idx],
parent_alloc != nullptr, parent_alloc, &create_err);
else
quick =
new QUICK_RANGE_SELECT(param->thd, param->table, param->real_keynr[idx],
parent_alloc != nullptr, NULL, &create_err);
if (quick) {
DBUG_ASSERT(key_tree->type == SEL_ROOT::Type::KEY_RANGE ||
key_tree->type == SEL_ROOT::Type::IMPOSSIBLE);
if (key_tree->type == SEL_ROOT::Type::KEY_RANGE &&
(create_err ||
get_quick_keys(param, quick, param->key[idx], key_tree->root,
param->min_key, 0, param->max_key, 0, NULL))) {
delete quick;
return nullptr;
} else {
quick->mrr_flags = mrr_flags;
quick->mrr_buf_size = mrr_buf_size;
quick->key_parts = (KEY_PART *)memdup_root(
parent_alloc ? parent_alloc : quick->alloc.get(),
(char *)param->key[idx],
sizeof(KEY_PART) *
actual_key_parts(
&param->table->key_info[param->real_keynr[idx]]));
}
}
return quick;
}
/**
Generate key values for range select from given sel_arg tree
@param param Range's param
@param quick Quick range select to generate keys for
@param key Generate key values for this key
@param key_tree SEL_ARG tree
@param min_key Min key buffer
@param min_key_flag Min key's flags
@param max_key Max key buffer
@param max_key_flag Max key's flags
@param desc_flag Desc flag of the first keypart
@note Fix this to get all possible sub_ranges
@returns
true OOM
false Ok
*/
bool get_quick_keys(PARAM *param, QUICK_RANGE_SELECT *quick, KEY_PART *key,
SEL_ARG *key_tree, uchar *min_key, uint min_key_flag,
uchar *max_key, uint max_key_flag, uint *desc_flag) {
QUICK_RANGE *range;
uint flag = 0;
int min_part = key_tree->part - 1, // # of keypart values in min_key buffer
max_part = key_tree->part - 1; // # of keypart values in max_key buffer
if (key_tree->left != null_element) {
if (get_quick_keys(param, quick, key, key_tree->left, min_key, min_key_flag,
max_key, max_key_flag, desc_flag))
return 1;
}
uchar *tmp_min_key = min_key, *tmp_max_key = max_key;
const bool asc = key_tree->is_ascending;
key_tree->store_min_max_values(key[key_tree->part].store_length, &tmp_min_key,
min_key_flag, &tmp_max_key, max_key_flag,
&min_part, &max_part);
if (!asc) flag |= DESC_FLAG;
if (key_tree->next_key_part &&
key_tree->next_key_part->type == SEL_ROOT::Type::KEY_RANGE &&
key_tree->next_key_part->root->part ==
key_tree->part + 1) { // const key as prefix
if ((tmp_min_key - min_key) == (tmp_max_key - max_key) &&
memcmp(min_key, max_key, (uint)(tmp_max_key - max_key)) == 0 &&
key_tree->min_flag == 0 && key_tree->max_flag == 0) {
if (get_quick_keys(param, quick, key, key_tree->next_key_part->root,
tmp_min_key, min_key_flag | key_tree->get_min_flag(),
tmp_max_key, max_key_flag | key_tree->get_max_flag(),
(desc_flag ? desc_flag : &flag)))
return 1;
goto end; // Ugly, but efficient
}
{
uint tmp_min_flag = key_tree->get_min_flag();
uint tmp_max_flag = key_tree->get_max_flag();
key_tree->store_next_min_max_keys(key, &tmp_min_key, &tmp_min_flag,
&tmp_max_key, &tmp_max_flag, &min_part,
&max_part);
flag |= tmp_min_flag | tmp_max_flag;
}
} else {
if (asc)
flag = (key_tree->min_flag & GEOM_FLAG)
? key_tree->min_flag
: key_tree->min_flag | key_tree->max_flag;
else {
// Invert flags for DESC keypart
flag |= invert_min_flag(key_tree->min_flag) |
invert_max_flag(key_tree->max_flag);
}
}
/*
Ensure that some part of min_key and max_key are used. If not,
regard this as no lower/upper range
*/
if ((flag & GEOM_FLAG) == 0) {
if (tmp_min_key != param->min_key)
flag &= ~NO_MIN_RANGE;
else
flag |= NO_MIN_RANGE;
if (tmp_max_key != param->max_key)
flag &= ~NO_MAX_RANGE;
else
flag |= NO_MAX_RANGE;
}
if ((flag & ~DESC_FLAG) == 0) {
uint length = (uint)(tmp_min_key - param->min_key);
if (length == (uint)(tmp_max_key - param->max_key) &&
!memcmp(param->min_key, param->max_key, length)) {
const KEY *table_key = quick->head->key_info + quick->index;
flag |= EQ_RANGE;
/*
Note that keys which are extended with PK parts have no
HA_NOSAME flag. So we can use user_defined_key_parts.
*/
if ((table_key->flags & HA_NOSAME) &&
key_tree->part == table_key->user_defined_key_parts - 1) {
if ((table_key->flags & HA_NULL_PART_KEY) &&
null_part_in_key(key, param->min_key,
(uint)(tmp_min_key - param->min_key)))
flag |= NULL_RANGE;
else
flag |= UNIQUE_RANGE;
}
}
}
/*
Set DESC flag. We need this flag set according to the first keypart.
Depending on it, key values will be scanned either forward or backward,
preserving the order or records in the index along multiple ranges.
*/
if (desc_flag) flag = (flag & ~DESC_FLAG) | *desc_flag;
/* Get range for retrieving rows in QUICK_SELECT::get_next */
if (!(range = new (*THR_MALLOC)
QUICK_RANGE(param->min_key, (uint)(tmp_min_key - param->min_key),
min_part >= 0 ? make_keypart_map(min_part) : 0,
param->max_key, (uint)(tmp_max_key - param->max_key),
max_part >= 0 ? make_keypart_map(max_part) : 0, flag,
key_tree->rkey_func_flag)))
return 1; // out of memory
set_if_bigger(quick->max_used_key_length, range->min_length);
set_if_bigger(quick->max_used_key_length, range->max_length);
set_if_bigger(quick->used_key_parts, (uint)key_tree->part + 1);
if (quick->ranges.push_back(range)) return 1;
end:
if (key_tree->right != null_element)
return get_quick_keys(param, quick, key, key_tree->right, min_key,
min_key_flag, max_key, max_key_flag, desc_flag);
return 0;
}
/*
Return 1 if there is only one range and this uses the whole unique key
*/
bool QUICK_RANGE_SELECT::unique_key_range() {
if (ranges.size() == 1) {
QUICK_RANGE *tmp = ranges[0];
if ((tmp->flag & (EQ_RANGE | NULL_RANGE)) == EQ_RANGE) {
KEY *key = head->key_info + index;
return (key->flags & HA_NOSAME) && key->key_length == tmp->min_length;
}
}
return 0;
}
/*
Return true if any part of the key is NULL
SYNOPSIS
null_part_in_key()
key_part Array of key parts (index description)
key Key values tuple
length Length of key values tuple in bytes.
RETURN
true The tuple has at least one "keypartX is NULL"
false Otherwise
*/
static bool null_part_in_key(KEY_PART *key_part, const uchar *key,
uint length) {
for (const uchar *end = key + length; key < end;
key += key_part++->store_length) {
if (key_part->null_bit && *key) return 1;
}
return 0;
}
bool QUICK_SELECT_I::is_keys_used(const MY_BITMAP *fields) {
return is_key_used(head, index, fields);
}
bool QUICK_INDEX_MERGE_SELECT::is_keys_used(const MY_BITMAP *fields) {
QUICK_RANGE_SELECT *quick;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
while ((quick = it++)) {
if (is_key_used(head, quick->index, fields)) return 1;
}
return 0;
}
bool QUICK_ROR_INTERSECT_SELECT::is_keys_used(const MY_BITMAP *fields) {
QUICK_RANGE_SELECT *quick;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
while ((quick = it++)) {
if (is_key_used(head, quick->index, fields)) return 1;
}
return 0;
}
bool QUICK_ROR_UNION_SELECT::is_keys_used(const MY_BITMAP *fields) {
QUICK_SELECT_I *quick;
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
while ((quick = it++)) {
if (quick->is_keys_used(fields)) return 1;
}
return 0;
}
/*
Perform key scans for all used indexes (except CPK), get rowids and merge
them into an ordered non-recurrent sequence of rowids.
The merge/duplicate removal is performed using Unique class. We put all
rowids into Unique, get the sorted sequence and destroy the Unique.
If table has a clustered primary key that covers all rows (true for bdb
and innodb currently) and one of the index_merge scans is a scan on PK,
then rows that will be retrieved by PK scan are not put into Unique and
primary key scan is not performed here, it is performed later separately.
RETURN
0 OK
other error
*/
int QUICK_INDEX_MERGE_SELECT::read_keys_and_merge() {
List_iterator_fast<QUICK_RANGE_SELECT> cur_quick_it(quick_selects);
QUICK_RANGE_SELECT *cur_quick;
int result;
handler *file = head->file;
DBUG_TRACE;
/* We're going to just read rowids. */
head->set_keyread(true);
head->prepare_for_position();
cur_quick_it.rewind();
cur_quick = cur_quick_it++;
DBUG_ASSERT(cur_quick != 0);
DBUG_EXECUTE_IF("simulate_bug13919180", {
my_error(ER_UNKNOWN_ERROR, MYF(0));
return 1;
});
/*
We reuse the same instance of handler so we need to call both init and
reset here.
*/
if (cur_quick->init() || cur_quick->reset()) return 1;
size_t sort_buffer_size = thd->variables.sortbuff_size;
#ifndef DBUG_OFF
if (DBUG_EVALUATE_IF("sortbuff_size_256", 1, 0)) sort_buffer_size = 256;
#endif /* DBUG_OFF */
if (unique == NULL) {
DBUG_EXECUTE_IF("index_merge_may_not_create_a_Unique", DBUG_ABORT(););
DBUG_EXECUTE_IF("only_one_Unique_may_be_created",
DBUG_SET("+d,index_merge_may_not_create_a_Unique"););
unique = new (*THR_MALLOC) Unique(refpos_order_cmp, (void *)file,
file->ref_length, sort_buffer_size);
} else {
unique->reset();
head->unique_result.sorted_result.reset();
DBUG_ASSERT(!head->unique_result.sorted_result_in_fsbuf);
head->unique_result.sorted_result_in_fsbuf = false;
if (head->unique_result.io_cache) {
close_cached_file(head->unique_result.io_cache);
my_free(head->unique_result.io_cache);
head->unique_result.io_cache = nullptr;
}
}
DBUG_ASSERT(file->ref_length == unique->get_size());
DBUG_ASSERT(sort_buffer_size == unique->get_max_in_memory_size());
if (!unique) return 1;
for (;;) {
while ((result = cur_quick->get_next()) == HA_ERR_END_OF_FILE) {
cur_quick->range_end();
cur_quick = cur_quick_it++;
if (!cur_quick) break;
if (cur_quick->file->inited) cur_quick->file->ha_index_end();
if (cur_quick->init() || cur_quick->reset()) return 1;
}
if (result) {
if (result != HA_ERR_END_OF_FILE) {
cur_quick->range_end();
return result;
}
break;
}
if (thd->killed) return 1;
/* skip row if it will be retrieved by clustered PK scan */
if (pk_quick_select && pk_quick_select->row_in_ranges()) continue;
cur_quick->file->position(cur_quick->record);
result = unique->unique_add((char *)cur_quick->file->ref);
if (result) return 1;
}
/*
Ok all rowids are in the Unique now. The next call will initialize
head->sort structure so it can be used to iterate through the rowids
sequence.
*/
result = unique->get(head);
doing_pk_scan = false;
/* index_merge currently doesn't support "using index" at all */
head->set_keyread(false);
read_record.reset(); // Clear out any previous iterator.
read_record = init_table_iterator(thd, head, NULL, true,
/*ignore_not_found_rows=*/false);
if (read_record == nullptr) return 1;
return result;
}
/*
Get next row for index_merge.
NOTES
The rows are read from
1. rowids stored in Unique.
2. QUICK_RANGE_SELECT with clustered primary key (if any).
The sets of rows retrieved in 1) and 2) are guaranteed to be disjoint.
*/
int QUICK_INDEX_MERGE_SELECT::get_next() {
int result;
DBUG_TRACE;
if (doing_pk_scan) return pk_quick_select->get_next();
if ((result = read_record->Read()) == -1) {
result = HA_ERR_END_OF_FILE;
// NOTE: destroying the RowIterator also clears
// head->unique_result.io_cache if it is initialized, since it
// owns the io_cache it is reading from.
read_record.reset();
/* All rows from Unique have been retrieved, do a clustered PK scan */
if (pk_quick_select) {
doing_pk_scan = true;
if ((result = pk_quick_select->init()) ||
(result = pk_quick_select->reset()))
return result;
return pk_quick_select->get_next();
}
}
return result;
}
/*
Retrieve next record.
SYNOPSIS
QUICK_ROR_INTERSECT_SELECT::get_next()
NOTES
Invariant on enter/exit: all intersected selects have retrieved all index
records with rowid <= some_rowid_val and no intersected select has
retrieved any index records with rowid > some_rowid_val.
We start fresh and loop until we have retrieved the same rowid in each of
the key scans or we got an error.
If a Clustered PK scan is present, it is used only to check if row
satisfies its condition (and never used for row retrieval).
Locking: to ensure that exclusive locks are only set on records that
are included in the final result we must release the lock
on all rows we read but do not include in the final result. This
must be done on each index that reads the record and the lock
must be released using the same handler (the same quick object) as
used when reading the record.
RETURN
0 - Ok
other - Error code if any error occurred.
*/
int QUICK_ROR_INTERSECT_SELECT::get_next() {
List_iterator_fast<QUICK_RANGE_SELECT> quick_it(quick_selects);
QUICK_RANGE_SELECT *quick;
/* quick that reads the given rowid first. This is needed in order
to be able to unlock the row using the same handler object that locked
it */
QUICK_RANGE_SELECT *quick_with_last_rowid;
int error, cmp;
uint last_rowid_count = 0;
DBUG_TRACE;
do {
/* Get a rowid for first quick and save it as a 'candidate' */
quick = quick_it++;
error = quick->get_next();
if (cpk_quick) {
while (!error && !cpk_quick->row_in_ranges()) {
quick->file->unlock_row(); /* row not in range; unlock */
error = quick->get_next();
}
}
if (error) return error;
quick->file->position(quick->record);
memcpy(last_rowid, quick->file->ref, head->file->ref_length);
last_rowid_count = 1;
quick_with_last_rowid = quick;
while (last_rowid_count < quick_selects.elements) {
if (!(quick = quick_it++)) {
quick_it.rewind();
quick = quick_it++;
}
do {
DBUG_EXECUTE_IF("innodb_quick_report_deadlock",
DBUG_SET("+d,innodb_report_deadlock"););
if ((error = quick->get_next())) {
/* On certain errors like deadlock, trx might be rolled back.*/
if (!current_thd->transaction_rollback_request)
quick_with_last_rowid->file->unlock_row();
return error;
}
quick->file->position(quick->record);
cmp = head->file->cmp_ref(quick->file->ref, last_rowid);
if (cmp < 0) {
/* This row is being skipped. Release lock on it. */
quick->file->unlock_row();
}
} while (cmp < 0);
/* Ok, current select 'caught up' and returned ref >= cur_ref */
if (cmp > 0) {
/* Found a row with ref > cur_ref. Make it a new 'candidate' */
if (cpk_quick) {
while (!cpk_quick->row_in_ranges()) {
quick->file->unlock_row(); /* row not in range; unlock */
if ((error = quick->get_next())) {
/* On certain errors like deadlock, trx might be rolled back.*/
if (!current_thd->transaction_rollback_request)
quick_with_last_rowid->file->unlock_row();
return error;
}
}
quick->file->position(quick->record);
}
memcpy(last_rowid, quick->file->ref, head->file->ref_length);
quick_with_last_rowid->file->unlock_row();
last_rowid_count = 1;
quick_with_last_rowid = quick;
} else {
/* current 'candidate' row confirmed by this select */
last_rowid_count++;
}
}
/* We get here if we got the same row ref in all scans. */
if (need_to_fetch_row)
error = head->file->ha_rnd_pos(head->record[0], last_rowid);
} while (error == HA_ERR_RECORD_DELETED);
return error;
}
/*
Retrieve next record.
SYNOPSIS
QUICK_ROR_UNION_SELECT::get_next()
NOTES
Enter/exit invariant:
For each quick select in the queue a {key,rowid} tuple has been
retrieved but the corresponding row hasn't been passed to output.
RETURN
0 - Ok
other - Error code if any error occurred.
*/
int QUICK_ROR_UNION_SELECT::get_next() {
int error, dup_row;
QUICK_SELECT_I *quick;
uchar *tmp;
DBUG_TRACE;
do {
do {
if (queue.empty()) return HA_ERR_END_OF_FILE;
/* Ok, we have a queue with >= 1 scans */
quick = queue.top();
memcpy(cur_rowid, quick->last_rowid, rowid_length);
/* put into queue rowid from the same stream as top element */
if ((error = quick->get_next())) {
if (error != HA_ERR_END_OF_FILE) return error;
queue.pop();
} else {
quick->save_last_pos();
queue.update_top();
}
if (!have_prev_rowid) {
/* No rows have been returned yet */
dup_row = false;
have_prev_rowid = true;
} else
dup_row = !head->file->cmp_ref(cur_rowid, prev_rowid);
} while (dup_row);
tmp = cur_rowid;
cur_rowid = prev_rowid;
prev_rowid = tmp;
error = head->file->ha_rnd_pos(quick->record, prev_rowid);
} while (error == HA_ERR_RECORD_DELETED);
return error;
}
int QUICK_RANGE_SELECT::reset() {
uint buf_size;
uchar *mrange_buff = NULL;
int error;
HANDLER_BUFFER empty_buf;
DBUG_TRACE;
last_range = NULL;
cur_range = ranges.begin();
/* set keyread to true if index is covering */
if (!head->no_keyread && head->covering_keys.is_set(index))
head->set_keyread(true);
else
head->set_keyread(false);
if (!file->inited) {
/*
read_set is set to the correct value for ror_merge_scan here as a
subquery execution during optimization might result in innodb not
initializing the read set in index_read() leading to wrong
results while merging.
*/
MY_BITMAP *const save_read_set = head->read_set;
MY_BITMAP *const save_write_set = head->write_set;
const bool sorted = (mrr_flags & HA_MRR_SORTED);
DBUG_EXECUTE_IF("bug14365043_2", DBUG_SET("+d,ha_index_init_fail"););
/* Pass index specifc read set for ror_merged_scan */
if (in_ror_merged_scan) {
/*
We don't need to signal the bitmap change as the bitmap is always the
same for this head->file
*/
head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
}
if ((error = file->ha_index_init(index, sorted))) {
file->print_error(error, MYF(0));
return error;
}
if (in_ror_merged_scan) {
/* Restore bitmaps set on entry */
head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
}
}
// Enable & reset unique record filter for multi-valued index
if (head->key_info[index].flags & HA_MULTI_VALUED_KEY) {
file->ha_extra(HA_EXTRA_ENABLE_UNIQUE_RECORD_FILTER);
// Add PK's fields to read_set as unique filter uses rowid to skip dups
if (head->s->primary_key != MAX_KEY)
head->mark_columns_used_by_index_no_reset(head->s->primary_key,
head->read_set);
}
/* Allocate buffer if we need one but haven't allocated it yet */
if (mrr_buf_size && !mrr_buf_desc) {
buf_size = mrr_buf_size;
while (buf_size &&
!my_multi_malloc(key_memory_QUICK_RANGE_SELECT_mrr_buf_desc,
MYF(MY_WME), &mrr_buf_desc, sizeof(*mrr_buf_desc),
&mrange_buff, buf_size, NullS)) {
/* Try to shrink the buffers until both are 0. */
buf_size /= 2;
}
if (!mrr_buf_desc) return HA_ERR_OUT_OF_MEM;
/* Initialize the handler buffer. */
mrr_buf_desc->buffer = mrange_buff;
mrr_buf_desc->buffer_end = mrange_buff + buf_size;
mrr_buf_desc->end_of_used_area = mrange_buff;
}
if (!mrr_buf_desc)
empty_buf.buffer = empty_buf.buffer_end = empty_buf.end_of_used_area = NULL;
RANGE_SEQ_IF seq_funcs = {quick_range_seq_init, quick_range_seq_next, 0, 0};
error =
file->multi_range_read_init(&seq_funcs, this, ranges.size(), mrr_flags,
mrr_buf_desc ? mrr_buf_desc : &empty_buf);
return error;
}
/*
Range sequence interface implementation for array<QUICK_RANGE>: initialize
SYNOPSIS
quick_range_seq_init()
init_param Caller-opaque paramenter: QUICK_RANGE_SELECT* pointer
@note depending on the ASC/DESC order of the first keypart, list of ranges
will be initialized to be scanned either forward or backward, appropriately,
to preserve correct record order.
RETURN
Opaque value to be passed to quick_range_seq_next
*/
range_seq_t quick_range_seq_init(void *init_param, uint, uint) {
QUICK_RANGE_SELECT *quick = static_cast<QUICK_RANGE_SELECT *>(init_param);
QUICK_RANGE **first = quick->ranges.begin();
QUICK_RANGE **last = quick->ranges.end();
if ((*first)->flag & DESC_FLAG) {
/*
Initialize to last - 1 because "last" points after the last actual
value.
*/
quick->qr_traversal_ctx.first = last - 1;
quick->qr_traversal_ctx.cur = last - 1;
/*
This is beyond allocated space, but quick_range_seq_next won't
dereference it.
*/
quick->qr_traversal_ctx.last = first - 1;
} else {
quick->qr_traversal_ctx.first = first;
quick->qr_traversal_ctx.cur = first;
quick->qr_traversal_ctx.last = last;
}
return &quick->qr_traversal_ctx;
}
/*
Range sequence interface implementation for array<QUICK_RANGE>: get next
SYNOPSIS
quick_range_seq_next()
rseq Value returned from quick_range_seq_init
range OUT Store information about the range here
@note This function return next range, and 'next' means next range in the
array of ranges relatively to the current one when the first keypart has
ASC sort order, or previous range - when key part has DESC sort order.
This is needed to preserve correct order of records in case of multiple
ranges over DESC keypart.
RETURN
0 Ok
1 No more ranges in the sequence
*/
uint quick_range_seq_next(range_seq_t rseq, KEY_MULTI_RANGE *range) {
QUICK_RANGE_SEQ_CTX *ctx = (QUICK_RANGE_SEQ_CTX *)rseq;
if (ctx->cur == ctx->last) return 1; /* no more ranges */
QUICK_RANGE *cur = *(ctx->cur);
key_range *start_key = &range->start_key;
key_range *end_key = &range->end_key;
start_key->key = cur->min_key;
start_key->length = cur->min_length;
start_key->keypart_map = cur->min_keypart_map;
start_key->flag =
((cur->flag & NEAR_MIN)
? HA_READ_AFTER_KEY
: (cur->flag & EQ_RANGE) ? HA_READ_KEY_EXACT : HA_READ_KEY_OR_NEXT);
end_key->key = cur->max_key;
end_key->length = cur->max_length;
end_key->keypart_map = cur->max_keypart_map;
/*
We use HA_READ_AFTER_KEY here because if we are reading on a key
prefix. We want to find all keys with this prefix.
*/
end_key->flag =
(cur->flag & NEAR_MAX ? HA_READ_BEFORE_KEY : HA_READ_AFTER_KEY);
range->range_flag = cur->flag;
if (cur->flag & DESC_FLAG) {
ctx->cur--;
DBUG_ASSERT(ctx->cur >= ctx->last);
} else {
ctx->cur++;
DBUG_ASSERT(ctx->cur <= ctx->last);
}
return 0;
}
/*
Get next possible record using quick-struct.
SYNOPSIS
QUICK_RANGE_SELECT::get_next()
NOTES
Record is read into table->record[0]
RETURN
0 Found row
HA_ERR_END_OF_FILE No (more) rows in range
# Error code
*/
int QUICK_RANGE_SELECT::get_next() {
char *dummy;
MY_BITMAP *const save_read_set = head->read_set;
MY_BITMAP *const save_write_set = head->write_set;
DBUG_TRACE;
if (in_ror_merged_scan) {
/*
We don't need to signal the bitmap change as the bitmap is always the
same for this head->file
*/
head->column_bitmaps_set_no_signal(&column_bitmap, &column_bitmap);
}
int result = file->ha_multi_range_read_next(&dummy);
if (in_ror_merged_scan) {
/* Restore bitmaps set on entry */
head->column_bitmaps_set_no_signal(save_read_set, save_write_set);
}
return result;
}
/*
Get the next record with a different prefix.
@param prefix_length length of cur_prefix
@param group_key_parts The number of key parts in the group prefix
@param cur_prefix prefix of a key to be searched for
Each subsequent call to the method retrieves the first record that has a
prefix with length prefix_length and which is different from cur_prefix,
such that the record with the new prefix is within the ranges described by
this->ranges. The record found is stored into the buffer pointed by
this->record. The method is useful for GROUP-BY queries with range
conditions to discover the prefix of the next group that satisfies the range
conditions.
@todo
This method is a modified copy of QUICK_RANGE_SELECT::get_next(), so both
methods should be unified into a more general one to reduce code
duplication.
@retval 0 on success
@retval HA_ERR_END_OF_FILE if returned all keys
@retval other if some error occurred
*/
int QUICK_RANGE_SELECT::get_next_prefix(uint prefix_length,
uint group_key_parts,
uchar *cur_prefix) {
DBUG_TRACE;
const key_part_map keypart_map = make_prev_keypart_map(group_key_parts);
for (;;) {
int result;
if (last_range) {
/* Read the next record in the same range with prefix after cur_prefix. */
DBUG_ASSERT(cur_prefix != NULL);
result = file->ha_index_read_map(record, cur_prefix, keypart_map,
HA_READ_AFTER_KEY);
if (result || last_range->max_keypart_map == 0) return result;
key_range previous_endpoint;
last_range->make_max_endpoint(&previous_endpoint, prefix_length,
keypart_map);
if (file->compare_key(&previous_endpoint) <= 0) return 0;
}
const size_t count = ranges.size() - (cur_range - ranges.begin());
if (count == 0) {
/* Ranges have already been used up before. None is left for read. */
last_range = 0;
return HA_ERR_END_OF_FILE;
}
last_range = *(cur_range++);
key_range start_key, end_key;
last_range->make_min_endpoint(&start_key, prefix_length, keypart_map);
last_range->make_max_endpoint(&end_key, prefix_length, keypart_map);
const bool sorted = (mrr_flags & HA_MRR_SORTED);
result = file->ha_read_range_first(
last_range->min_keypart_map ? &start_key : NULL,
last_range->max_keypart_map ? &end_key : NULL,
last_range->flag & EQ_RANGE, sorted);
if ((last_range->flag & (UNIQUE_RANGE | EQ_RANGE)) ==
(UNIQUE_RANGE | EQ_RANGE))
last_range = 0; // Stop searching
if (result != HA_ERR_END_OF_FILE) return result;
last_range = 0; // No matching rows; go to next range
}
}
/* Get next for geometrical indexes */
int QUICK_RANGE_SELECT_GEOM::get_next() {
DBUG_TRACE;
for (;;) {
int result;
if (last_range) {
// Already read through key
result = file->ha_index_next_same(record, last_range->min_key,
last_range->min_length);
if (result != HA_ERR_END_OF_FILE) return result;
}
const size_t count = ranges.size() - (cur_range - ranges.begin());
if (count == 0) {
/* Ranges have already been used up before. None is left for read. */
last_range = 0;
return HA_ERR_END_OF_FILE;
}
last_range = *(cur_range++);
result = file->ha_index_read_map(record, last_range->min_key,
last_range->min_keypart_map,
last_range->rkey_func_flag);
if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
return result;
last_range = 0; // Not found, to next range
}
}
/*
Check if current row will be retrieved by this QUICK_RANGE_SELECT
NOTES
It is assumed that currently a scan is being done on another index
which reads all necessary parts of the index that is scanned by this
quick select.
The implementation does a binary search on sorted array of disjoint
ranges, without taking size of range into account.
This function is used to filter out clustered PK scan rows in
index_merge quick select.
RETURN
true if current row will be retrieved by this quick select
false if not
*/
bool QUICK_RANGE_SELECT::row_in_ranges() {
if (ranges.empty()) return false;
QUICK_RANGE *res;
size_t min = 0;
size_t max = ranges.size() - 1;
size_t mid = (max + min) / 2;
while (min != max) {
if (cmp_next(ranges[mid])) {
/* current row value > mid->max */
min = mid + 1;
} else
max = mid;
mid = (min + max) / 2;
}
res = ranges[mid];
return (!cmp_next(res) && !cmp_prev(res));
}
/*
This is a hack: we inherit from QUICK_RANGE_SELECT so that we can use the
get_next() interface, but we have to hold a pointer to the original
QUICK_RANGE_SELECT because its data are used all over the place. What
should be done is to factor out the data that is needed into a base
class (QUICK_SELECT), and then have two subclasses (_ASC and _DESC)
which handle the ranges and implement the get_next() function. But
for now, this seems to work right at least.
*/
QUICK_SELECT_DESC::QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q,
uint used_key_parts_arg)
: QUICK_RANGE_SELECT(*q),
rev_it(rev_ranges),
m_used_key_parts(used_key_parts_arg) {
QUICK_RANGE *r;
/*
Use default MRR implementation for reverse scans. No table engine
currently can do an MRR scan with output in reverse index order.
*/
mrr_buf_desc = NULL;
mrr_flags |= HA_MRR_USE_DEFAULT_IMPL;
mrr_flags |= HA_MRR_SORTED; // 'sorted' as internals use index_last/_prev
mrr_buf_size = 0;
Quick_ranges::const_iterator pr = ranges.begin();
Quick_ranges::const_iterator end_range = ranges.end();
const bool desc = ((*pr)->flag & DESC_FLAG);
for (; pr != end_range; pr++) {
if (desc)
/*
Ranges are in ASC order, but the index is DESC. So in order to get
DESC order from QUICK_SELECT_DESC we preserve ranges' order.
*/
rev_ranges.push_back(*pr);
else
rev_ranges.push_front(*pr);
}
/* Remove EQ_RANGE flag for keys that are not using the full key */
for (r = rev_it++; r; r = rev_it++) {
if ((r->flag & EQ_RANGE) &&
head->key_info[index].key_length != r->max_length)
r->flag &= ~EQ_RANGE;
}
rev_it.rewind();
q->dont_free = 1; // Don't free shared mem
}
int QUICK_SELECT_DESC::get_next() {
DBUG_TRACE;
/* The max key is handled as follows:
* - if there is NO_MAX_RANGE, start at the end and move backwards
* - if it is an EQ_RANGE (which means that max key covers the entire
* key) and the query does not use any hidden key fields that are
* not considered when the range optimzier sets EQ_RANGE (e.g. the
* primary key added by InnoDB), then go directly to the key and
* read through it (sorting backwards is same as sorting forwards).
* - if it is NEAR_MAX, go to the key or next, step back once, and
* move backwards
* - otherwise (not NEAR_MAX == include the key), go after the key,
* step back once, and move backwards
*/
for (;;) {
int result;
if (last_range) { // Already read through key
result =
((last_range->flag & EQ_RANGE &&
m_used_key_parts <= head->key_info[index].user_defined_key_parts)
? file->ha_index_next_same(record, last_range->min_key,
last_range->min_length)
: file->ha_index_prev(record));
if (!result) {
if (cmp_prev(*rev_it.ref()) == 0) return 0;
} else if (result != HA_ERR_END_OF_FILE)
return result;
}
if (!(last_range = rev_it++)) return HA_ERR_END_OF_FILE; // All ranges used
// Case where we can avoid descending scan, see comment above
const bool eqrange_all_keyparts =
(last_range->flag & EQ_RANGE) &&
(m_used_key_parts <= head->key_info[index].user_defined_key_parts);
/*
If we have pushed an index condition (ICP) and this quick select
will use ha_index_prev() to read data, we need to let the
handler know where to end the scan in order to avoid that the
ICP implemention continues to read past the range boundary.
*/
if (file->pushed_idx_cond) {
if (!eqrange_all_keyparts) {
key_range min_range;
last_range->make_min_endpoint(&min_range);
if (min_range.length > 0)
file->set_end_range(&min_range, handler::RANGE_SCAN_DESC);
else
file->set_end_range(NULL, handler::RANGE_SCAN_DESC);
} else {
/*
Will use ha_index_next_same() for reading records. In case we have
set the end range for an earlier range, this need to be cleared.
*/
file->set_end_range(NULL, handler::RANGE_SCAN_ASC);
}
}
if (last_range->flag & NO_MAX_RANGE) // Read last record
{
int local_error;
if ((local_error = file->ha_index_last(record))) {
/*
HA_ERR_END_OF_FILE is returned both when the table is empty and when
there are no qualifying records in the range (when using ICP).
Interpret this return value as "no qualifying rows in the range" to
avoid loss of records. If the error code truly meant "empty table"
the next iteration of the loop will exit.
*/
if (local_error != HA_ERR_END_OF_FILE) return local_error;
last_range = NULL; // Go to next range
continue;
}
if (cmp_prev(last_range) == 0) return 0;
last_range = 0; // No match; go to next range
continue;
}
if (eqrange_all_keyparts)
{
result = file->ha_index_read_map(record, last_range->max_key,
last_range->max_keypart_map,
HA_READ_KEY_EXACT);
} else {
DBUG_ASSERT(
last_range->flag & NEAR_MAX ||
(last_range->flag & EQ_RANGE &&
m_used_key_parts > head->key_info[index].user_defined_key_parts) ||
range_reads_after_key(last_range));
result = file->ha_index_read_map(
record, last_range->max_key, last_range->max_keypart_map,
((last_range->flag & NEAR_MAX) ? HA_READ_BEFORE_KEY
: HA_READ_PREFIX_LAST_OR_PREV));
}
if (result) {
if (result != HA_ERR_KEY_NOT_FOUND && result != HA_ERR_END_OF_FILE)
return result;
last_range = 0; // Not found, to next range
continue;
}
if (cmp_prev(last_range) == 0) {
if ((last_range->flag & (UNIQUE_RANGE | EQ_RANGE)) ==
(UNIQUE_RANGE | EQ_RANGE))
last_range = 0; // Stop searching
return 0; // Found key is in range
}
last_range = 0; // To next range
}
}
/**
Create a compatible quick select with the result ordered in an opposite way
@param used_key_parts_arg Number of used key parts
@retval NULL in case of errors (OOM etc)
@retval pointer to a newly created QUICK_SELECT_DESC if success
*/
QUICK_SELECT_I *QUICK_RANGE_SELECT::make_reverse(uint used_key_parts_arg) {
return new QUICK_SELECT_DESC(this, used_key_parts_arg);
}
/*
Compare if found key is over max-value
Returns 0 if key <= range->max_key
TODO: Figure out why can't this function be as simple as cmp_prev().
At least it could use key_cmp() from key.cc, it's almost identical.
*/
int QUICK_RANGE_SELECT::cmp_next(QUICK_RANGE *range_arg) {
int cmp;
if (range_arg->flag & NO_MAX_RANGE) return 0; /* key can't be to large */
cmp = key_cmp(key_part_info, range_arg->max_key, range_arg->max_length);
if (cmp < 0 || (cmp == 0 && !(range_arg->flag & NEAR_MAX))) return 0;
return 1; // outside of range
}
/*
Returns 0 if found key is inside range (found key >= range->min_key).
*/
int QUICK_RANGE_SELECT::cmp_prev(QUICK_RANGE *range_arg) {
int cmp;
if (range_arg->flag & NO_MIN_RANGE) return 0; /* key can't be to small */
cmp = key_cmp(key_part_info, range_arg->min_key, range_arg->min_length);
if (cmp > 0 || (cmp == 0 && !(range_arg->flag & NEAR_MIN))) return 0;
return 1; // outside of range
}
/*
true if this range will require using HA_READ_AFTER_KEY
See comment in get_next() about this
*/
bool QUICK_SELECT_DESC::range_reads_after_key(QUICK_RANGE *range_arg) {
return ((range_arg->flag & (NO_MAX_RANGE | NEAR_MAX)) ||
!(range_arg->flag & EQ_RANGE) ||
head->key_info[index].key_length != range_arg->max_length)
? 1
: 0;
}
void QUICK_RANGE_SELECT::add_info_string(String *str) {
KEY *key_info = head->key_info + index;
str->append(key_info->name);
}
void QUICK_INDEX_MERGE_SELECT::add_info_string(String *str) {
QUICK_RANGE_SELECT *quick;
bool first = true;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
str->append(STRING_WITH_LEN("sort_union("));
while ((quick = it++)) {
if (!first)
str->append(',');
else
first = false;
quick->add_info_string(str);
}
if (pk_quick_select) {
str->append(',');
pk_quick_select->add_info_string(str);
}
str->append(')');
}
void QUICK_ROR_INTERSECT_SELECT::add_info_string(String *str) {
bool first = true;
QUICK_RANGE_SELECT *quick;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
str->append(STRING_WITH_LEN("intersect("));
while ((quick = it++)) {
KEY *key_info = head->key_info + quick->index;
if (!first)
str->append(',');
else
first = false;
str->append(key_info->name);
}
if (cpk_quick) {
KEY *key_info = head->key_info + cpk_quick->index;
str->append(',');
str->append(key_info->name);
}
str->append(')');
}
void QUICK_ROR_UNION_SELECT::add_info_string(String *str) {
bool first = true;
QUICK_SELECT_I *quick;
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
str->append(STRING_WITH_LEN("union("));
while ((quick = it++)) {
if (!first)
str->append(',');
else
first = false;
quick->add_info_string(str);
}
str->append(')');
}
void QUICK_GROUP_MIN_MAX_SELECT::add_info_string(String *str) {
str->append(STRING_WITH_LEN("index_for_group_by("));
str->append(index_info->name);
str->append(')');
}
void QUICK_SKIP_SCAN_SELECT::add_info_string(String *str) {
str->append(STRING_WITH_LEN("index_for_skip_scan("));
str->append(index_info->name);
str->append(')');
}
void QUICK_RANGE_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
char buf[64];
size_t length;
KEY *key_info = head->key_info + index;
key_names->append(key_info->name);
length = longlong2str(max_used_key_length, buf, 10) - buf;
used_lengths->append(buf, length);
}
void QUICK_INDEX_MERGE_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
char buf[64];
size_t length;
bool first = true;
QUICK_RANGE_SELECT *quick;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
while ((quick = it++)) {
if (first)
first = false;
else {
key_names->append(',');
used_lengths->append(',');
}
KEY *key_info = head->key_info + quick->index;
key_names->append(key_info->name);
length = longlong2str(quick->max_used_key_length, buf, 10) - buf;
used_lengths->append(buf, length);
}
if (pk_quick_select) {
KEY *key_info = head->key_info + pk_quick_select->index;
key_names->append(',');
key_names->append(key_info->name);
length = longlong2str(pk_quick_select->max_used_key_length, buf, 10) - buf;
used_lengths->append(',');
used_lengths->append(buf, length);
}
}
void QUICK_ROR_INTERSECT_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
char buf[64];
size_t length;
bool first = true;
QUICK_RANGE_SELECT *quick;
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
while ((quick = it++)) {
KEY *key_info = head->key_info + quick->index;
if (first)
first = false;
else {
key_names->append(',');
used_lengths->append(',');
}
key_names->append(key_info->name);
length = longlong2str(quick->max_used_key_length, buf, 10) - buf;
used_lengths->append(buf, length);
}
if (cpk_quick) {
KEY *key_info = head->key_info + cpk_quick->index;
key_names->append(',');
key_names->append(key_info->name);
length = longlong2str(cpk_quick->max_used_key_length, buf, 10) - buf;
used_lengths->append(',');
used_lengths->append(buf, length);
}
}
void QUICK_ROR_UNION_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
bool first = true;
QUICK_SELECT_I *quick;
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
while ((quick = it++)) {
if (first)
first = false;
else {
used_lengths->append(',');
key_names->append(',');
}
quick->add_keys_and_lengths(key_names, used_lengths);
}
}
/*******************************************************************************
* Implementation of QUICK_GROUP_MIN_MAX_SELECT
*******************************************************************************/
static inline uint get_field_keypart(KEY *index, Field *field);
static inline SEL_ROOT *get_index_range_tree(uint index, SEL_TREE *range_tree,
PARAM *param);
static bool get_sel_root_for_keypart(Field *field, SEL_ROOT *index_range_tree,
SEL_ROOT **cur_range);
static bool get_constant_key_infix(SEL_ROOT *index_range_tree,
KEY_PART_INFO *first_non_group_part,
KEY_PART_INFO *min_max_arg_part,
KEY_PART_INFO *last_part, uchar *key_infix,
uint *key_infix_len,
KEY_PART_INFO **first_non_infix_part);
static bool check_group_min_max_predicates(Item *cond,
Item_field *min_max_arg_item,
Field::imagetype image_type);
static bool min_max_inspect_cond_for_fields(Item *cond,
Item_field *min_max_arg_item,
bool *min_max_arg_present,
bool *non_min_max_arg_present);
static void cost_group_min_max(TABLE *table, uint key, uint used_key_parts,
uint group_key_parts, SEL_TREE *range_tree,
ha_rows quick_prefix_records, bool have_min,
bool have_max, Cost_estimate *cost_est,
ha_rows *records);
/**
Test if this access method is applicable to a GROUP query with MIN/MAX
functions, and if so, construct a new TRP object.
DESCRIPTION
Test whether a query can be computed via a QUICK_GROUP_MIN_MAX_SELECT.
Queries computable via a QUICK_GROUP_MIN_MAX_SELECT must satisfy the
following conditions:
A) Table T has at least one compound index I of the form:
I = <A_1, ...,A_k, [B_1,..., B_m], C, [D_1,...,D_n]>
B) Query conditions:
B0. Q is over a single table T.
B1. The attributes referenced by Q are a subset of the attributes of I.
B2. All attributes QA in Q can be divided into 3 overlapping groups:
- SA = {S_1, ..., S_l, [C]} - from the SELECT clause, where C is
referenced by any number of MIN and/or MAX functions if present.
- WA = {W_1, ..., W_p} - from the WHERE clause
- GA = <G_1, ..., G_k> - from the GROUP BY clause (if any)
= SA - if Q is a DISTINCT query (based on the
equivalence of DISTINCT and GROUP queries.
- NGA = QA - (GA union C) = {NG_1, ..., NG_m} - the ones not in
GROUP BY and not referenced by MIN/MAX functions.
with the following properties specified below.
B3. If Q has a GROUP BY WITH ROLLUP clause the access method is not
applicable.
SA1. There is at most one attribute in SA referenced by any number of
MIN and/or MAX functions which, which if present, is denoted as C.
SA2. The position of the C attribute in the index is after the last A_k.
SA3. The attribute C can be referenced in the WHERE clause only in
predicates of the forms:
- (C {< | <= | > | >= | =} const)
- (const {< | <= | > | >= | =} C)
- (C between const_i and const_j)
- C IS NULL
- C IS NOT NULL
- C != const
SA4. If Q has a GROUP BY clause, there are no other aggregate functions
except MIN and MAX. For queries with DISTINCT, aggregate functions
are allowed.
SA5. The select list in DISTINCT queries should not contain expressions.
SA6. Clustered index can not be used by GROUP_MIN_MAX quick select
for AGG_FUNC(DISTINCT ...) optimization because cursor position is
never stored after a unique key lookup in the clustered index and
furhter index_next/prev calls can not be used. So loose index scan
optimization can not be used in this case.
SA7. If Q has both AGG_FUNC(DISTINCT ...) and MIN/MAX() functions then this
access method is not used.
For above queries MIN/MAX() aggregation has to be done at
nested_loops_join (end_send_group). But with current design MIN/MAX()
is always set as part of loose index scan. Because of this mismatch
MIN() and MAX() values will be set incorrectly. For such queries to
work we need a new interface for loose index scan. This new interface
should only fetch records with min and max values and let
end_send_group to do aggregation. Until then do not use
loose_index_scan.
GA1. If Q has a GROUP BY clause, then GA is a prefix of I. That is, if
G_i = A_j => i = j.
GA2. If Q has a DISTINCT clause, then there is a permutation of SA that
forms a prefix of I. This permutation is used as the GROUP clause
when the DISTINCT query is converted to a GROUP query.
GA3. The attributes in GA may participate in arbitrary predicates, divided
into two groups:
- RNG(G_1,...,G_q ; where q <= k) is a range condition over the
attributes of a prefix of GA
- PA(G_i1,...G_iq) is an arbitrary predicate over an arbitrary subset
of GA. Since P is applied to only GROUP attributes it filters some
groups, and thus can be applied after the grouping.
GA4. There are no expressions among G_i, just direct column references.
NGA1.If in the index I there is a gap between the last GROUP attribute G_k,
and the MIN/MAX attribute C, then NGA must consist of exactly the
index attributes that constitute the gap. As a result there is a
permutation of NGA, BA=<B_1,...,B_m>, that coincides with the gap
in the index.
NGA2.If BA <> {}, then the WHERE clause must contain a conjunction EQ of
equality conditions for all NG_i of the form (NG_i = const) or
(const = NG_i), such that each NG_i is referenced in exactly one
conjunct. Informally, the predicates provide constants to fill the
gap in the index.
NGA3.If BA <> {}, there can only be one range. TODO: This is a code
limitation and is not strictly needed. See BUG#15947433
WA1. There are no other attributes in the WHERE clause except the ones
referenced in predicates RNG, PA, PC, EQ defined above. Therefore
WA is subset of (GA union NGA union C) for GA,NGA,C that pass the
above tests. By transitivity then it also follows that each WA_i
participates in the index I (if this was already tested for GA, NGA
and C).
WA2. If there is a predicate on C, then it must be in conjunction
to all predicates on all earlier keyparts in I.
C) Overall query form:
SELECT EXPR([A_1,...,A_k], [B_1,...,B_m], [MIN(C)], [MAX(C)])
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND EQ(B_1,...,B_m)]
[AND PC(C)]
[AND PA(A_i1,...,A_iq)]
GROUP BY A_1,...,A_k
[HAVING PH(A_1, ..., B_1,..., C)]
where EXPR(...) is an arbitrary expression over some or all SELECT fields,
or:
SELECT DISTINCT A_i1,...,A_ik
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND PA(A_i1,...,A_iq)];
NOTES
If the current query satisfies the conditions above, and if
(mem_root! = NULL), then the function constructs and returns a new TRP
object, that is later used to construct a new QUICK_GROUP_MIN_MAX_SELECT.
If (mem_root == NULL), then the function only tests whether the current
query satisfies the conditions above, and, if so, sets
is_applicable = true.
Queries with DISTINCT for which index access can be used are transformed
into equivalent group-by queries of the form:
SELECT A_1,...,A_k FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND PA(A_i1,...,A_iq)]
GROUP BY A_1,...,A_k;
The group-by list is a permutation of the select attributes, according
to their order in the index.
TODO
- What happens if the query groups by the MIN/MAX field, and there is no
other field as in: "select min(a) from t1 group by a" ?
- We assume that the general correctness of the GROUP-BY query was checked
before this point. Is this correct, or do we have to check it completely?
- Lift the limitation in condition (B3), that is, make this access method
applicable to ROLLUP queries.
@param param Parameter from test_quick_select
@param tree Range tree generated by get_mm_tree
@param cost_est Best cost so far (=table/index scan time)
@return table read plan
@retval NULL Loose index scan not applicable or mem_root == NULL
@retval !NULL Loose index scan table read plan
*/
static TRP_GROUP_MIN_MAX *get_best_group_min_max(
PARAM *param, SEL_TREE *tree, const Cost_estimate *cost_est) {
THD *thd = param->thd;
JOIN *join = thd->lex->current_select()->join;
TABLE *table = param->table;
bool have_min = false; /* true if there is a MIN function. */
bool have_max = false; /* true if there is a MAX function. */
Item_field *min_max_arg_item = NULL; // The argument of all MIN/MAX functions
KEY_PART_INFO *min_max_arg_part = NULL; /* The corresponding keypart. */
uint group_prefix_len = 0; /* Length (in bytes) of the key prefix. */
KEY *index_info = NULL; /* The index chosen for data access. */
uint index = 0; /* The id of the chosen index. */
uint group_key_parts = 0; // Number of index key parts in the group prefix.
uint used_key_parts = 0; /* Number of index key parts used for access. */
uchar key_infix[MAX_KEY_LENGTH]; /* Constants from equality predicates.*/
uint key_infix_len = 0; /* Length of key_infix. */
TRP_GROUP_MIN_MAX *read_plan = NULL; /* The eventually constructed TRP. */
uint key_part_nr;
ORDER *tmp_group;
Item *item;
Item_field *item_field;
bool is_agg_distinct;
List<Item_field> agg_distinct_flds;
/* Cost-related variables for the best index so far. */
Cost_estimate best_read_cost;
ha_rows best_records = 0;
SEL_ROOT *best_index_tree = NULL;
ha_rows best_quick_prefix_records = 0;
uint best_param_idx = 0;
List_iterator<Item> select_items_it;
Opt_trace_context *const trace = &param->thd->opt_trace;
DBUG_TRACE;
Opt_trace_object trace_group(trace, "group_index_range",
Opt_trace_context::RANGE_OPTIMIZER);
const char *cause = NULL;
best_read_cost.set_max_cost();
/* Perform few 'cheap' tests whether this access method is applicable. */
if (!join)
cause = "no_join";
else if (join->primary_tables != 1) /* Query must reference one table. */
cause = "not_single_table";
else if (join->select_lex->olap == ROLLUP_TYPE) /* Check (B3) for ROLLUP */
cause = "rollup";
else if (table->s->keys == 0) /* There are no indexes to use. */
cause = "no_index";
else if (param->order_direction == ORDER_DESC)
cause = "cannot_do_reverse_ordering";
if (cause != NULL) {
trace_group.add("chosen", false).add_alnum("cause", cause);
return NULL;
}
/* Check (SA1,SA4) and store the only MIN/MAX argument - the C attribute.*/
is_agg_distinct = is_indexed_agg_distinct(join, &agg_distinct_flds);
if ((!join->group_list) && /* Neither GROUP BY nor a DISTINCT query. */
(!join->select_distinct) && !is_agg_distinct) {
trace_group.add("chosen", false)
.add_alnum("cause", "not_group_by_or_distinct");
return NULL;
}
/* Analyze the query in more detail. */
if (join->sum_funcs[0]) {
Item_sum *min_max_item;
Item_sum **func_ptr = join->sum_funcs;
while ((min_max_item = *(func_ptr++))) {
if (min_max_item->sum_func() == Item_sum::MIN_FUNC)
have_min = true;
else if (min_max_item->sum_func() == Item_sum::MAX_FUNC)
have_max = true;
else if (is_agg_distinct &&
(min_max_item->sum_func() == Item_sum::COUNT_DISTINCT_FUNC ||
min_max_item->sum_func() == Item_sum::SUM_DISTINCT_FUNC ||
min_max_item->sum_func() == Item_sum::AVG_DISTINCT_FUNC))
continue;
else {
trace_group.add("chosen", false)
.add_alnum("cause", "not_applicable_aggregate_function");
return NULL;
}
/* The argument of MIN/MAX. */
Item *expr = min_max_item->get_arg(0)->real_item();
if (expr->type() == Item::FIELD_ITEM) /* Is it an attribute? */
{
if (!min_max_arg_item)
min_max_arg_item = (Item_field *)expr;
else if (!min_max_arg_item->eq(expr, 1))
return NULL;
} else
return NULL;
}
}
/**
Test (Part of WA2): Skip loose index scan on disjunctive WHERE clause which
results in null tree or merge tree.
*/
if (tree && !tree->merges.is_empty()) {
/**
The tree structure contains multiple disjoint trees. This happens when
the WHERE clause can't be represented in a single range tree due to the
disjunctive nature of it but there exists indexes to perform index
merge scan.
*/
trace_group.add("chosen", false)
.add_alnum("cause", "disjuntive_predicate_present");
return NULL;
} else if (!tree && join->where_cond && min_max_arg_item) {
/**
Skip loose index scan if min_max attribute is present along with
at least one other attribute in the WHERE cluse when the tree is null.
There is no range tree if WHERE condition can't be represented in a
single range tree and index merge is not possible.
*/
bool min_max_arg_present = false;
bool non_min_max_arg_present = false;
if (min_max_inspect_cond_for_fields(join->where_cond, min_max_arg_item,
&min_max_arg_present,
&non_min_max_arg_present)) {
trace_group.add("chosen", false)
.add_alnum("cause", "minmax_keypart_in_disjunctive_query");
return NULL;
}
}
/* Check (SA7). */
if (is_agg_distinct && (have_max || have_min)) {
trace_group.add("chosen", false)
.add_alnum("cause", "have_both_agg_distinct_and_min_max");
return NULL;
}
select_items_it = List_iterator<Item>(join->fields_list);
/* Check (SA5). */
if (join->select_distinct) {
trace_group.add("distinct_query", true);
while ((item = select_items_it++)) {
if (item->real_item()->type() != Item::FIELD_ITEM) return NULL;
}
}
/* Check (GA4) - that there are no expressions among the group attributes. */
for (tmp_group = join->group_list; tmp_group; tmp_group = tmp_group->next) {
if ((*tmp_group->item)->real_item()->type() != Item::FIELD_ITEM) {
trace_group.add("chosen", false)
.add_alnum("cause", "group_field_is_expression");
return NULL;
}
}
/*
Check that table has at least one compound index such that the conditions
(GA1,GA2) are all true. If there is more than one such index, select the
first one. Here we set the variables: group_prefix_len and index_info.
*/
const uint pk = param->table->s->primary_key;
SEL_ROOT *cur_index_tree = NULL;
ha_rows cur_quick_prefix_records = 0;
Opt_trace_array trace_indexes(trace, "potential_group_range_indexes");
// We go through allowed indexes
for (uint cur_param_idx = 0; cur_param_idx < param->keys; ++cur_param_idx) {
const uint cur_index = param->real_keynr[cur_param_idx];
KEY *const cur_index_info = &table->key_info[cur_index];
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index", cur_index_info->name);
KEY_PART_INFO *cur_part;
KEY_PART_INFO *end_part; /* Last part for loops. */
/* Last index part. */
KEY_PART_INFO *last_part;
KEY_PART_INFO *first_non_group_part;
KEY_PART_INFO *first_non_infix_part;
uint key_infix_parts;
uint cur_group_key_parts = 0;
uint cur_group_prefix_len = 0;
Cost_estimate cur_read_cost;
ha_rows cur_records;
Key_map used_key_parts_map;
uint max_key_part = 0;
uint cur_key_infix_len = 0;
uchar cur_key_infix[MAX_KEY_LENGTH];
uint cur_used_key_parts;
/* Check (B1) - if current index is covering. */
if (!table->covering_keys.is_set(cur_index)) {
cause = "not_covering";
goto next_index;
}
/*
If the current storage manager is such that it appends the primary key to
each index, then the above condition is insufficient to check if the
index is covering. In such cases it may happen that some fields are
covered by the PK index, but not by the current index. Since we can't
use the concatenation of both indexes for index lookup, such an index
does not qualify as covering in our case. If this is the case, below
we check that all query fields are indeed covered by 'cur_index'.
*/
if (pk < MAX_KEY && cur_index != pk &&
(table->file->ha_table_flags() & HA_PRIMARY_KEY_IN_READ_INDEX)) {
/* For each table field */
for (uint i = 0; i < table->s->fields; i++) {
Field *cur_field = table->field[i];
/*
If the field is used in the current query ensure that it's
part of 'cur_index'
*/
if (bitmap_is_set(table->read_set, cur_field->field_index) &&
!cur_field->is_part_of_actual_key(thd, cur_index, cur_index_info)) {
cause = "not_covering";
goto next_index; // Field was not part of key
}
}
}
trace_idx.add("covering", true);
/*
Check (GA1) for GROUP BY queries.
*/
if (join->group_list) {
cur_part = cur_index_info->key_part;
end_part = cur_part + actual_key_parts(cur_index_info);
/* Iterate in parallel over the GROUP list and the index parts. */
for (tmp_group = join->group_list; tmp_group && (cur_part != end_part);
tmp_group = tmp_group->next, cur_part++) {
/*
TODO:
tmp_group::item is an array of Item, is it OK to consider only the
first Item? If so, then why? What is the array for?
*/
/* Above we already checked that all group items are fields. */
DBUG_ASSERT((*tmp_group->item)->real_item()->type() ==
Item::FIELD_ITEM);
Item_field *group_field = (Item_field *)(*tmp_group->item)->real_item();
if (group_field->field->eq(cur_part->field)) {
cur_group_prefix_len += cur_part->store_length;
++cur_group_key_parts;
max_key_part = cur_part - cur_index_info->key_part + 1;
used_key_parts_map.set_bit(max_key_part);
} else {
cause = "group_attribute_not_prefix_in_index";
goto next_index;
}
}
}
/*
Check (GA2) if this is a DISTINCT query.
If GA2, then Store a new ORDER object in group_fields_array at the
position of the key part of item_field->field. Thus we get the ORDER
objects for each field ordered as the corresponding key parts.
Later group_fields_array of ORDER objects is used to convert the query
to a GROUP query.
*/
if ((!join->group_list && join->select_distinct) || is_agg_distinct) {
if (!is_agg_distinct) {
select_items_it.rewind();
}
List_iterator<Item_field> agg_distinct_flds_it(agg_distinct_flds);
while (NULL != (item = (is_agg_distinct ? (Item *)agg_distinct_flds_it++
: select_items_it++))) {
/* (SA5) already checked above. */
item_field = (Item_field *)item->real_item();
DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
/* not doing loose index scan for derived tables */
if (!item_field->field) {
cause = "derived_table";
goto next_index;
}
/* Find the order of the key part in the index. */
key_part_nr = get_field_keypart(cur_index_info, item_field->field);
/*
Check if this attribute was already present in the select list.
If it was present, then its corresponding key part was alredy used.
*/
if (used_key_parts_map.is_set(key_part_nr)) continue;
if (key_part_nr < 1 ||
(!is_agg_distinct && key_part_nr > join->fields_list.elements)) {
cause = "select_attribute_not_prefix_in_index";
goto next_index;
}
cur_part = cur_index_info->key_part + key_part_nr - 1;
cur_group_prefix_len += cur_part->store_length;
used_key_parts_map.set_bit(key_part_nr);
++cur_group_key_parts;
max_key_part = max(max_key_part, key_part_nr);
}
/*
Check that used key parts forms a prefix of the index.
To check this we compare bits in all_parts and cur_parts.
all_parts have all bits set from 0 to (max_key_part-1).
cur_parts have bits set for only used keyparts.
*/
ulonglong all_parts, cur_parts;
all_parts = (1ULL << max_key_part) - 1;
cur_parts = used_key_parts_map.to_ulonglong() >> 1;
if (all_parts != cur_parts) goto next_index;
}
/* Check (SA2). */
if (min_max_arg_item) {
key_part_nr = get_field_keypart(cur_index_info, min_max_arg_item->field);
if (key_part_nr <= cur_group_key_parts) {
cause = "aggregate_column_not_suffix_in_idx";
goto next_index;
}
min_max_arg_part = cur_index_info->key_part + key_part_nr - 1;
}
/* Check (SA6) if clustered key is used. */
if (is_agg_distinct && cur_index == table->s->primary_key &&
table->file->primary_key_is_clustered()) {
cause = "primary_key_is_clustered";
goto next_index;
}
/*
Check (NGA1, NGA2) and extract a sequence of constants to be used as part
of all search keys.
*/
/*
If there is MIN/MAX, each keypart between the last group part and the
MIN/MAX part must participate in one equality with constants, and all
keyparts after the MIN/MAX part must not be referenced in the query.
If there is no MIN/MAX, the keyparts after the last group part can be
referenced only in equalities with constants, and the referenced keyparts
must form a sequence without any gaps that starts immediately after the
last group keypart.
*/
last_part = cur_index_info->key_part + actual_key_parts(cur_index_info);
first_non_group_part =
(cur_group_key_parts < actual_key_parts(cur_index_info))
? cur_index_info->key_part + cur_group_key_parts
: NULL;
first_non_infix_part =
min_max_arg_part
? (min_max_arg_part < last_part) ? min_max_arg_part : NULL
: NULL;
if (first_non_group_part &&
(!min_max_arg_part || (min_max_arg_part - first_non_group_part > 0))) {
if (tree) {
SEL_ROOT *index_range_tree =
get_index_range_tree(cur_index, tree, param);
if (!get_constant_key_infix(index_range_tree, first_non_group_part,
min_max_arg_part, last_part, cur_key_infix,
&cur_key_infix_len,
&first_non_infix_part)) {
cause = "nonconst_equality_gap_attribute";
goto next_index;
}
} else if (min_max_arg_part &&
(min_max_arg_part - first_non_group_part > 0)) {
/*
There is a gap but no range tree, thus no predicates at all for the
non-group keyparts.
*/
cause = "no_nongroup_keypart_predicate";
goto next_index;
} else if (first_non_group_part && join->where_cond) {
/*
If there is no MIN/MAX function in the query, but some index
key part is referenced in the WHERE clause, then this index
cannot be used because the WHERE condition over the keypart's
field cannot be 'pushed' to the index (because there is no
range 'tree'), and the WHERE clause must be evaluated before
GROUP BY/DISTINCT.
*/
/*
Store the first and last keyparts that need to be analyzed
into one array that can be passed as parameter.
*/
KEY_PART_INFO *key_part_range[2];
key_part_range[0] = first_non_group_part;
key_part_range[1] = last_part;
/* Check if cur_part is referenced in the WHERE clause. */
if (join->where_cond->walk(&Item::find_item_in_field_list_processor,
enum_walk::SUBQUERY_POSTFIX,
(uchar *)key_part_range)) {
cause = "keypart_reference_from_where_clause";
goto next_index;
}
}
}
/*
Test (WA1) partially - that no other keypart after the last infix part is
referenced in the query.
*/
if (first_non_infix_part) {
cur_part = first_non_infix_part +
(min_max_arg_part && (min_max_arg_part < last_part));
for (; cur_part != last_part; cur_part++) {
if (bitmap_is_set(table->read_set, cur_part->field->field_index)) {
cause = "keypart_after_infix_in_query";
goto next_index;
}
}
}
/**
Test Part of WA2:If there are conditions on a column C participating in
MIN/MAX, those conditions must be conjunctions to all earlier
keyparts. Otherwise, Loose Index Scan cannot be used.
*/
if (tree && min_max_arg_item) {
SEL_ROOT *index_range_tree = get_index_range_tree(cur_index, tree, param);
SEL_ROOT *cur_range = NULL;
if (get_sel_root_for_keypart(min_max_arg_part->field, index_range_tree,
&cur_range) ||
(cur_range && cur_range->type != SEL_ROOT::Type::KEY_RANGE)) {
cause = "minmax_keypart_in_disjunctive_query";
goto next_index;
}
}
/* If we got to this point, cur_index_info passes the test. */
key_infix_parts = cur_key_infix_len
? (uint)(first_non_infix_part - first_non_group_part)
: 0;
cur_used_key_parts = cur_group_key_parts + key_infix_parts;
/* Compute the cost of using this index. */
if (tree) {
/* Find the SEL_ARG sub-tree that corresponds to the chosen index. */
cur_index_tree = get_index_range_tree(cur_index, tree, param);
/* Check if this range tree can be used for prefix retrieval. */
Cost_estimate dummy_cost;
uint mrr_flags = HA_MRR_SORTED;
uint mrr_bufsize = 0;
cur_quick_prefix_records = check_quick_select(
param, cur_param_idx, false /*don't care*/, cur_index_tree, true,
&mrr_flags, &mrr_bufsize, &dummy_cost);
if (unlikely(cur_index_tree && trace->is_started())) {
trace_idx.add("index_dives_for_eq_ranges",
!param->use_index_statistics);
Opt_trace_array trace_range(trace, "ranges");
const KEY_PART_INFO *key_part = cur_index_info->key_part;
String range_info;
range_info.set_charset(system_charset_info);
append_range_all_keyparts(&trace_range, NULL, &range_info,
cur_index_tree, key_part, false);
}
}
cost_group_min_max(table, cur_index, cur_used_key_parts,
cur_group_key_parts, tree, cur_quick_prefix_records,
have_min, have_max, &cur_read_cost, &cur_records);
/*
If cur_read_cost is lower than best_read_cost use cur_index.
Do not compare doubles directly because they may have different
representations (64 vs. 80 bits).
*/
trace_idx.add("rows", cur_records).add("cost", cur_read_cost);
{
Cost_estimate min_diff_cost = cur_read_cost;
min_diff_cost.multiply(DBL_EPSILON);
if (cur_read_cost < (best_read_cost - min_diff_cost)) {
index_info = cur_index_info;
index = cur_index;
best_read_cost = cur_read_cost;
best_records = cur_records;
best_index_tree = cur_index_tree;
best_quick_prefix_records = cur_quick_prefix_records;
best_param_idx = cur_param_idx;
group_key_parts = cur_group_key_parts;
group_prefix_len = cur_group_prefix_len;
key_infix_len = cur_key_infix_len;
if (key_infix_len) memcpy(key_infix, cur_key_infix, sizeof(key_infix));
used_key_parts = cur_used_key_parts;
}
}
next_index:
if (cause) {
trace_idx.add("usable", false).add_alnum("cause", cause);
cause = NULL;
}
}
trace_indexes.end();
if (!index_info) /* No usable index found. */
return NULL;
/* Check (SA3) for the where clause. */
if (join->where_cond && min_max_arg_item &&
!check_group_min_max_predicates(
join->where_cond, min_max_arg_item,
(index_info->flags & HA_SPATIAL) ? Field::itMBR : Field::itRAW)) {
trace_group.add("usable", false)
.add_alnum("cause", "unsupported_predicate_on_agg_attribute");
return NULL;
}
/* The query passes all tests, so construct a new TRP object. */
read_plan = new (param->mem_root) TRP_GROUP_MIN_MAX(
have_min, have_max, is_agg_distinct, min_max_arg_part, group_prefix_len,
used_key_parts, group_key_parts, index_info, index, key_infix_len,
(key_infix_len > 0) ? key_infix : NULL, tree, best_index_tree,
best_param_idx, best_quick_prefix_records);
if (read_plan) {
if (tree && read_plan->quick_prefix_records == 0) return NULL;
read_plan->cost_est = best_read_cost;
read_plan->records = best_records;
if (*cost_est < best_read_cost && is_agg_distinct) {
trace_group.add("index_scan", true);
read_plan->cost_est.reset();
read_plan->use_index_scan();
}
DBUG_PRINT("info",
("Returning group min/max plan: cost: %g, records: %lu",
read_plan->cost_est.total_cost(), (ulong)read_plan->records));
}
return read_plan;
}
/*
Check that the MIN/MAX attribute participates only in range predicates
with constants.
SYNOPSIS
check_group_min_max_predicates()
cond tree (or subtree) describing all or part of the WHERE
clause being analyzed
min_max_arg_item the field referenced by the MIN/MAX function(s)
min_max_arg_part the keypart of the MIN/MAX argument if any
DESCRIPTION
The function walks recursively over the cond tree representing a WHERE
clause, and checks condition (SA3) - if a field is referenced by a MIN/MAX
aggregate function, it is referenced only by one of the following
predicates: {=, !=, <, <=, >, >=, between, is null, is not null}.
RETURN
true if cond passes the test
false o/w
*/
static bool check_group_min_max_predicates(Item *cond,
Item_field *min_max_arg_item,
Field::imagetype image_type) {
DBUG_TRACE;
DBUG_ASSERT(cond && min_max_arg_item);
cond = cond->real_item();
Item::Type cond_type = cond->type();
if (cond_type == Item::COND_ITEM) /* 'AND' or 'OR' */
{
DBUG_PRINT("info", ("Analyzing: %s", ((Item_func *)cond)->func_name()));
List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
Item *and_or_arg;
while ((and_or_arg = li++)) {
if (!check_group_min_max_predicates(and_or_arg, min_max_arg_item,
image_type))
return false;
}
return true;
}
/*
TODO:
This is a very crude fix to handle sub-selects in the WHERE clause
(Item_subselect objects). With the test below we rule out from the
optimization all queries with subselects in the WHERE clause. What has to
be done, is that here we should analyze whether the subselect references
the MIN/MAX argument field, and disallow the optimization only if this is
so.
Need to handle subselect in min_max_inspect_cond_for_fields() once this
is fixed.
*/
if (cond_type == Item::SUBSELECT_ITEM) return false;
/*
Condition of the form 'field' is equivalent to 'field <> 0' and thus
satisfies the SA3 condition.
*/
if (cond_type == Item::FIELD_ITEM) {
DBUG_PRINT("info", ("Analyzing: %s", cond->full_name()));
return true;
}
/*
At this point, we have weeded out most conditions other than
function items. However, there are cases like the following:
select 1 in (select max(c) from t1 where max(1) group by a)
Here the condition "where max(1)" is an Item_sum_max, not an
Item_func. In this particular case, the where clause should
be equivalent to "where max(1) <> 0". A where clause
phrased that way does not satisfy the SA3 condition of
get_best_group_min_max(). The "where max(1) = true" clause
causes this method to reject the access method
(i.e., to return false).
It's been suggested that it may be possible to use the access method
for a sub-family of cases when we're aggregating constants or
outer references. For the moment, we bale out and we reject
the access method for the query.
It's hard to prove that there are no other cases where the
condition is not an Item_func. So, for the moment, don't apply
the optimization if the condition is not a function item.
*/
if (cond_type == Item::SUM_FUNC_ITEM) {
return false;
}
/*
If this is a debug server, then we want to know about
additional oddball cases which might benefit from this
optimization.
*/
DBUG_ASSERT(cond_type == Item::FUNC_ITEM);
if (cond_type != Item::FUNC_ITEM) {
return false;
}
/* Test if cond references only group-by or non-group fields. */
Item_func *pred = (Item_func *)cond;
Item *cur_arg;
DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
for (uint arg_idx = 0; arg_idx < pred->argument_count(); arg_idx++) {
Item **arguments = pred->arguments();
cur_arg = arguments[arg_idx]->real_item();
DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
if (cur_arg->type() == Item::FIELD_ITEM) {
if (min_max_arg_item->eq(cur_arg, 1)) {
/*
If pred references the MIN/MAX argument, check whether pred is a range
condition that compares the MIN/MAX argument with a constant.
*/
Item_func::Functype pred_type = pred->functype();
if (pred_type != Item_func::EQUAL_FUNC &&
pred_type != Item_func::LT_FUNC &&
pred_type != Item_func::LE_FUNC &&
pred_type != Item_func::GT_FUNC &&
pred_type != Item_func::GE_FUNC &&
pred_type != Item_func::BETWEEN &&
pred_type != Item_func::ISNULL_FUNC &&
pred_type != Item_func::ISNOTNULL_FUNC &&
pred_type != Item_func::EQ_FUNC && pred_type != Item_func::NE_FUNC)
return false;
/* Check that pred compares min_max_arg_item with a constant. */
Item *args[3];
memset(args, 0, 3 * sizeof(Item *));
bool inv;
/* Test if this is a comparison of a field and a constant. */
if (!simple_pred(pred, args, &inv)) return false;
/* Check for compatible string comparisons - similar to get_mm_leaf. */
if (args[0] && args[1] && !args[2] && // this is a binary function
min_max_arg_item->result_type() == STRING_RESULT &&
/*
Don't use an index when comparing strings of different collations.
*/
((args[1]->result_type() == STRING_RESULT &&
image_type == Field::itRAW &&
min_max_arg_item->field->charset() !=
pred->compare_collation()) ||
/*
We can't always use indexes when comparing a string index to a
number.
*/
(args[1]->result_type() != STRING_RESULT &&
min_max_arg_item->field->cmp_type() != args[1]->result_type())))
return false;
}
} else if (cur_arg->type() == Item::FUNC_ITEM) {
if (!check_group_min_max_predicates(cur_arg, min_max_arg_item,
image_type))
return false;
} else if (cur_arg->const_item()) {
/*
For predicates of the form "const OP expr" we also have to check 'expr'
to make a decision.
*/
continue;
} else
return false;
}
return true;
}
/**
Utility function used by min_max_inspect_cond_for_fields() for comparing
FILED item with given MIN/MAX item and setting appropriate out paramater.
@param item_field Item field for comparison.
@param min_max_arg_item The field referenced by the MIN/MAX
function(s).
@param [out] min_max_arg_present This out parameter is set to true if
MIN/MAX argument is present in cond.
@param [out] non_min_max_arg_present This out parameter is set to true if
any field item other than MIN/MAX
argument is present in cond.
*/
static inline void util_min_max_inspect_item(Item *item_field,
Item_field *min_max_arg_item,
bool *min_max_arg_present,
bool *non_min_max_arg_present) {
if (item_field->type() == Item::FIELD_ITEM) {
if (min_max_arg_item->eq(item_field, 1))
*min_max_arg_present = true;
else
*non_min_max_arg_present = true;
}
}
/**
This function detects the presents of MIN/MAX field along with at least
one non MIN/MAX field participation in the given condition. Subqueries
inspection is skipped as of now.
@param cond tree (or subtree) describing all or part of the WHERE
clause being analyzed.
@param min_max_arg_item The field referenced by the MIN/MAX
function(s).
@param [out] min_max_arg_present This out parameter is set to true if
MIN/MAX argument is present in cond.
@param [out] non_min_max_arg_present This out parameter is set to true if
any field item other than MIN/MAX
argument is present in cond.
@return TRUE if both MIN/MAX field and non MIN/MAX field is present in cond.
FALSE o/w.
@todo: When the hack present in check_group_min_max_predicate() is removed,
subqueries needs to be inspected.
*/
static bool min_max_inspect_cond_for_fields(Item *cond,
Item_field *min_max_arg_item,
bool *min_max_arg_present,
bool *non_min_max_arg_present) {
DBUG_TRACE;
DBUG_ASSERT(cond && min_max_arg_item);
cond = cond->real_item();
Item::Type cond_type = cond->type();
switch (cond_type) {
case Item::COND_ITEM: {
DBUG_PRINT("info", ("Analyzing: %s", ((Item_func *)cond)->func_name()));
List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
Item *and_or_arg;
while ((and_or_arg = li++)) {
min_max_inspect_cond_for_fields(and_or_arg, min_max_arg_item,
min_max_arg_present,
non_min_max_arg_present);
if (*min_max_arg_present && *non_min_max_arg_present) return true;
}
return false;
}
case Item::FUNC_ITEM: {
/* Test if cond references both group-by and non-group fields. */
Item_func *pred = (Item_func *)cond;
Item *cur_arg;
DBUG_PRINT("info", ("Analyzing: %s", pred->func_name()));
for (uint arg_idx = 0; arg_idx < pred->argument_count(); arg_idx++) {
Item **arguments = pred->arguments();
cur_arg = arguments[arg_idx]->real_item();
DBUG_PRINT("info", ("cur_arg: %s", cur_arg->full_name()));
if (cur_arg->type() == Item::FUNC_ITEM) {
min_max_inspect_cond_for_fields(cur_arg, min_max_arg_item,
min_max_arg_present,
non_min_max_arg_present);
} else {
util_min_max_inspect_item(cur_arg, min_max_arg_item,
min_max_arg_present,
non_min_max_arg_present);
}
if (*min_max_arg_present && *non_min_max_arg_present) return true;
}
if (pred->functype() == Item_func::MULT_EQUAL_FUNC) {
/*
Analyze participating fields in a multiequal condition.
*/
Item_equal_iterator it(*(Item_equal *)cond);
Item *item_field;
while ((item_field = it++)) {
util_min_max_inspect_item(item_field, min_max_arg_item,
min_max_arg_present,
non_min_max_arg_present);
if (*min_max_arg_present && *non_min_max_arg_present) return true;
}
}
break;
}
case Item::FIELD_ITEM: {
util_min_max_inspect_item(cond, min_max_arg_item, min_max_arg_present,
non_min_max_arg_present);
DBUG_PRINT("info", ("Analyzing: %s", cond->full_name()));
return false;
}
default:
break;
}
return false;
}
/*
Get the SEL_ARG tree 'tree' for the keypart covering 'field', if
any. 'tree' must be a unique conjunction to ALL predicates in earlier
keyparts of 'keypart_tree'.
E.g., if 'keypart_tree' is for a composite index (kp1,kp2) and kp2
covers 'field', all these conditions satisfies the requirement:
1. "(kp1=2 OR kp1=3) AND kp2=10" => returns "kp2=10"
2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=10)" => returns "kp2=10"
3. "(kp1=2 AND (kp2=10 OR kp2=11)) OR (kp1=3 AND (kp2=10 OR kp2=11))"
=> returns "kp2=10 OR kp2=11"
whereas these do not
1. "(kp1=2 AND kp2=10) OR kp1=3"
2. "(kp1=2 AND kp2=10) OR (kp1=3 AND kp2=11)"
3. "(kp1=2 AND kp2=10) OR (kp1=3 AND (kp2=10 OR kp2=11))"
This function effectively tests requirement WA2. In combination with
a test that the returned tree has no more than one range it is also
a test of NGA3.
@param[in] field The field we want the SEL_ARG tree for
@param[in] keypart_tree The SEL_ARG* tree for the index
@param[out] cur_range The SEL_ARG tree, if any, for the keypart
covering field 'keypart_field'
@retval true 'keypart_tree' contained a predicate for 'field' that
is not conjunction to all predicates on earlier keyparts
@retval false otherwise
*/
static bool get_sel_root_for_keypart(Field *field, SEL_ROOT *keypart_tree,
SEL_ROOT **cur_range) {
if (keypart_tree == NULL) return false;
if (keypart_tree->type != SEL_ROOT::Type::KEY_RANGE) {
/*
A range predicate not usable by Loose Index Scan is found.
Predicates for keypart 'keypart_tree->root->part' and later keyparts
cannot be used.
*/
*cur_range = keypart_tree;
return false;
}
if (keypart_tree->root->field->eq(field)) {
*cur_range = keypart_tree;
return false;
}
SEL_ROOT *tree_first_range = NULL;
SEL_ARG *first_kp = keypart_tree->root->first();
for (SEL_ARG *cur_kp = first_kp; cur_kp; cur_kp = cur_kp->next) {
SEL_ROOT *curr_tree = NULL;
if (cur_kp->next_key_part) {
if (get_sel_root_for_keypart(field, cur_kp->next_key_part, &curr_tree))
return true;
}
/**
Check if the SEL_ARG tree for 'field' is identical for all ranges in
'keypart_tree'.
*/
if (cur_kp == first_kp)
tree_first_range = curr_tree;
else if (!all_same(tree_first_range, curr_tree))
return true;
}
*cur_range = tree_first_range;
return false;
}
/*
Extract a sequence of constants from a conjunction of equality predicates.
SYNOPSIS
get_constant_key_infix()
index_range_tree [in] Range tree for the chosen index
first_non_group_part [in] First index part after group attribute parts
min_max_arg_part [in] The keypart of the MIN/MAX argument if any
last_part [in] Last keypart of the index
key_infix [out] Infix of constants to be used for index lookup
key_infix_len [out] Lenghth of the infix
first_non_infix_part [out] The first keypart after the infix (if any)
DESCRIPTION
Test conditions (NGA1, NGA2) from get_best_group_min_max(). Namely,
for each keypart field NGF_i not in GROUP-BY, check that there is a
constant equality predicate among conds with the form (NGF_i = const_ci) or
(const_ci = NGF_i).
Thus all the NGF_i attributes must fill the 'gap' between the last group-by
attribute and the MIN/MAX attribute in the index (if present). Also ensure
that there is only a single range on NGF_i (NGA3). If these
conditions hold, copy each constant from its corresponding predicate into
key_infix, in the order its NG_i attribute appears in the index, and update
key_infix_len with the total length of the key parts in key_infix.
RETURN
true if the index passes the test
false o/w
*/
static bool get_constant_key_infix(SEL_ROOT *index_range_tree,
KEY_PART_INFO *first_non_group_part,
KEY_PART_INFO *min_max_arg_part,
KEY_PART_INFO *last_part, uchar *key_infix,
uint *key_infix_len,
KEY_PART_INFO **first_non_infix_part) {
SEL_ROOT *cur_range;
KEY_PART_INFO *cur_part;
/* End part for the first loop below. */
KEY_PART_INFO *end_part = min_max_arg_part ? min_max_arg_part : last_part;
*key_infix_len = 0;
uchar *key_ptr = key_infix;
for (cur_part = first_non_group_part; cur_part != end_part; cur_part++) {
cur_range = NULL;
/*
Check NGA3:
1. get_sel_root_for_keypart gets the range tree for the 'field' and also
checks for a unique conjunction of this tree with all the predicates
on the earlier keyparts in the index.
2. Check for multiple ranges on the found keypart tree.
We assume that index_range_tree points to the leftmost keypart in
the index.
*/
if (get_sel_root_for_keypart(cur_part->field, index_range_tree, &cur_range))
return false;
if (cur_range && cur_range->elements > 1) return false;
if (!cur_range || cur_range->type != SEL_ROOT::Type::KEY_RANGE) {
if (min_max_arg_part)
return false; /* The current keypart has no range predicates at all. */
else {
*first_non_infix_part = cur_part;
return true;
}
}
const SEL_ARG *const cur_range_root = cur_range->root; // The only element.
if ((cur_range_root->min_flag & NO_MIN_RANGE) ||
(cur_range_root->max_flag & NO_MAX_RANGE) ||
(cur_range_root->min_flag & NEAR_MIN) ||
(cur_range_root->max_flag & NEAR_MAX))
return false;
uint field_length = cur_part->store_length;
if (cur_range_root->maybe_null() && cur_range_root->min_value[0] &&
cur_range_root->max_value[0]) {
/*
cur_range_root specifies 'IS NULL'. In this case the argument points
to a "null value" (a copy of is_null_string) that we do not
memcmp(), or memcpy to a field.
*/
DBUG_ASSERT(field_length > 0);
*key_ptr = 1;
key_ptr += field_length;
*key_infix_len += field_length;
} else if (memcmp(cur_range_root->min_value, cur_range_root->max_value,
field_length) ==
0) { /* cur_range_root specifies an equality condition. */
memcpy(key_ptr, cur_range_root->min_value, field_length);
key_ptr += field_length;
*key_infix_len += field_length;
} else
return false;
}
if (!min_max_arg_part && (cur_part == last_part))
*first_non_infix_part = last_part;
return true;
}
/*
Find the key part referenced by a field.
SYNOPSIS
get_field_keypart()
index descriptor of an index
field field that possibly references some key part in index
NOTES
The return value can be used to get a KEY_PART_INFO pointer by
part= index->key_part + get_field_keypart(...) - 1;
RETURN
Positive number which is the consecutive number of the key part, or
0 if field does not reference any index field.
*/
static inline uint get_field_keypart(KEY *index, Field *field) {
KEY_PART_INFO *part, *end;
for (part = index->key_part, end = part + actual_key_parts(index); part < end;
part++) {
if (field->eq(part->field)) return part - index->key_part + 1;
}
return 0;
}
/*
Find the SEL_ROOT tree that corresponds to the chosen index.
SYNOPSIS
get_index_range_tree()
index [in] The ID of the index being looked for
range_tree[in] Tree of ranges being searched
param [in] PARAM from test_quick_select
DESCRIPTION
A SEL_TREE contains range trees for all usable indexes. This procedure
finds the SEL_ROOT tree for 'index'. The members of a SEL_TREE are
ordered in the same way as the members of PARAM::key, thus we first find
the corresponding index in the array PARAM::key. This index is returned
through the variable param_idx, to be used later as argument of
check_quick_select().
RETURN
Pointer to the SEL_ROOT tree that corresponds to index.
*/
SEL_ROOT *get_index_range_tree(uint index, SEL_TREE *range_tree, PARAM *param) {
uint idx = 0; /* Index nr in param->key_parts */
while (idx < param->keys) {
if (index == param->real_keynr[idx]) break;
idx++;
}
return (range_tree->keys[idx]);
}
/*
Compute the cost of a quick_group_min_max_select for a particular index.
SYNOPSIS
cost_group_min_max()
table [in] The table being accessed
key [in] The index used to access the table
used_key_parts [in] Number of key parts used to access the index
group_key_parts [in] Number of index key parts in the group prefix
range_tree [in] Tree of ranges for all indexes
quick_prefix_records [in] Number of records retrieved by the internally
used quick range select if any
have_min [in] True if there is a MIN function
have_max [in] True if there is a MAX function
cost_est [out] The cost to retrieve rows via this quick select
records [out] The number of rows retrieved
DESCRIPTION
This method computes the access cost of a TRP_GROUP_MIN_MAX instance and
the number of rows returned.
NOTES
The cost computation distinguishes several cases:
1) No equality predicates over non-group attributes (thus no key_infix).
If groups are bigger than blocks on the average, then we assume that it
is very unlikely that block ends are aligned with group ends, thus even
if we look for both MIN and MAX keys, all pairs of neighbor MIN/MAX
keys, except for the first MIN and the last MAX keys, will be in the
same block. If groups are smaller than blocks, then we are going to
read all blocks.
2) There are equality predicates over non-group attributes.
In this case the group prefix is extended by additional constants, and
as a result the min/max values are inside sub-groups of the original
groups. The number of blocks that will be read depends on whether the
ends of these sub-groups will be contained in the same or in different
blocks. We compute the probability for the two ends of a subgroup to be
in two different blocks as the ratio of:
- the number of positions of the left-end of a subgroup inside a group,
such that the right end of the subgroup is past the end of the buffer
containing the left-end, and
- the total number of possible positions for the left-end of the
subgroup, which is the number of keys in the containing group.
We assume it is very unlikely that two ends of subsequent subgroups are
in the same block.
3) The are range predicates over the group attributes.
Then some groups may be filtered by the range predicates. We use the
selectivity of the range predicates to decide how many groups will be
filtered.
TODO
- Take into account the optional range predicates over the MIN/MAX
argument.
- Check if we have a PK index and we use all cols - then each key is a
group, and it will be better to use an index scan.
RETURN
None
*/
static void cost_group_min_max(TABLE *table, uint key, uint used_key_parts,
uint group_key_parts, SEL_TREE *range_tree,
ha_rows quick_prefix_records, bool have_min,
bool have_max, Cost_estimate *cost_est,
ha_rows *records) {
ha_rows table_records;
uint num_groups;
uint num_blocks;
uint keys_per_block;
rec_per_key_t keys_per_group;
double p_overlap; /* Probability that a sub-group overlaps two blocks. */
double quick_prefix_selectivity;
double io_blocks; // Number of blocks to read from table
DBUG_TRACE;
DBUG_ASSERT(cost_est->is_zero());
const KEY *const index_info = &table->key_info[key];
table_records = table->file->stats.records;
keys_per_block = (table->file->stats.block_size / 2 /
(index_info->key_length + table->file->ref_length) +
1);
num_blocks = (uint)(table_records / keys_per_block) + 1;
/* Compute the number of keys in a group. */
if (index_info->has_records_per_key(group_key_parts - 1))
// Use index statistics
keys_per_group = index_info->records_per_key(group_key_parts - 1);
else
/* If there is no statistics try to guess */
keys_per_group = guess_rec_per_key(table, index_info, group_key_parts);
num_groups = (uint)(table_records / keys_per_group) + 1;
/* Apply the selectivity of the quick select for group prefixes. */
if (range_tree && (quick_prefix_records != HA_POS_ERROR)) {
quick_prefix_selectivity =
(double)quick_prefix_records / (double)table_records;
num_groups = (uint)rint(num_groups * quick_prefix_selectivity);
set_if_bigger(num_groups, 1);
}
if (used_key_parts > group_key_parts) {
// Average number of keys in sub-groups formed by a key infix
rec_per_key_t keys_per_subgroup;
if (index_info->has_records_per_key(used_key_parts - 1))
// Use index statistics
keys_per_subgroup = index_info->records_per_key(used_key_parts - 1);
else {
// If no index statistics then we use a guessed records per key value.
keys_per_subgroup = guess_rec_per_key(table, index_info, used_key_parts);
set_if_smaller(keys_per_subgroup, keys_per_group);
}
/*
Compute the probability that two ends of a subgroup are inside
different blocks.
*/
if (keys_per_subgroup >= keys_per_block) /* If a subgroup is bigger than */
p_overlap = 1.0; /* a block, it will overlap at least two blocks. */
else {
double blocks_per_group = (double)num_blocks / (double)num_groups;
p_overlap = (blocks_per_group * (keys_per_subgroup - 1)) / keys_per_group;
p_overlap = min(p_overlap, 1.0);
}
io_blocks = min<double>(num_groups * (1 + p_overlap), num_blocks);
} else
io_blocks = (keys_per_group > keys_per_block)
? (have_min && have_max) ? (double)(num_groups + 1)
: (double)num_groups
: (double)num_blocks;
/*
Estimate IO cost.
*/
const Cost_model_table *const cost_model = table->cost_model();
cost_est->add_io(cost_model->page_read_cost_index(key, io_blocks));
/*
CPU cost must be comparable to that of an index scan as computed
in test_quick_select(). When the groups are small,
e.g. for a unique index, using index scan will be cheaper since it
reads the next record without having to re-position to it on every
group. To make the CPU cost reflect this, we estimate the CPU cost
as the sum of:
1. Cost for evaluating the condition (similarly as for index scan).
2. Cost for navigating the index structure (assuming a b-tree).
Note: We only add the cost for one comparision per block. For a
b-tree the number of comparisons will be larger.
TODO: This cost should be provided by the storage engine.
*/
if (keys_per_block <= 1) {
// Only one key per block? A *very* high tree.
cost_est->add_cpu(std::numeric_limits<double>::max());
} else {
const double tree_height =
table_records == 0
? 1.0
: ceil(log(double(table_records)) / log(double(keys_per_block)));
const double tree_traversal_cost =
cost_model->key_compare_cost(tree_height);
const double cpu_cost =
num_groups * (tree_traversal_cost + cost_model->row_evaluate_cost(1.0));
cost_est->add_cpu(cpu_cost);
}
*records = num_groups;
DBUG_PRINT("info", ("table rows: %lu keys/block: %u keys/group: %.1f "
"result rows: %lu blocks: %u",
(ulong)table_records, keys_per_block, keys_per_group,
(ulong)*records, num_blocks));
}
/*
Construct a new quick select object for queries with group by with min/max.
SYNOPSIS
TRP_GROUP_MIN_MAX::make_quick()
param Parameter from test_quick_select
parent_alloc Memory pool to use, if any.
NOTES
Make_quick ignores the retrieve_full_rows parameter because
QUICK_GROUP_MIN_MAX_SELECT always performs 'index only' scans.
The other parameter are ignored as well because all necessary
data to create the QUICK object is computed at this TRP creation
time.
RETURN
New QUICK_GROUP_MIN_MAX_SELECT object if successfully created,
NULL otherwise.
*/
QUICK_SELECT_I *TRP_GROUP_MIN_MAX::make_quick(PARAM *param, bool,
MEM_ROOT *parent_alloc) {
QUICK_GROUP_MIN_MAX_SELECT *quick;
DBUG_TRACE;
quick = new QUICK_GROUP_MIN_MAX_SELECT(
param->table, param->thd->lex->current_select()->join, have_min, have_max,
have_agg_distinct, min_max_arg_part, group_prefix_len, group_key_parts,
used_key_parts, index_info, index, &cost_est, records, key_infix_len,
key_infix, parent_alloc, is_index_scan);
if (!quick) return NULL;
if (quick->init()) {
delete quick;
return NULL;
}
if (range_tree) {
DBUG_ASSERT(quick_prefix_records > 0);
if (quick_prefix_records == HA_POS_ERROR)
quick->quick_prefix_select = NULL; /* Can't construct a quick select. */
else {
/* Make a QUICK_RANGE_SELECT to be used for group prefix retrieval. */
quick->quick_prefix_select = get_quick_select(
param, param_idx, index_tree, HA_MRR_SORTED, 0, &quick->alloc);
if (!quick->quick_prefix_select) {
delete quick;
return NULL;
}
}
/*
Extract the SEL_ARG subtree that contains only ranges for the MIN/MAX
attribute, and create an array of QUICK_RANGES to be used by the
new quick select.
*/
if (min_max_arg_part) {
const SEL_ROOT *min_max_range_root = index_tree;
while (min_max_range_root) /* Find the tree for the MIN/MAX key part. */
{
if (min_max_range_root->root->field->eq(min_max_arg_part->field)) break;
min_max_range_root = min_max_range_root->root->next_key_part;
}
if (min_max_range_root) {
/* Create an array of QUICK_RANGEs for the MIN/MAX argument. */
for (SEL_ARG *min_max_range = min_max_range_root->root->first();
min_max_range; min_max_range = min_max_range->next) {
if (quick->add_range(min_max_range)) {
delete quick;
return nullptr;
}
}
}
}
} else
quick->quick_prefix_select = NULL;
quick->update_key_stat();
quick->adjust_prefix_ranges();
return quick;
}
/*
Construct new quick select for group queries with min/max.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT()
table The table being accessed
join Descriptor of the current query
have_min true if the query selects a MIN function
have_max true if the query selects a MAX function
min_max_arg_part The only argument field of all MIN/MAX functions
group_prefix_len Length of all key parts in the group prefix
prefix_key_parts All key parts in the group prefix
index_info The index chosen for data access
use_index The id of index_info
read_cost Cost of this access method
records Number of records returned
key_infix_len Length of the key infix appended to the group prefix
key_infix Infix of constants from equality predicates
parent_alloc Memory pool for this and quick_prefix_select data
is_index_scan get the next different key not by jumping on it via
index read, but by scanning until the end of the
rows with equal key value.
RETURN
None
*/
QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT(
TABLE *table, JOIN *join_arg, bool have_min_arg, bool have_max_arg,
bool have_agg_distinct_arg, KEY_PART_INFO *min_max_arg_part_arg,
uint group_prefix_len_arg, uint group_key_parts_arg,
uint used_key_parts_arg, KEY *index_info_arg, uint use_index,
const Cost_estimate *read_cost_arg, ha_rows records_arg,
uint key_infix_len_arg, uchar *key_infix_arg, MEM_ROOT *parent_alloc,
bool is_index_scan_arg)
: join(join_arg),
index_info(index_info_arg),
group_prefix_len(group_prefix_len_arg),
group_key_parts(group_key_parts_arg),
have_min(have_min_arg),
have_max(have_max_arg),
have_agg_distinct(have_agg_distinct_arg),
seen_first_key(false),
min_max_arg_part(min_max_arg_part_arg),
key_infix(key_infix_arg),
key_infix_len(key_infix_len_arg),
min_max_ranges(PSI_INSTRUMENT_ME),
min_functions_it(NULL),
max_functions_it(NULL),
is_index_scan(is_index_scan_arg),
has_desc_keyparts(false) {
head = table;
index = use_index;
record = head->record[0];
tmp_record = head->record[1];
cost_est = *read_cost_arg;
records = records_arg;
used_key_parts = used_key_parts_arg;
real_key_parts = used_key_parts_arg;
real_prefix_len = group_prefix_len + key_infix_len;
group_prefix = NULL;
min_max_arg_len = min_max_arg_part ? min_max_arg_part->store_length : 0;
KEY_PART_INFO *kp = table->s->key_info[index].key_part;
for (uint i = 0; i < used_key_parts; i++, kp++) {
if (kp->key_part_flag & HA_REVERSE_SORT) {
has_desc_keyparts = true;
break;
}
}
/*
We can't have parent_alloc set as the init function can't handle this case
yet.
*/
DBUG_ASSERT(!parent_alloc);
if (!parent_alloc) {
init_sql_alloc(key_memory_quick_group_min_max_select_root, &alloc,
join->thd->variables.range_alloc_block_size, 0);
join->thd->mem_root = &alloc;
} else
::new (&alloc) MEM_ROOT; // ensure that it's not used
}
/*
Do post-constructor initialization.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::init()
DESCRIPTION
The method performs initialization that cannot be done in the constructor
such as memory allocations that may fail. It allocates memory for the
group prefix and inifix buffers, and for the lists of MIN/MAX item to be
updated during execution.
RETURN
0 OK
other Error code
*/
int QUICK_GROUP_MIN_MAX_SELECT::init() {
if (group_prefix) /* Already initialized. */
return 0;
if (!(last_prefix = (uchar *)alloc.Alloc(group_prefix_len))) return 1;
/*
We may use group_prefix to store keys with all select fields, so allocate
enough space for it.
*/
if (!(group_prefix = (uchar *)alloc.Alloc(real_prefix_len + min_max_arg_len)))
return 1;
if (key_infix_len > 0) {
/*
The memory location pointed to by key_infix will be deleted soon, so
allocate a new buffer and copy the key_infix into it.
*/
uchar *tmp_key_infix = (uchar *)alloc.Alloc(key_infix_len);
if (!tmp_key_infix) return 1;
memcpy(tmp_key_infix, this->key_infix, key_infix_len);
this->key_infix = tmp_key_infix;
}
if (min_max_arg_part) {
if (have_min) {
if (!(min_functions = new (*THR_MALLOC) List<Item_sum>)) return 1;
} else
min_functions = NULL;
if (have_max) {
if (!(max_functions = new (*THR_MALLOC) List<Item_sum>)) return 1;
} else
max_functions = NULL;
Item_sum *min_max_item;
Item_sum **func_ptr = join->sum_funcs;
while ((min_max_item = *(func_ptr++))) {
if (have_min && (min_max_item->sum_func() == Item_sum::MIN_FUNC))
min_functions->push_back(min_max_item);
else if (have_max && (min_max_item->sum_func() == Item_sum::MAX_FUNC))
max_functions->push_back(min_max_item);
}
if (have_min) {
if (!(min_functions_it = new List_iterator<Item_sum>(*min_functions)))
return 1;
}
if (have_max) {
if (!(max_functions_it = new List_iterator<Item_sum>(*max_functions)))
return 1;
}
}
return 0;
}
QUICK_GROUP_MIN_MAX_SELECT::~QUICK_GROUP_MIN_MAX_SELECT() {
DBUG_TRACE;
if (head->file->inited)
/*
We may have used this object for index access during
create_sort_index() and then switched to rnd access for the rest
of execution. Since we don't do cleanup until now, we must call
ha_*_end() for whatever is the current access method.
*/
head->file->ha_index_or_rnd_end();
free_root(&alloc, MYF(0));
delete min_functions_it;
delete max_functions_it;
delete quick_prefix_select;
}
/*
Eventually create and add a new quick range object.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::add_range()
sel_range Range object from which a
NOTES
Construct a new QUICK_RANGE object from a SEL_ARG object, and
add it to the array min_max_ranges. If sel_arg is an infinite
range, e.g. (x < 5 or x > 4), then skip it and do not construct
a quick range.
RETURN
false on success
true otherwise
*/
bool QUICK_GROUP_MIN_MAX_SELECT::add_range(SEL_ARG *sel_range) {
QUICK_RANGE *range;
uint range_flag = sel_range->min_flag | sel_range->max_flag;
/* Skip (-inf,+inf) ranges, e.g. (x < 5 or x > 4). */
if ((range_flag & NO_MIN_RANGE) && (range_flag & NO_MAX_RANGE)) return false;
if (!(sel_range->min_flag & NO_MIN_RANGE) &&
!(sel_range->max_flag & NO_MAX_RANGE)) {
if (sel_range->maybe_null() && sel_range->min_value[0] &&
sel_range->max_value[0])
range_flag |= NULL_RANGE; /* IS NULL condition */
/*
Do not perform comparison if one of the argiment is NULL value.
*/
else if (!sel_range->min_value[0] && !sel_range->max_value[0] &&
memcmp(sel_range->min_value, sel_range->max_value,
min_max_arg_len) == 0)
range_flag |= EQ_RANGE; /* equality condition */
}
range = new (*THR_MALLOC) QUICK_RANGE(
sel_range->min_value, min_max_arg_len, make_keypart_map(sel_range->part),
sel_range->max_value, min_max_arg_len, make_keypart_map(sel_range->part),
range_flag, HA_READ_INVALID);
if (!range) return true;
if (min_max_ranges.push_back(range)) return true;
return false;
}
/*
Opens the ranges if there are more conditions in quick_prefix_select than
the ones used for jumping through the prefixes.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges()
NOTES
quick_prefix_select is made over the conditions on the whole key.
It defines a number of ranges of length x.
However when jumping through the prefixes we use only the the first
few most significant keyparts in the range key. However if there
are more keyparts to follow the ones we are using we must make the
condition on the key inclusive (because x < "ab" means
x[0] < 'a' OR (x[0] == 'a' AND x[1] < 'b').
To achive the above we must turn off the NEAR_MIN/NEAR_MAX
*/
void QUICK_GROUP_MIN_MAX_SELECT::adjust_prefix_ranges() {
if (quick_prefix_select &&
group_prefix_len < quick_prefix_select->max_used_key_length) {
for (size_t ix = 0; ix < quick_prefix_select->ranges.size(); ++ix) {
QUICK_RANGE *range = quick_prefix_select->ranges[ix];
range->flag &= ~(NEAR_MIN | NEAR_MAX);
}
}
}
/*
Determine the total number and length of the keys that will be used for
index lookup.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::update_key_stat()
DESCRIPTION
The total length of the keys used for index lookup depends on whether
there are any predicates referencing the min/max argument, and/or if
the min/max argument field can be NULL.
This function does an optimistic analysis whether the search key might
be extended by a constant for the min/max keypart. It is 'optimistic'
because during actual execution it may happen that a particular range
is skipped, and then a shorter key will be used. However this is data
dependent and can't be easily estimated here.
RETURN
None
*/
void QUICK_GROUP_MIN_MAX_SELECT::update_key_stat() {
max_used_key_length = real_prefix_len;
if (min_max_ranges.size() > 0) {
if (have_min) { /* Check if the right-most range has a lower boundary. */
QUICK_RANGE *rightmost_range = min_max_ranges[min_max_ranges.size() - 1];
if (!(rightmost_range->flag & NO_MIN_RANGE)) {
max_used_key_length += min_max_arg_len;
used_key_parts++;
return;
}
}
if (have_max) { /* Check if the left-most range has an upper boundary. */
QUICK_RANGE *leftmost_range = min_max_ranges[0];
if (!(leftmost_range->flag & NO_MAX_RANGE)) {
max_used_key_length += min_max_arg_len;
used_key_parts++;
return;
}
}
} else if ((have_min || (have_max && has_desc_keyparts)) &&
min_max_arg_part && min_max_arg_part->field->real_maybe_null()) {
/*
If a MIN/MAX argument value is NULL, we can quickly determine
that we're in the beginning of the next group, because NULLs
are always < any other value. This allows us to quickly
determine the end of the current group and jump to the next
group (see next_min()) and thus effectively increases the
usable key length.
*/
max_used_key_length += min_max_arg_len;
used_key_parts++;
}
}
/*
Initialize a quick group min/max select for key retrieval.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::reset()
DESCRIPTION
Initialize the index chosen for access and find and store the prefix
of the last group. The method is expensive since it performs disk access.
RETURN
0 OK
other Error code
*/
int QUICK_GROUP_MIN_MAX_SELECT::reset(void) {
int result;
DBUG_TRACE;
seen_first_key = false;
head->set_keyread(true); /* We need only the key attributes */
/*
Request ordered index access as usage of ::index_last(),
::index_first() within QUICK_GROUP_MIN_MAX_SELECT depends on it.
*/
if ((result = head->file->ha_index_init(index, true))) {
head->file->print_error(result, MYF(0));
return result;
}
if (quick_prefix_select && quick_prefix_select->reset()) return 1;
result = head->file->ha_index_last(record);
if (result != 0) {
if (result == HA_ERR_END_OF_FILE)
return 0;
else
return result;
}
/* Save the prefix of the last group. */
key_copy(last_prefix, record, index_info, group_prefix_len);
return 0;
}
/*
Get the next key containing the MIN and/or MAX key for the next group.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::get_next()
DESCRIPTION
The method finds the next subsequent group of records that satisfies the
query conditions and finds the keys that contain the MIN/MAX values for
the key part referenced by the MIN/MAX function(s). Once a group and its
MIN/MAX values are found, store these values in the Item_sum objects for
the MIN/MAX functions. The rest of the values in the result row are stored
in the Item_field::result_field of each select field. If the query does
not contain MIN and/or MAX functions, then the function only finds the
group prefix, which is a query answer itself.
NOTES
If both MIN and MAX are computed, then we use the fact that if there is
no MIN key, there can't be a MAX key as well, so we can skip looking
for a MAX key in this case.
RETURN
0 on success
HA_ERR_END_OF_FILE if returned all keys
other if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::get_next() {
int min_res = 0;
int max_res = 0;
int result;
int is_last_prefix = 0;
DBUG_TRACE;
/*
Loop until a group is found that satisfies all query conditions or the last
group is reached.
*/
do {
result = next_prefix();
/*
Check if this is the last group prefix. Notice that at this point
this->record contains the current prefix in record format.
*/
if (!result) {
is_last_prefix =
key_cmp(index_info->key_part, last_prefix, group_prefix_len);
DBUG_ASSERT(is_last_prefix <= 0);
} else {
if (result == HA_ERR_KEY_NOT_FOUND) continue;
break;
}
/*
Index might contain both ASC and DESC parts. To avoid excessive
checks, here we rely on the MIN/MAX functions implementation to pick
min/max value.
E.g in case of index with desc key part(s) and MIN() func we check
record at start of group (positioned to by have_min()), reset and
update MIN() func. Then we read record at the end of group (by
have_max()) and just update MIN() func. It'll pick min value out of
two records. Same applies to MAX() function(s).
has_desc_keyparts is used to reduce number of index lookups when
there's no desc key parts.
*/
if (have_min || have_max) {
// Call next_min() when we have MIN() funcs or desc keyparts. In
// latter case max values will be at the beginning of group.
min_res = (have_min || (has_desc_keyparts && have_max)) ? next_min() : 0;
if (min_res == 0) {
// Reset and update funcs' values
if (have_min) update_min_result(true);
if (have_max) update_max_result(true);
}
// Call next_max() when we have MAX() funcs or desc keyparts. In
// latter case min values will be at the end of group.
max_res = (have_max || (has_desc_keyparts && have_min)) ? next_max() : 0;
if (max_res == 0) {
// Only update funcs' values
if (have_min) update_min_result(false);
if (have_max) update_max_result(false);
}
}
/*
If this is just a GROUP BY or DISTINCT without MIN or MAX and there
are equality predicates for the key parts after the group, find the
first sub-group with the extended prefix.
*/
if (!have_min && !have_max && key_infix_len > 0)
result = head->file->ha_index_read_map(
record, group_prefix, make_prev_keypart_map(real_key_parts),
HA_READ_KEY_EXACT);
result = have_min ? min_res : have_max ? max_res : result;
} while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
is_last_prefix != 0);
if (result == HA_ERR_KEY_NOT_FOUND) result = HA_ERR_END_OF_FILE;
return result;
}
/*
Retrieve the minimal key in the next group.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::next_min()
DESCRIPTION
Find the minimal key within this group such that the key satisfies the query
conditions and NULL semantics. The found key is loaded into this->record.
IMPLEMENTATION
Depending on the values of min_max_ranges.elements, key_infix_len, and
whether there is a NULL in the MIN field, this function may directly
return without any data access. In this case we use the key loaded into
this->record by the call to this->next_prefix() just before this call.
RETURN
0 on success
HA_ERR_KEY_NOT_FOUND if no MIN key was found that fulfills all conditions.
HA_ERR_END_OF_FILE - "" -
other if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_min() {
int result = 0;
DBUG_TRACE;
/* Find the MIN key using the eventually extended group prefix. */
if (min_max_ranges.size() > 0) {
if ((result = next_min_in_range())) return result;
} else {
/* Apply the constant equality conditions to the non-group select fields */
if (key_infix_len > 0) {
if ((result = head->file->ha_index_read_map(
record, group_prefix, make_prev_keypart_map(real_key_parts),
HA_READ_KEY_EXACT)))
return result;
}
/*
If the min/max argument field is NULL, skip subsequent rows in the same
group with NULL in it. Notice that:
- if the first row in a group doesn't have a NULL in the field, no row
in the same group has (because NULL < any other value),
- min_max_arg_part->field->ptr points to some place in 'record'.
*/
if (min_max_arg_part && min_max_arg_part->field->is_null()) {
uchar key_buf[MAX_KEY_LENGTH];
/* Find the first subsequent record without NULL in the MIN/MAX field. */
key_copy(key_buf, record, index_info, max_used_key_length);
result = head->file->ha_index_read_map(
record, key_buf, make_keypart_map(real_key_parts), HA_READ_AFTER_KEY);
/*
Check if the new record belongs to the current group by comparing its
prefix with the group's prefix. If it is from the next group, then the
whole group has NULLs in the MIN/MAX field, so use the first record in
the group as a result.
TODO:
It is possible to reuse this new record as the result candidate for the
next call to next_min(), and to save one lookup in the next call. For
this add a new member 'this->next_group_prefix'.
*/
if (!result) {
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
key_restore(record, key_buf, index_info, 0);
} else if (result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE)
result = 0; /* There is a result in any case. */
}
}
/*
If the MIN attribute is non-nullable, this->record already contains the
MIN key in the group, so just return.
*/
return result;
}
/*
Retrieve the maximal key in the next group.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::next_max()
DESCRIPTION
Lookup the maximal key of the group, and store it into this->record.
RETURN
0 on success
HA_ERR_KEY_NOT_FOUND if no MAX key was found that fulfills all conditions.
HA_ERR_END_OF_FILE - "" -
other if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_max() {
int result;
DBUG_TRACE;
/* Get the last key in the (possibly extended) group. */
if (min_max_ranges.size() > 0)
result = next_max_in_range();
else
result = head->file->ha_index_read_map(
record, group_prefix, make_prev_keypart_map(real_key_parts),
HA_READ_PREFIX_LAST);
return result;
}
/**
Find the next different key value by skiping all the rows with the same key
value.
Implements a specialized loose index access method for queries
containing aggregate functions with distinct of the form:
SELECT [SUM|COUNT|AVG](DISTINCT a,...) FROM t
This method comes to replace the index scan + Unique class
(distinct selection) for loose index scan that visits all the rows of a
covering index instead of jumping in the begining of each group.
TODO: Placeholder function. To be replaced by a handler API call
@param is_index_scan hint to use index scan instead of random index read
to find the next different value.
@param file table handler
@param key_part group key to compare
@param record row data
@param group_prefix current key prefix data
@param group_prefix_len length of the current key prefix data
@param group_key_parts number of the current key prefix columns
@return status
@retval 0 success
@retval !0 failure
*/
static int index_next_different(bool is_index_scan, handler *file,
KEY_PART_INFO *key_part, uchar *record,
const uchar *group_prefix,
uint group_prefix_len, uint group_key_parts) {
if (is_index_scan) {
int result = 0;
while (!key_cmp(key_part, group_prefix, group_prefix_len)) {
result = file->ha_index_next(record);
if (result) return (result);
}
return result;
} else
return file->ha_index_read_map(record, group_prefix,
make_prev_keypart_map(group_key_parts),
HA_READ_AFTER_KEY);
}
/*
Determine the prefix of the next group.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::next_prefix()
DESCRIPTION
Determine the prefix of the next group that satisfies the query conditions.
If there is a range condition referencing the group attributes, use a
QUICK_RANGE_SELECT object to retrieve the *first* key that satisfies the
condition. If there is a key infix of constants, append this infix
immediately after the group attributes. The possibly extended prefix is
stored in this->group_prefix. The first key of the found group is stored in
this->record, on which relies this->next_min().
RETURN
0 on success
HA_ERR_KEY_NOT_FOUND if there is no key with the formed prefix
HA_ERR_END_OF_FILE if there are no more keys
other if some error occurred
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_prefix() {
int result;
DBUG_TRACE;
if (quick_prefix_select) {
uchar *cur_prefix = seen_first_key ? group_prefix : NULL;
if ((result = quick_prefix_select->get_next_prefix(
group_prefix_len, group_key_parts, cur_prefix)))
return result;
seen_first_key = true;
} else {
if (!seen_first_key) {
result = head->file->ha_index_first(record);
if (result) return result;
seen_first_key = true;
} else {
/* Load the first key in this group into record. */
result = index_next_different(is_index_scan, head->file,
index_info->key_part, record, group_prefix,
group_prefix_len, group_key_parts);
if (result) return result;
}
}
/* Save the prefix of this group for subsequent calls. */
key_copy(group_prefix, record, index_info, group_prefix_len);
/* Append key_infix to group_prefix. */
if (key_infix_len > 0)
memcpy(group_prefix + group_prefix_len, key_infix, key_infix_len);
return 0;
}
/*
Find the minimal key in a group that satisfies some range conditions for the
min/max argument field.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range()
DESCRIPTION
Given the sequence of ranges min_max_ranges, find the minimal key that is
in the left-most possible range. If there is no such key, then the current
group does not have a MIN key that satisfies the WHERE clause. If a key is
found, its value is stored in this->record.
RETURN
0 on success
HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
the ranges
HA_ERR_END_OF_FILE - "" -
other if some error
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_min_in_range() {
ha_rkey_function find_flag;
key_part_map keypart_map;
bool found_null = false;
int result = HA_ERR_KEY_NOT_FOUND;
DBUG_ASSERT(min_max_ranges.size() > 0);
/* Search from the left-most range to the right. */
for (Quick_ranges::const_iterator it = min_max_ranges.begin();
it != min_max_ranges.end(); ++it) {
QUICK_RANGE *cur_range = *it;
/*
If the current value for the min/max argument is bigger than the right
boundary of cur_range, there is no need to check this range.
*/
if (it != min_max_ranges.begin() && !(cur_range->flag & NO_MAX_RANGE) &&
(key_cmp(min_max_arg_part, (const uchar *)cur_range->max_key,
min_max_arg_len) == 1))
continue;
if (cur_range->flag & NO_MIN_RANGE) {
keypart_map = make_prev_keypart_map(real_key_parts);
find_flag = HA_READ_KEY_EXACT;
} else {
/* Extend the search key with the lower boundary for this range. */
memcpy(group_prefix + real_prefix_len, cur_range->min_key,
cur_range->min_length);
keypart_map = make_keypart_map(real_key_parts);
find_flag = (cur_range->flag & (EQ_RANGE | NULL_RANGE))
? HA_READ_KEY_EXACT
: (cur_range->flag & NEAR_MIN) ? HA_READ_AFTER_KEY
: HA_READ_KEY_OR_NEXT;
}
result = head->file->ha_index_read_map(record, group_prefix, keypart_map,
find_flag);
if (result) {
if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
(cur_range->flag & (EQ_RANGE | NULL_RANGE)))
continue; /* Check the next range. */
/*
In all other cases (HA_ERR_*, HA_READ_KEY_EXACT with NO_MIN_RANGE,
HA_READ_AFTER_KEY, HA_READ_KEY_OR_NEXT) if the lookup failed for this
range, it can't succeed for any other subsequent range.
*/
break;
}
/* A key was found. */
if (cur_range->flag & EQ_RANGE)
break; /* No need to perform the checks below for equal keys. */
if (cur_range->flag & NULL_RANGE) {
/*
Remember this key, and continue looking for a non-NULL key that
satisfies some other condition.
*/
memcpy(tmp_record, record, head->s->rec_buff_length);
found_null = true;
continue;
}
/* Check if record belongs to the current group. */
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len)) {
result = HA_ERR_KEY_NOT_FOUND;
continue;
}
/* If there is an upper limit, check if the found key is in the range. */
if (!(cur_range->flag & NO_MAX_RANGE)) {
/* Compose the MAX key for the range. */
uchar *max_key = (uchar *)my_alloca(real_prefix_len + min_max_arg_len);
memcpy(max_key, group_prefix, real_prefix_len);
memcpy(max_key + real_prefix_len, cur_range->max_key,
cur_range->max_length);
/* Compare the found key with max_key. */
int cmp_res = key_cmp(index_info->key_part, max_key,
real_prefix_len + min_max_arg_len);
/*
The key is outside of the range if:
the interval is open and the key is equal to the maximum boundry
or
the key is greater than the maximum
*/
if (((cur_range->flag & NEAR_MAX) && cmp_res == 0) || cmp_res > 0) {
result = HA_ERR_KEY_NOT_FOUND;
continue;
}
}
/* If we got to this point, the current key qualifies as MIN. */
DBUG_ASSERT(result == 0);
break;
}
/*
If there was a key with NULL in the MIN/MAX field, and there was no other
key without NULL from the same group that satisfies some other condition,
then use the key with the NULL.
*/
if (found_null && result) {
memcpy(record, tmp_record, head->s->rec_buff_length);
result = 0;
}
return result;
}
/*
Find the maximal key in a group that satisfies some range conditions for the
min/max argument field.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range()
DESCRIPTION
Given the sequence of ranges min_max_ranges, find the maximal key that is
in the right-most possible range. If there is no such key, then the current
group does not have a MAX key that satisfies the WHERE clause. If a key is
found, its value is stored in this->record.
RETURN
0 on success
HA_ERR_KEY_NOT_FOUND if there is no key with the given prefix in any of
the ranges
HA_ERR_END_OF_FILE - "" -
other if some error
*/
int QUICK_GROUP_MIN_MAX_SELECT::next_max_in_range() {
ha_rkey_function find_flag;
key_part_map keypart_map;
int result;
DBUG_ASSERT(min_max_ranges.size() > 0);
/* Search from the right-most range to the left. */
for (Quick_ranges::const_iterator it = min_max_ranges.end();
it != min_max_ranges.begin(); --it) {
QUICK_RANGE *cur_range = *(it - 1);
/*
If the current value for the min/max argument is smaller than the left
boundary of cur_range, there is no need to check this range.
*/
if (it != min_max_ranges.end() && !(cur_range->flag & NO_MIN_RANGE) &&
(key_cmp(min_max_arg_part, (const uchar *)cur_range->min_key,
min_max_arg_len) == -1))
continue;
if (cur_range->flag & NO_MAX_RANGE) {
keypart_map = make_prev_keypart_map(real_key_parts);
find_flag = HA_READ_PREFIX_LAST;
} else {
/* Extend the search key with the upper boundary for this range. */
memcpy(group_prefix + real_prefix_len, cur_range->max_key,
cur_range->max_length);
keypart_map = make_keypart_map(real_key_parts);
find_flag = (cur_range->flag & EQ_RANGE)
? HA_READ_KEY_EXACT
: (cur_range->flag & NEAR_MAX)
? HA_READ_BEFORE_KEY
: HA_READ_PREFIX_LAST_OR_PREV;
}
result = head->file->ha_index_read_map(record, group_prefix, keypart_map,
find_flag);
if (result) {
if ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE) &&
(cur_range->flag & EQ_RANGE))
continue; /* Check the next range. */
/*
In no key was found with this upper bound, there certainly are no keys
in the ranges to the left.
*/
return result;
}
/* A key was found. */
if (cur_range->flag & EQ_RANGE)
return 0; /* No need to perform the checks below for equal keys. */
/* Check if record belongs to the current group. */
if (key_cmp(index_info->key_part, group_prefix, real_prefix_len))
continue; // Row not found
/* If there is a lower limit, check if the found key is in the range. */
if (!(cur_range->flag & NO_MIN_RANGE)) {
/* Compose the MIN key for the range. */
uchar *min_key = (uchar *)my_alloca(real_prefix_len + min_max_arg_len);
memcpy(min_key, group_prefix, real_prefix_len);
memcpy(min_key + real_prefix_len, cur_range->min_key,
cur_range->min_length);
/* Compare the found key with min_key. */
int cmp_res = key_cmp(index_info->key_part, min_key,
real_prefix_len + min_max_arg_len);
/*
The key is outside of the range if:
the interval is open and the key is equal to the minimum boundry
or
the key is less than the minimum
*/
if (((cur_range->flag & NEAR_MIN) && cmp_res == 0) || cmp_res < 0)
continue;
}
/* If we got to this point, the current key qualifies as MAX. */
return result;
}
return HA_ERR_KEY_NOT_FOUND;
}
/*
Update all MIN function results with the newly found value.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::update_min_result()
DESCRIPTION
The method iterates through all MIN functions and updates the result value
of each function by calling Item_sum::reset(), which in turn picks the new
result value from this->head->record[0], previously updated by
next_min(). The updated value is stored in a member variable of each of the
Item_sum objects, depending on the value type.
IMPLEMENTATION
The update must be done separately for MIN and MAX, immediately after
next_min() was called and before next_max() is called, because both MIN and
MAX take their result value from the same buffer this->head->record[0]
(i.e. this->record).
RETURN
None
*/
void QUICK_GROUP_MIN_MAX_SELECT::update_min_result(bool reset) {
Item_sum *min_func;
min_functions_it->rewind();
while ((min_func = (*min_functions_it)++)) {
if (reset) min_func->aggregator_clear();
min_func->aggregator_add();
}
}
/*
Update all MAX function results with the newly found value.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::update_max_result()
DESCRIPTION
The method iterates through all MAX functions and updates the result value
of each function by calling Item_sum::reset(), which in turn picks the new
result value from this->head->record[0], previously updated by
next_max(). The updated value is stored in a member variable of each of the
Item_sum objects, depending on the value type.
IMPLEMENTATION
The update must be done separately for MIN and MAX, immediately after
next_max() was called, because both MIN and MAX take their result value
from the same buffer this->head->record[0] (i.e. this->record).
RETURN
None
*/
void QUICK_GROUP_MIN_MAX_SELECT::update_max_result(bool reset) {
Item_sum *max_func;
max_functions_it->rewind();
while ((max_func = (*max_functions_it)++)) {
if (reset) max_func->aggregator_clear();
max_func->aggregator_add();
}
}
/*
Append comma-separated list of keys this quick select uses to key_names;
append comma-separated list of corresponding used lengths to used_lengths.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths()
key_names [out] Names of used indexes
used_lengths [out] Corresponding lengths of the index names
DESCRIPTION
This method is used by select_describe to extract the names of the
indexes used by a quick select.
*/
void QUICK_GROUP_MIN_MAX_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
char buf[64];
size_t length;
key_names->append(index_info->name);
length = longlong2str(max_used_key_length, buf, 10) - buf;
used_lengths->append(buf, length);
}
/**
Construct a new quick select object for queries doing skip scans.
SYNOPSIS
TRP_SKIP_SCAN::make_quick()
param Parameter from test_quick_select
retrieve_full_rows ignored
parent_alloc Memory pool to use
NOTES
Make_quick ignores the retrieve_full_rows parameter because
QUICK_SKIP_SCAN_SELECT always performs index only scans.
RETURN
New QUICK_SKIP_SCAN_SELECT object if successfully created,
NULL otherwise.
*/
QUICK_SELECT_I *TRP_SKIP_SCAN::make_quick(PARAM *param, bool,
MEM_ROOT *parent_alloc) {
QUICK_SKIP_SCAN_SELECT *quick = NULL;
DBUG_TRACE;
quick = new QUICK_SKIP_SCAN_SELECT(
param->table, param->thd->lex->current_select()->join, index_info, index,
range_key_part, index_range_tree, eq_prefix_len, eq_prefix_parts,
used_key_parts, &cost_est, records, parent_alloc, has_aggregate_function);
if (!quick) return NULL;
if (quick->init()) {
delete quick;
return NULL;
}
/* Set range populates a QUICK_RANGE object from range_cond. */
if (!quick->set_range(range_cond)) {
delete quick;
return NULL;
}
quick->forced_by_hint = forced_by_hint;
return quick;
}
static void cost_skip_scan(TABLE *table, uint key, uint distinct_key_parts,
ha_rows quick_prefix_records,
Cost_estimate *cost_est, ha_rows *records,
Item *where_cond, Opt_trace_object *trace_idx);
/**
Test if skip scan is applicable and if so, construct a new TRP object.
DESCRIPTION
Test whether a query can be computed via a QUICK_SKIP_SCAN_SELECT.
The overall query form should look like this:
SELECT A_1,...,A_k, B_1,...,B_m, C
FROM T
WHERE
EQ(A_1,...,A_k)
AND RNG(C);
Queries computable via a QUICK_SKIP_SCAN_SELECT must satisfy the
following conditions:
A) Table T has at least one compound index I of the form:
I = <A_1,...,A_k, B_1,..., B_m, C ,[D_1,...,D_n]>
Keyparts A and D may be empty, but B and C must be non-empty.
B) Only one table referenced.
C) Cannot have group by/select distinct
D) Query must reference fields in the index only.
E) The predicates on A_1...A_k must be equality predicates and they need
to be constants. This includes the 'IN' operator.
F) The query must be a conjunctive query.
In other words, it is a AND of ORs:
(COND1(kp1) OR COND2(kp1)) AND (COND1(kp2) OR ...) AND ...
See get_sel_arg_for_keypart for details.
G) There must be a range condition on C.
H) Conditions on D columns are allowed. Conditions on D must be in
conjunction with range condition on C.
NOTES
If the current query satisfies the conditions above, and if
(mem_root! = NULL), then the function constructs and returns a new TRP
object, that is later used to construct a new QUICK_SKIP_SCAN_SELECT.
@param param Parameter from test_quick_select
@param tree Range tree generated by get_mm_tree
@param force_skip_scan TRUE if skip scan is forced by optimizer hint
@retval NULL, if skip index scan not applicable,
otherwise skip index scan table read plan.
*/
static TRP_SKIP_SCAN *get_best_skip_scan(PARAM *param, SEL_TREE *tree,
bool force_skip_scan) {
THD *thd = param->thd;
JOIN *join = thd->lex->current_select()->join;
TABLE *table = param->table;
const char *cause = NULL;
TRP_SKIP_SCAN *read_plan = NULL;
Opt_trace_context *const trace = &param->thd->opt_trace;
Cost_estimate best_read_cost;
ha_rows best_records = 0;
bool has_aggregate_function = false;
DBUG_TRACE;
best_read_cost.set_max_cost();
Opt_trace_object trace_group(trace, "skip_scan_range",
Opt_trace_context::RANGE_OPTIMIZER);
if (!join)
cause = "no_join";
else if (join->primary_tables != 1) /* Query must reference one table. */
cause = "not_single_table";
else if (table->s->keys == 0) /* There are no indexes to use. */
cause = "no_index";
else if (join->group_list)
cause = "has_group_by";
else if (!tree)
cause = "disjuntive_predicate_present";
else if (join->select_distinct)
cause = "has_select_distinct";
if (cause != NULL) {
trace_group.add("chosen", false).add_alnum("cause", cause);
return NULL;
}
KEY *index_info = NULL; /* The index chosen for data access. */
uint index = 0;
KEY_PART_INFO *range_key_part = NULL;
SEL_ROOT *index_range_tree = NULL;
SEL_ARG *cur_range = NULL;
SEL_ARG *range_sel_arg = NULL;
uint field_length;
uint eq_prefix_len = 0;
uint eq_prefix_parts = 0;
uint used_key_parts = 0;
Cost_estimate min_diff_cost;
Opt_trace_array trace_indices(trace, "potential_skip_scan_indexes");
if (join->sum_funcs[0]) {
Item_sum *min_max_item;
Item_sum **func_ptr = join->sum_funcs;
while ((min_max_item = *(func_ptr++))) {
/*
TODO: Investigate if this condition could be relaxed in
some cases.
*/
if (min_max_item->sum_func() == Item_sum::COUNT_DISTINCT_FUNC ||
min_max_item->sum_func() == Item_sum::SUM_DISTINCT_FUNC ||
min_max_item->sum_func() == Item_sum::AVG_DISTINCT_FUNC) {
trace_group.add("chosen", false)
.add_alnum("cause", "has_aggregate_distinct");
return NULL;
}
}
has_aggregate_function = true;
}
for (uint cur_param_idx = 0; cur_param_idx < param->keys; ++cur_param_idx) {
const uint cur_index = param->real_keynr[cur_param_idx];
KEY *const cur_index_info = &table->key_info[cur_index];
Opt_trace_object trace_idx(trace);
trace_idx.add_utf8("index", cur_index_info->name);
KEY_PART_INFO *cur_part;
KEY_PART_INFO *end_part;
Cost_estimate cur_read_cost;
ha_rows cur_records;
SEL_ARG *cur_range_sel_arg = NULL;
SEL_ROOT *cur_index_range_tree = NULL;
uint cur_eq_prefix_len = 0;
uint cur_eq_prefix_parts = 0;
KEY_PART_INFO *cur_range_key_part = NULL;
enum {
EQUALITY_KEYPART = 0,
SKIPPED_KEYPART = 1,
RANGE_KEYPART = 2,
TRAILING_KEYPART = 3
};
uint keypart_stage = EQUALITY_KEYPART;
uint cur_used_key_parts = 0;
uint part = 0;
ha_rows quick_prefix_records;
if (!compound_hint_key_enabled(param->table, cur_index,
SKIP_SCAN_HINT_ENUM)) {
cause = "skip_scan_hint";
goto next_index;
}
cur_part = cur_index_info->key_part;
end_part = cur_part + actual_key_parts(cur_index_info);
if (!table->covering_keys.is_set(cur_index)) {
cause = "query_references_nonkey_column";
goto next_index;
}
/* Extract equality constants that form the prefix. */
cur_index_range_tree = get_index_range_tree(cur_index, tree, param);
if (cur_index_range_tree == NULL) {
cause = "disjuntive_predicate_present";
goto next_index;
}
for (cur_part = cur_index_info->key_part; cur_part != end_part;
cur_part++, part++) {
SEL_ROOT *cur_range_root = NULL;
if (get_sel_root_for_keypart(cur_part->field, cur_index_range_tree,
&cur_range_root)) {
cause = "keypart_in_disjunctive_query";
goto next_index;
}
if (cur_range_root && cur_range_root->type != SEL_ROOT::Type::KEY_RANGE) {
cause = "not_a_key_range";
goto next_index;
}
// There is no range predicate on current key part.
if (cur_range_root == NULL) {
if (keypart_stage == EQUALITY_KEYPART ||
keypart_stage == RANGE_KEYPART) {
keypart_stage++;
}
continue;
}
cur_range = cur_range_root->root;
// There exists a range predicate on the current key part.
if (keypart_stage == EQUALITY_KEYPART) {
field_length = cur_part->store_length;
for (cur_range = cur_range->first(); cur_range;
cur_range = cur_range->next) {
// NEAR_MIN/NEAR_MAX means a strict inequality.
if ((cur_range->min_flag & NO_MIN_RANGE) ||
(cur_range->max_flag & NO_MAX_RANGE) ||
(cur_range->min_flag & NEAR_MIN) ||
(cur_range->max_flag & NEAR_MAX)) {
cause = "prefix_not_const_equality";
goto next_index;
}
if (!(cur_range->maybe_null() && cur_range->min_value[0] &&
cur_range->max_value[0]) && // IS NOT NULL
memcmp(cur_range->min_value, cur_range->max_value,
field_length) != 0) // not equality
{
cause = "prefix_not_const_equality";
goto next_index;
}
}
cur_eq_prefix_len += field_length;
cur_eq_prefix_parts++;
} else if (keypart_stage == SKIPPED_KEYPART) {
if (cur_range_root->elements > 1) {
cause = "range_predicate_too_complex";
goto next_index;
}
cur_range_key_part = cur_part;
cur_range_sel_arg = cur_range;
cur_used_key_parts = part + 1;
keypart_stage++;
}
}
if (keypart_stage < RANGE_KEYPART) {
cause = "no_range_predicate";
goto next_index;
}
DBUG_ASSERT(cur_used_key_parts >= 2);
table->possible_quick_keys.set_bit(cur_index);
DBUG_ASSERT(cur_index_range_tree);
{
Cost_estimate dummy_cost;
uint mrr_flags = HA_MRR_SORTED;
uint mrr_bufsize = 0;
/*
Calculate number of records returned by prefix equality ranges.
*/
quick_prefix_records =
check_quick_select(param, cur_param_idx, true, cur_index_range_tree,
false, &mrr_flags, &mrr_bufsize, &dummy_cost);
}
cost_skip_scan(table, cur_index, cur_used_key_parts - 1,
quick_prefix_records, &cur_read_cost, &cur_records,
join->where_cond, &trace_idx);
trace_idx.add("rows", cur_records).add("cost", cur_read_cost);
min_diff_cost = cur_read_cost;
min_diff_cost.multiply(DBL_EPSILON);
if (cur_read_cost < (best_read_cost - min_diff_cost)) {
index_info = cur_index_info;
index = cur_index;
best_read_cost = cur_read_cost;
best_records = cur_records;
eq_prefix_len = cur_eq_prefix_len;
eq_prefix_parts = cur_eq_prefix_parts;
index_range_tree = cur_index_range_tree;
range_sel_arg = cur_range_sel_arg;
range_key_part = cur_range_key_part;
used_key_parts = cur_used_key_parts;
}
next_index:
if (cause) {
trace_idx.add("usable", false).add_alnum("cause", cause);
cause = NULL;
}
}
trace_indices.end();
if (!index_info) /* No usable index found. */
return NULL;
/* The query passes all tests, so construct a new TRP object. */
read_plan = new (param->mem_root) TRP_SKIP_SCAN(
index_info, index, index_range_tree, eq_prefix_len, eq_prefix_parts,
range_key_part, range_sel_arg, used_key_parts, force_skip_scan,
best_records, has_aggregate_function);
if (read_plan) {
read_plan->cost_est = best_read_cost;
read_plan->records = best_records;
DBUG_PRINT("info",
("Returning skip scan: cost: %g, records: %lu",
read_plan->cost_est.total_cost(), (ulong)read_plan->records));
}
return read_plan;
}
/**
Compute the cost of a QUICK_SKIP_SCAN_SELECT for a particular index.
SYNOPSIS
cost_skip_scan()
table [in] The table being accessed
key [in] The index used to access the table
distinct_key_parts [in] Number of key_parts used to get distinct prefix
quick_prefix_records [in] Number of records processed by prefix ranges
cost_est [out] The cost to retrieve rows via this quick select
records [out] The number of rows retrieved
where_cond [in] WHERE condition
trace_idx [in] optimizer_trace object
DESCRIPTION
This method computes the access cost of a TRP_SKIP_SCAN instance and
the number of rows returned.
NOTES
To estimate the size of the groups to read, index statistics
from rec_per_key is used. Each equality range decreases
number of the groups to read. The total number of processed
records from all the groups will be quick_prefix_records if
there are equality ranges else it will be the entire table.
Number of distinct group is calculated by dividing the
number of processed record by the number keys in a group.
Number of processed records is calculated using following formula:
records = number_of_distinct_groups * records_per_group * filtering_effect
where filtering_effect is filtering effect of the range condition.
RETURN
None
*/
void cost_skip_scan(TABLE *table, uint key, uint distinct_key_parts,
ha_rows quick_prefix_records, Cost_estimate *cost_est,
ha_rows *records, Item *where_cond,
Opt_trace_object *trace_idx) {
ha_rows table_records, skip_scan_records;
uint num_groups;
rec_per_key_t keys_per_group;
const KEY *const index_info = &table->key_info[key];
DBUG_TRACE;
table_records = table->file->stats.records;
if (quick_prefix_records == HA_POS_ERROR)
skip_scan_records = table_records;
else
skip_scan_records = quick_prefix_records;
/* Compute the number of keys in a group. */
if (index_info->has_records_per_key(distinct_key_parts - 1)) {
// Use index statistics
keys_per_group = index_info->records_per_key(distinct_key_parts - 1);
DBUG_ASSERT(keys_per_group >= 0);
} else
/* If there is no statistics try to guess */
keys_per_group = guess_rec_per_key(table, index_info, distinct_key_parts);
num_groups = (uint)(skip_scan_records / keys_per_group) + 1;
set_if_bigger(num_groups, 1);
/* Calculate filtering effect for the range condition */
{
rec_per_key_t keys_per_range;
table_map used_tables = 0;
char buf[MAX_FIELDS / 8];
my_bitmap_map *bitbuf =
static_cast<my_bitmap_map *>(static_cast<void *>(&buf));
MY_BITMAP ignored_fields;
bitmap_init(&ignored_fields, bitbuf, table->s->fields, false);
bitmap_set_all(&ignored_fields);
bitmap_clear_bit(
&ignored_fields,
index_info->key_part[distinct_key_parts].field->field_index);
/* Compute the number of records per group for the range. */
if (index_info->has_records_per_key(distinct_key_parts))
keys_per_range = index_info->records_per_key(distinct_key_parts);
else
keys_per_range =
guess_rec_per_key(table, index_info, distinct_key_parts + 1);
/*
Calculation of the filtering effect is based on
Item_field::get_cond_filter_default_probability() where
max distinct values is used as an argument. So number of
keys in distinct group is divided by keys_per_range.
*/
double max_distinct_values =
static_cast<double>((uint)keys_per_group / (uint)keys_per_range);
set_if_bigger(max_distinct_values, 1.0);
float filtering_effect = where_cond->get_filtering_effect(
table->in_use, table->pos_in_table_list->map(), used_tables,
&ignored_fields, max_distinct_values);
*records = skip_scan_records * filtering_effect;
set_if_bigger(*records, 1);
}
/* Estimate IO cost. */
const Cost_model_table *const cost_model = table->cost_model();
Cost_estimate cost_skip_scan =
table->file->index_scan_cost(key, num_groups, *records);
/* CPU cost*/
const double tree_height =
table_records == 0 ? 1.0 : ceil(log2(double(table_records)));
const double tree_traversal_cost = cost_model->key_compare_cost(tree_height);
/* Number of re-positions happens twice per group. */
trace_idx->add("tree_travel_cost", tree_traversal_cost)
.add("num_groups", num_groups);
const double cpu_cost =
tree_traversal_cost * num_groups * 2 +
cost_model->row_evaluate_cost(static_cast<double>(*records)) +
cost_model->key_compare_cost(static_cast<double>(*records));
cost_skip_scan.add_cpu(cpu_cost);
*cost_est = cost_skip_scan;
DBUG_PRINT("info",
("table rows: %lu keys/group: %u result rows: %lu",
(ulong)table_records, (uint)keys_per_group, (ulong)*records));
}
/**
Construct new quick select for queries that can do skip scans.
See get_best_skip_scan() description for more details.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::QUICK_SKIP_SCAN_SELECT()
table The table being accessed
join Descriptor of the current query
index_info The index chosen for data access
use_index The id of index_info
range_part The keypart belonging to the range condition C
index_range_tree The complete range key
eq_prefix_len Length of the equality prefix key
eq_prefix_parts Number of keyparts in the equality prefix
used_key_parts_arg Total number of keyparts A_1,...,C
read_cost_arg Cost of this access method
read_records Number of records returned
parent_alloc Memory pool for this class
RETURN
None
*/
QUICK_SKIP_SCAN_SELECT::QUICK_SKIP_SCAN_SELECT(
TABLE *table, JOIN *join, KEY *index_info, uint use_index,
KEY_PART_INFO *range_part, SEL_ROOT *index_range_tree, uint eq_prefix_len,
uint eq_prefix_parts, uint used_key_parts_arg,
const Cost_estimate *read_cost_arg, ha_rows read_records,
MEM_ROOT *parent_alloc, bool has_aggregate_function)
: join(join),
index_info(index_info),
index_range_tree(index_range_tree),
eq_prefix_len(eq_prefix_len),
eq_prefix_key_parts(eq_prefix_parts),
distinct_prefix(NULL),
range_key_part(range_part),
seen_first_key(false),
min_range_key(NULL),
max_range_key(NULL),
min_search_key(NULL),
max_search_key(NULL),
has_aggregate_function(has_aggregate_function) {
head = table;
index = use_index;
record = head->record[0];
cost_est = *read_cost_arg;
records = read_records;
used_key_parts = used_key_parts_arg;
max_used_key_length = 0;
distinct_prefix_len = 0;
range_cond_flag = 0;
KEY_PART_INFO *p = index_info->key_part;
my_bitmap_map *bitmap;
if (!(bitmap = (my_bitmap_map *)my_malloc(key_memory_my_bitmap_map,
head->s->column_bitmap_size,
MYF(MY_WME)))) {
column_bitmap.bitmap = 0;
} else
bitmap_init(&column_bitmap, bitmap, head->s->fields, false);
bitmap_copy(&column_bitmap, head->read_set);
for (uint i = 0; i < used_key_parts; i++, p++) {
max_used_key_length += p->store_length;
/*
The last key part contains the subrange scan that we want to execute
for every distinct prefix. There is only ever one keypart, so just
exclude the last key from the distinct prefix.
*/
if (i + 1 < used_key_parts) {
distinct_prefix_len += p->store_length;
bitmap_set_bit(&column_bitmap, p->field->field_index);
}
}
distinct_prefix_key_parts = used_key_parts - 1;
/*
See QUICK_GROUP_MIN_MAX_SELECT::QUICK_GROUP_MIN_MAX_SELECT
for why parent_alloc should be NULL.
*/
DBUG_ASSERT(!parent_alloc);
if (!parent_alloc) {
init_sql_alloc(key_memory_quick_group_min_max_select_root, &alloc,
join->thd->variables.range_alloc_block_size, 0);
join->thd->mem_root = &alloc;
} else
::new (&alloc) MEM_ROOT; // ensure that it's not used
}
/**
Do post-constructor initialization.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::init()
DESCRIPTION
The method performs initialization that cannot be done in the constructor
such as memory allocations that may fail. It allocates memory for the
equality prefix and distinct prefix buffers. It also extracts all equality
prefixes from index_range_tree, as well as allocates memory to store them.
RETURN
0 OK
other Error code
*/
int QUICK_SKIP_SCAN_SELECT::init() {
if (distinct_prefix) return 0;
DBUG_ASSERT(distinct_prefix_key_parts > 0 && distinct_prefix_len > 0);
if (!(distinct_prefix = (uchar *)alloc.Alloc(distinct_prefix_len))) return 1;
if (eq_prefix_len > 0) {
eq_prefix = (uchar *)alloc.Alloc(eq_prefix_len);
if (!eq_prefix) return 1;
} else {
eq_prefix = NULL;
}
if (eq_prefix_key_parts > 0) {
if (!(cur_eq_prefix =
(uint *)alloc.Alloc(eq_prefix_key_parts * sizeof(uint))))
return 1;
if (!(eq_key_prefixes =
(uchar ***)alloc.Alloc(eq_prefix_key_parts * sizeof(uchar **))))
return 1;
if (!(eq_prefix_elements =
(uint *)alloc.Alloc(eq_prefix_key_parts * sizeof(uint))))
return 1;
const SEL_ARG *cur_range = index_range_tree->root->first();
const SEL_ARG *first_range = NULL;
const SEL_ROOT *cur_root = index_range_tree;
for (uint i = 0; i < eq_prefix_key_parts;
i++, cur_range = cur_range->next_key_part->root) {
cur_eq_prefix[i] = 0;
eq_prefix_elements[i] = cur_root->elements;
cur_root = cur_range->next_key_part;
DBUG_ASSERT(eq_prefix_elements[i] > 0);
if (!(eq_key_prefixes[i] =
(uchar **)alloc.Alloc(eq_prefix_elements[i] * sizeof(uchar *))))
return 1;
uint j = 0;
first_range = cur_range->first();
for (cur_range = first_range; cur_range;
j++, cur_range = cur_range->next) {
KEY_PART_INFO *keypart = index_info->key_part + i;
size_t field_length = keypart->store_length;
// Store ranges in the reverse order if key part is descending.
uint pos = cur_range->is_ascending ? j : eq_prefix_elements[i] - j - 1;
if (!(eq_key_prefixes[i][pos] = (uchar *)alloc.Alloc(field_length)))
return 1;
if (cur_range->maybe_null() && cur_range->min_value[0] &&
cur_range->max_value[0]) {
DBUG_ASSERT(field_length > 0);
eq_key_prefixes[i][pos][0] = 0x1;
} else {
DBUG_ASSERT(memcmp(cur_range->min_value, cur_range->max_value,
field_length) == 0);
memcpy(eq_key_prefixes[i][pos], cur_range->min_value, field_length);
}
}
cur_range = first_range;
DBUG_ASSERT(j == eq_prefix_elements[i]);
}
}
return 0;
}
QUICK_SKIP_SCAN_SELECT::~QUICK_SKIP_SCAN_SELECT() {
DBUG_TRACE;
if (head->file->inited) head->file->ha_index_or_rnd_end();
my_free(column_bitmap.bitmap);
free_root(&alloc, MYF(0));
}
/**
Setup fileds that hold the range condition on key part C.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::set_range()
sel_range Range object from which the fields will be populated with.
NOTES
This is only the suffix of the whole key, that we use
to append to the prefix to get the full key later on.
RETURN
true on success
false otherwise
*/
bool QUICK_SKIP_SCAN_SELECT::set_range(SEL_ARG *sel_range) {
DBUG_TRACE;
uchar *min_value, *max_value;
if (!(sel_range->min_flag & NO_MIN_RANGE) &&
!(sel_range->max_flag & NO_MAX_RANGE)) {
// IS NULL condition
if (sel_range->maybe_null() && sel_range->min_value[0] &&
sel_range->max_value[0])
range_cond_flag |= NULL_RANGE;
// equality condition
else if (memcmp(sel_range->min_value, sel_range->max_value,
range_key_part->store_length) == 0)
range_cond_flag |= EQ_RANGE;
}
if (sel_range->is_ascending) {
range_cond_flag |= sel_range->min_flag | sel_range->max_flag;
min_value = sel_range->min_value;
max_value = sel_range->max_value;
} else {
range_cond_flag |= invert_min_flag(sel_range->min_flag) |
invert_max_flag(sel_range->max_flag);
min_value = sel_range->max_value;
max_value = sel_range->min_value;
}
range_key_len = range_key_part->store_length;
// Allocate storage for min/max key if they exist.
if (!(range_cond_flag & NO_MIN_RANGE)) {
if (!(min_range_key = (uchar *)alloc.Alloc(range_key_len))) return false;
if (!(min_search_key = (uchar *)alloc.Alloc(max_used_key_length)))
return false;
memcpy(min_range_key, min_value, range_key_len);
}
if (!(range_cond_flag & NO_MAX_RANGE)) {
if (!(max_range_key = (uchar *)alloc.Alloc(range_key_len))) return false;
if (!(max_search_key = (uchar *)alloc.Alloc(max_used_key_length)))
return false;
memcpy(max_range_key, max_value, range_key_len);
}
return true;
}
/**
Initialize a quick skip scan index select for key retrieval.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::reset()
DESCRIPTION
Initialize the index chosen for access and initialize what the first
equality key prefix should be.
RETURN
0 OK
other Error code
*/
int QUICK_SKIP_SCAN_SELECT::reset(void) {
DBUG_TRACE;
int result;
seen_first_key = false;
head->set_keyread(true); // This access path demands index-only reads.
MY_BITMAP *const save_read_set = head->read_set;
head->column_bitmaps_set_no_signal(&column_bitmap, head->write_set);
if ((result = head->file->ha_index_init(index, true))) {
head->file->print_error(result, MYF(0));
return result;
}
// Set the first equality prefix.
size_t offset = 0;
for (uint i = 0; i < eq_prefix_key_parts; i++) {
const uchar *key = eq_key_prefixes[i][0];
cur_eq_prefix[i] = 0;
uint part_length = (index_info->key_part + i)->store_length;
memcpy(eq_prefix + offset, key, part_length);
offset += part_length;
DBUG_ASSERT(offset <= eq_prefix_len);
}
head->column_bitmaps_set_no_signal(save_read_set, head->write_set);
return 0;
}
/**
Increments cur_prefix and sets what the next equality prefix should be.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::next_eq_prefix()
DESCRIPTION
Increments cur_prefix and sets what the next equality prefix should be.
This is done in index order, so the increment happens on the last keypart.
The key is written to eq_prefix.
RETURN
true OK
false No more equality key prefixes.
*/
bool QUICK_SKIP_SCAN_SELECT::next_eq_prefix() {
DBUG_TRACE;
/*
Counts at which position we're at in eq_prefix from the back of the
string.
*/
size_t reverse_offset = 0;
// Increment the cur_prefix count.
for (uint i = 0; i < eq_prefix_key_parts; i++) {
uint part = eq_prefix_key_parts - i - 1;
DBUG_ASSERT(cur_eq_prefix[part] < eq_prefix_elements[part]);
uint part_length = (index_info->key_part + part)->store_length;
reverse_offset += part_length;
cur_eq_prefix[part]++;
const uchar *key =
eq_key_prefixes[part][cur_eq_prefix[part] % eq_prefix_elements[part]];
memcpy(eq_prefix + eq_prefix_len - reverse_offset, key, part_length);
if (cur_eq_prefix[part] == eq_prefix_elements[part]) {
cur_eq_prefix[part] = 0;
if (part == 0) {
// This is the last key part.
return false;
}
} else {
break;
}
}
return true;
}
/**
Get the next row for skip scan.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::get_next()
DESCRIPTION
Find the next record in the skip scan. The scan is broken into groups
based on distinct A_1,...,B_m. The strategy is to have an outer loop
going through all possible A_1,...,A_k. This work is done in
next_eq_prefix().
For each equality prefix that we get from "next_eq_prefix() we loop through
all distinct B_1,...,B_m within that prefix. And for each of those groups
we do a subrange scan on keypart C.
The high level algorithm is like so:
for (eq_prefix in eq_prefixes) // (A_1,....A_k)
for (distinct_prefix in eq_prefix) // A_1-B_1,...,A_k-B_m
do subrange scan within distinct prefix
using range_cond // A_1-B_1-C,...A_k-B_m-C
But since this is a iterator interface, state needs to be kept between
calls. State is stored in eq_prefix, cur_eq_prefix and distinct_prefix.
NOTES
We can be more memory efficient by combining some of these fields. For
example, eq_prefix will always be a prefix of distinct_prefix, and
distinct_prefix will always be a prefix of min_search_key/max_search_key.
RETURN
0 on success
HA_ERR_END_OF_FILE if returned all keys
other if some error occurred
*/
int QUICK_SKIP_SCAN_SELECT::get_next() {
DBUG_TRACE;
int result = HA_ERR_END_OF_FILE;
int past_eq_prefix = 0;
bool is_prefix_valid = seen_first_key;
DBUG_ASSERT(distinct_prefix_len + range_key_len == max_used_key_length);
MY_BITMAP *const save_read_set = head->read_set;
head->column_bitmaps_set_no_signal(&column_bitmap, head->write_set);
do {
if (!is_prefix_valid) {
if (!seen_first_key) {
if (eq_prefix_key_parts == 0) {
result = head->file->ha_index_first(record);
} else {
result = head->file->ha_index_read_map(
record, eq_prefix, make_prev_keypart_map(eq_prefix_key_parts),
HA_READ_KEY_OR_NEXT);
}
seen_first_key = true;
} else {
result = index_next_different(
false /* is_index_scan */, head->file, index_info->key_part, record,
distinct_prefix, distinct_prefix_len, distinct_prefix_key_parts);
}
if (result) goto exit;
// Save the prefix of this group for subsequent calls.
key_copy(distinct_prefix, record, index_info, distinct_prefix_len);
if (eq_prefix) {
past_eq_prefix =
key_cmp(index_info->key_part, eq_prefix, eq_prefix_len);
DBUG_ASSERT(past_eq_prefix >= 0);
// We are past the equality prefix, so get the next prefix.
if (past_eq_prefix > 0) {
bool has_next = next_eq_prefix();
if (has_next) {
/*
Reset seen_first_key so that we can determine the next distinct
prefix.
*/
seen_first_key = false;
result = HA_ERR_END_OF_FILE;
continue;
}
result = HA_ERR_END_OF_FILE;
goto exit;
}
}
// We should not be doing a skip scan if there is no range predicate.
DBUG_ASSERT(!(range_cond_flag & NO_MIN_RANGE) ||
!(range_cond_flag & NO_MAX_RANGE));
if (!(range_cond_flag & NO_MIN_RANGE)) {
// If there is a minimum key, append to the distinct prefix.
memcpy(min_search_key, distinct_prefix, distinct_prefix_len);
memcpy(min_search_key + distinct_prefix_len, min_range_key,
range_key_len);
start_key.key = min_search_key;
start_key.length = max_used_key_length;
start_key.keypart_map = make_prev_keypart_map(used_key_parts);
start_key.flag = (range_cond_flag & (EQ_RANGE | NULL_RANGE))
? HA_READ_KEY_EXACT
: (range_cond_flag & NEAR_MIN)
? HA_READ_AFTER_KEY
: HA_READ_KEY_OR_NEXT;
} else {
// If there is no minimum key, just use the distinct prefix.
start_key.key = distinct_prefix;
start_key.length = distinct_prefix_len;
start_key.keypart_map = make_prev_keypart_map(used_key_parts - 1);
start_key.flag = HA_READ_KEY_OR_NEXT;
}
/*
It is not obvious what the semantics of HA_READ_BEFORE_KEY,
HA_READ_KEY_EXACT and HA_READ_AFTER_KEY are for end_key.
See handler::set_end_range for details on what they do.
*/
if (!(range_cond_flag & NO_MAX_RANGE)) {
// If there is a maximum key, append to the distinct prefix.
memcpy(max_search_key, distinct_prefix, distinct_prefix_len);
memcpy(max_search_key + distinct_prefix_len, max_range_key,
range_key_len);
end_key.key = max_search_key;
end_key.length = max_used_key_length;
end_key.keypart_map = make_prev_keypart_map(used_key_parts);
// See comment in quick_range_seq_next for why these flags are set.
end_key.flag = (range_cond_flag & NEAR_MAX) ? HA_READ_BEFORE_KEY
: HA_READ_AFTER_KEY;
} else {
// If there is no maximum key, just use the distinct prefix.
end_key.key = distinct_prefix;
end_key.length = distinct_prefix_len;
end_key.keypart_map = make_prev_keypart_map(used_key_parts - 1);
end_key.flag = HA_READ_AFTER_KEY;
}
is_prefix_valid = true;
result = head->file->ha_read_range_first(
&start_key, &end_key, MY_TEST(range_cond_flag & EQ_RANGE),
true /* sorted */);
if (result) {
if (result == HA_ERR_END_OF_FILE) {
is_prefix_valid = false;
continue;
}
goto exit;
}
} else {
result = head->file->ha_read_range_next();
if (result) {
if (result == HA_ERR_END_OF_FILE) {
is_prefix_valid = false;
continue;
}
goto exit;
}
}
} while ((result == HA_ERR_KEY_NOT_FOUND || result == HA_ERR_END_OF_FILE));
exit:
head->column_bitmaps_set_no_signal(save_read_set, head->write_set);
if (result == HA_ERR_KEY_NOT_FOUND) result = HA_ERR_END_OF_FILE;
return result;
}
/**
Append comma-separated list of keys this quick select uses to key_names;
append comma-separated list of corresponding used lengths to used_lengths.
SYNOPSIS
QUICK_SKIP_SCAN_SELECT::add_keys_and_lengths()
key_names [out] Names of used indexes
used_lengths [out] Corresponding lengths of the index names
DESCRIPTION
This method is used by select_describe to extract the names of the
indexes used by a quick select.
*/
void QUICK_SKIP_SCAN_SELECT::add_keys_and_lengths(String *key_names,
String *used_lengths) {
char buf[64];
uint length;
key_names->append(index_info->name);
length = longlong2str(max_used_key_length, buf, 10) - buf;
used_lengths->append(buf, length);
}
/**
Traverse the R-B range tree for this and later keyparts to see if
there are at least as many equality ranges as defined by the limit.
@param keypart The R-B tree of ranges for a given keypart.
@param [in,out] count The number of equality ranges found so far
@param limit The number of ranges
@retval true if limit > 0 and 'limit' or more equality ranges have been
found in the range R-B trees
@retval false otherwise
*/
static bool eq_ranges_exceeds_limit(const SEL_ROOT *keypart, uint *count,
uint limit) {
// "Statistics instead of index dives" feature is turned off
if (limit == 0) return false;
/*
Optimization: if there is at least one equality range, index
statistics will be used when limit is 1. It's safe to return true
even without checking that there is an equality range because if
there are none, index statistics will not be used anyway.
*/
if (limit == 1) return true;
for (SEL_ARG *keypart_range = keypart->root->first(); keypart_range;
keypart_range = keypart_range->next) {
/*
This is an equality range predicate and should be counted if:
1) the range for this keypart does not have a min/max flag
(which indicates <, <= etc), and
2) the lower and upper range boundaries have the same value
(it's not a "x BETWEEN a AND b")
Note, however, that if this is an "x IS NULL" condition we don't
count it because the number of NULL-values is likely to be off
the index statistics we plan to use.
*/
if (!keypart_range->min_flag && !keypart_range->max_flag && // 1)
!keypart_range->cmp_max_to_min(keypart_range) && // 2)
!keypart_range->is_null_interval()) // "x IS NULL"
{
/*
Count predicates in the next keypart, but only if that keypart
is the next in the index.
*/
if (keypart_range->next_key_part &&
keypart_range->next_key_part->root->part == keypart_range->part + 1)
eq_ranges_exceeds_limit(keypart_range->next_key_part, count, limit);
else
// We've found a path of equlity predicates down to a keypart leaf
(*count)++;
if (*count >= limit) return true;
}
}
return false;
}
#ifndef DBUG_OFF
static void print_sel_tree(PARAM *param, SEL_TREE *tree, Key_map *tree_map,
const char *msg) {
char buff[1024];
DBUG_TRACE;
String tmp(buff, sizeof(buff), &my_charset_bin);
tmp.length(0);
for (uint idx = 0; idx < param->keys; idx++) {
if (tree_map->is_set(idx)) {
uint keynr = param->real_keynr[idx];
if (tmp.length()) tmp.append(',');
tmp.append(param->table->key_info[keynr].name);
}
}
if (!tmp.length()) tmp.append(STRING_WITH_LEN("(empty)"));
DBUG_PRINT("info", ("SEL_TREE: %p (%s) scans: %s", tree, msg, tmp.ptr()));
}
static void print_ror_scans_arr(TABLE *table, const char *msg,
ROR_SCAN_INFO **start, ROR_SCAN_INFO **end) {
DBUG_TRACE;
char buff[1024];
String tmp(buff, sizeof(buff), &my_charset_bin);
tmp.length(0);
for (; start != end; start++) {
if (tmp.length()) tmp.append(',');
tmp.append(table->key_info[(*start)->keynr].name);
}
if (!tmp.length()) tmp.append(STRING_WITH_LEN("(empty)"));
DBUG_PRINT("info", ("ROR key scans (%s): %s", msg, tmp.ptr()));
fprintf(DBUG_FILE, "ROR key scans (%s): %s", msg, tmp.ptr());
}
#endif /* !DBUG_OFF */
/**
Print a key to a string
@param[out] out String the key is appended to
@param[in] key_part Index components description
@param[in] key Key tuple
*/
static void print_key_value(String *out, const KEY_PART_INFO *key_part,
const uchar *key) {
Field *field = key_part->field;
if (field->flags & BLOB_FLAG) {
// Byte 0 of a nullable key is the null-byte. If set, key is NULL.
if (field->real_maybe_null() && *key)
out->append(STRING_WITH_LEN("NULL"));
else
(field->type() == MYSQL_TYPE_GEOMETRY)
? out->append(STRING_WITH_LEN("unprintable_geometry_value"))
: out->append(STRING_WITH_LEN("unprintable_blob_value"));
return;
}
uint store_length = key_part->store_length;
if (field->real_maybe_null()) {
/*
Byte 0 of key is the null-byte. If set, key is NULL.
Otherwise, print the key value starting immediately after the
null-byte
*/
if (*key) {
out->append(STRING_WITH_LEN("NULL"));
return;
}
key++; // Skip null byte
store_length--;
}
/*
Binary data cannot be converted to UTF8 which is what the
optimizer trace expects. If the column is binary, the hex
representation is printed to the trace instead.
*/
if (field->flags & BINARY_FLAG) {
out->append("0x");
for (uint i = 0; i < store_length; i++) {
out->append(_dig_vec_lower[*(key + i) >> 4]);
out->append(_dig_vec_lower[*(key + i) & 0x0F]);
}
return;
}
char buff[128];
String tmp(buff, sizeof(buff), system_charset_info);
tmp.length(0);
TABLE *table = field->table;
my_bitmap_map *old_sets[2];
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
field->set_key_image(key, key_part->length);
if (field->type() == MYSQL_TYPE_BIT)
(void)field->val_int_as_str(&tmp, 1); // may change tmp's charset
else
field->val_str(&tmp); // may change tmp's charset
out->append(tmp.ptr(), tmp.length(), tmp.charset());
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
}
/**
Append range info for a key part to a string
@param[in,out] out String the range info is appended to
@param[in] key_part Indexed column used in a range select
@param[in] min_key Key tuple describing lower bound of range
@param[in] max_key Key tuple describing upper bound of range
@param[in] flag Key range flags defining what min_key
and max_key represent @see my_base.h
*/
void append_range(String *out, const KEY_PART_INFO *key_part,
const uchar *min_key, const uchar *max_key, const uint flag) {
if (out->length() > 0) out->append(STRING_WITH_LEN(" AND "));
if (flag & GEOM_FLAG) {
/*
The flags of GEOM ranges do not work the same way as for other
range types, so printing "col < some_geom" doesn't make sense.
Just print the column name, not operator.
*/
out->append(key_part->field->field_name);
out->append(STRING_WITH_LEN(" "));
print_key_value(out, key_part, min_key);
return;
}
if (!(flag & NO_MIN_RANGE)) {
print_key_value(out, key_part, min_key);
if (flag & NEAR_MIN)
out->append(STRING_WITH_LEN(" < "));
else
out->append(STRING_WITH_LEN(" <= "));
}
out->append(get_field_name_or_expression(key_part->field->table->in_use,
key_part->field));
if (!(flag & NO_MAX_RANGE)) {
if (flag & NEAR_MAX)
out->append(STRING_WITH_LEN(" < "));
else
out->append(STRING_WITH_LEN(" <= "));
print_key_value(out, key_part, max_key);
}
}
/**
Traverse an R-B tree of range conditions and append all ranges for
this keypart and consecutive keyparts to range_trace (if non-NULL)
or to range_string (if range_trace is NULL). See description of R-B
trees/SEL_ARG for details on how ranges are linked.
@param[in,out] range_trace Optimizer trace array ranges are appended to
@param[in,out] range_string The string where range predicates are
appended when the last keypart has
been reached.
@param range_so_far String containing ranges for keyparts prior
to this keypart.
@param keypart The R-B tree containing intervals for this
keypart.
@param key_parts Index components description, used when adding
information to the optimizer trace
@param print_full Whether or not ranges on unusable keyparts
should be printed. Useful for debugging.
@note This function mimics the behavior of sel_arg_range_seq_next()
*/
static void append_range_all_keyparts(Opt_trace_array *range_trace,
String *range_string,
String *range_so_far, SEL_ROOT *keypart,
const KEY_PART_INFO *key_parts,
const bool print_full) {
DBUG_ASSERT(keypart);
const SEL_ARG *const keypart_root = keypart->root;
DBUG_ASSERT(keypart_root && keypart_root != null_element);
const bool append_to_trace = (range_trace != NULL);
// Either add info to range_string or to range_trace
DBUG_ASSERT(append_to_trace ? !range_string : (range_string != NULL));
// Navigate to first interval in red-black tree
const KEY_PART_INFO *cur_key_part = key_parts + keypart_root->part;
const SEL_ARG *keypart_range = keypart_root->first();
const size_t save_range_so_far_length = range_so_far->length();
while (keypart_range) {
/*
Skip the rest of condition printing to avoid OOM if appending to
range_string and the string becomes too long. Printing very long
range conditions normally doesn't make sense either.
*/
if (!append_to_trace && range_string->length() > 500) {
range_string->append(STRING_WITH_LEN("..."));
break;
}
// Append the current range predicate to the range String
switch (keypart->type) {
case SEL_ROOT::Type::KEY_RANGE:
append_range(range_so_far, cur_key_part, keypart_range->min_value,
keypart_range->max_value,
keypart_range->min_flag | keypart_range->max_flag);
break;
case SEL_ROOT::Type::MAYBE_KEY:
range_so_far->append("MAYBE_KEY");
break;
case SEL_ROOT::Type::IMPOSSIBLE:
range_so_far->append("IMPOSSIBLE");
break;
default:
DBUG_ASSERT(false);
break;
}
/*
Print range predicates for consecutive keyparts if
1) There are predicates for later keyparts, and
2) We explicitly requested to print even the ranges that will
not be usable by range access, or
3) There are no "holes" in the used keyparts (keypartX can only
be used if there is a range predicate on keypartX-1), and
4) The current range is an equality range
*/
if (keypart_range->next_key_part && // 1
(print_full || // 2
(keypart_range->next_key_part->root->part ==
keypart_range->part + 1 && // 3
keypart_range->is_singlepoint()))) // 4
{
append_range_all_keyparts(range_trace, range_string, range_so_far,
keypart_range->next_key_part, key_parts,
print_full);
} else {
/*
This is the last keypart with a usable range predicate. Print
full range info to the optimizer trace or to the string
*/
if (append_to_trace)
range_trace->add_utf8(range_so_far->ptr(), range_so_far->length());
else {
if (range_string->length() == 0)
range_string->append(STRING_WITH_LEN("("));
else
range_string->append(STRING_WITH_LEN(" OR ("));
range_string->append(range_so_far->ptr(), range_so_far->length());
range_string->append(STRING_WITH_LEN(")"));
}
}
keypart_range = keypart_range->next;
/*
Now moving to next range for this keypart, so "reset"
range_so_far to include only range description of earlier
keyparts
*/
range_so_far->length(save_range_so_far_length);
}
}
#ifndef DBUG_OFF
/**
Print the ranges in a SEL_TREE to debug log.
@param tree_name Descriptive name of the tree
@param tree The SEL_TREE that will be printed to debug log
@param param PARAM from test_quick_select
*/
static inline void dbug_print_tree(const char *tree_name, SEL_TREE *tree,
const RANGE_OPT_PARAM *param) {
if (_db_enabled_()) print_tree(NULL, tree_name, tree, param, true);
}
#endif
static inline void print_tree(String *out, const char *tree_name,
SEL_TREE *tree, const RANGE_OPT_PARAM *param,
const bool print_full) {
if (!param->using_real_indexes) {
if (out) {
out->append(tree_name);
out->append(" uses a partitioned index and cannot be printed");
} else
DBUG_PRINT("info", ("sel_tree: "
"%s uses a partitioned index and cannot be printed",
tree_name));
return;
}
if (!tree) {
if (out) {
out->append(tree_name);
out->append(" is NULL");
} else
DBUG_PRINT("info", ("sel_tree: %s is NULL", tree_name));
return;
}
if (tree->type == SEL_TREE::IMPOSSIBLE) {
if (out) {
out->append(tree_name);
out->append(" is IMPOSSIBLE");
} else
DBUG_PRINT("info", ("sel_tree: %s is IMPOSSIBLE", tree_name));
return;
}
if (tree->type == SEL_TREE::ALWAYS) {
if (out) {
out->append(tree_name);
out->append(" is ALWAYS");
} else
DBUG_PRINT("info", ("sel_tree: %s is ALWAYS", tree_name));
return;
}
if (tree->type == SEL_TREE::MAYBE) {
if (out) {
out->append(tree_name);
out->append(" is MAYBE");
} else
DBUG_PRINT("info", ("sel_tree: %s is MAYBE", tree_name));
return;
}
if (!tree->merges.is_empty()) {
if (out) {
out->append(tree_name);
out->append(" contains the following merges");
} else
DBUG_PRINT("info", ("sel_tree: "
"%s contains the following merges",
tree_name));
List_iterator<SEL_IMERGE> it(tree->merges);
int i = 1;
for (SEL_IMERGE *el = it++; el; el = it++, i++) {
if (out) {
out->append("\n--- alternative ");
char istr[22];
out->append(llstr(i, istr));
out->append(" ---\n");
} else
DBUG_PRINT("info", ("sel_tree: --- alternative %d ---", i));
for (SEL_TREE **current = el->trees; current != el->trees_next; current++)
print_tree(out, " merge_tree", *current, param, print_full);
}
}
for (uint i = 0; i < param->keys; i++) {
if (tree->keys[i] == NULL) continue;
uint real_key_nr = param->real_keynr[i];
const KEY &cur_key = param->table->key_info[real_key_nr];
const KEY_PART_INFO *key_part = cur_key.key_part;
/*
String holding the final range description from
append_range_all_keyparts()
*/
char buff1[512];
buff1[0] = '\0';
String range_result(buff1, sizeof(buff1), system_charset_info);
range_result.length(0);
/*
Range description up to a certain keypart - used internally in
append_range_all_keyparts()
*/
char buff2[128];
String range_so_far(buff2, sizeof(buff2), system_charset_info);
range_so_far.length(0);
append_range_all_keyparts(NULL, &range_result, &range_so_far, tree->keys[i],
key_part, print_full);
if (out) {
char istr[22];
out->append(tree_name);
out->append(" keys[");
out->append(llstr(i, istr));
out->append("]: ");
out->append(range_result.ptr());
out->append("\n");
} else
DBUG_PRINT("info", ("sel_tree: %p, type=%d, %s->keys[%u(%u)]: %s",
tree->keys[i], static_cast<int>(tree->keys[i]->type),
tree_name, i, real_key_nr, range_result.ptr()));
}
}
/*****************************************************************************
** Print a quick range for debugging
** TODO:
** This should be changed to use a String to store each row instead
** of locking the DEBUG stream !
*****************************************************************************/
#ifndef DBUG_OFF
static void print_multiple_key_values(KEY_PART *key_part, const uchar *key,
uint used_length) {
char buff[1024];
const uchar *key_end = key + used_length;
String tmp(buff, sizeof(buff), &my_charset_bin);
uint store_length;
TABLE *table = key_part->field->table;
my_bitmap_map *old_sets[2];
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
for (; key < key_end; key += store_length, key_part++) {
Field *field = key_part->field;
store_length = key_part->store_length;
if (field->real_maybe_null()) {
if (*key) {
if (fwrite("NULL", sizeof(char), 4, DBUG_FILE) != 4) {
goto restore_col_map;
}
continue;
}
key++; // Skip null byte
store_length--;
}
field->set_key_image(key, key_part->length);
if (field->type() == MYSQL_TYPE_BIT)
(void)field->val_int_as_str(&tmp, 1);
else
field->val_str(&tmp);
if (fwrite(tmp.ptr(), sizeof(char), tmp.length(), DBUG_FILE) !=
tmp.length()) {
goto restore_col_map;
}
if (key + store_length < key_end) fputc('/', DBUG_FILE);
}
restore_col_map:
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
}
static void print_quick(QUICK_SELECT_I *quick, const Key_map *needed_reg) {
char buf[MAX_KEY / 8 + 1];
TABLE *table;
my_bitmap_map *old_sets[2];
DBUG_TRACE;
if (!quick) return;
DBUG_LOCK_FILE;
table = quick->head;
dbug_tmp_use_all_columns(table, old_sets, table->read_set, table->write_set);
quick->dbug_dump(0, true);
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_sets);
fprintf(DBUG_FILE, "other_keys: 0x%s:\n", needed_reg->print(buf));
DBUG_UNLOCK_FILE;
}
void QUICK_RANGE_SELECT::dbug_dump(int indent, bool verbose) {
/* purecov: begin inspected */
fprintf(DBUG_FILE, "%*squick range select, key %s, length: %d\n", indent, "",
head->key_info[index].name, max_used_key_length);
if (verbose) {
for (size_t ix = 0; ix < ranges.size(); ++ix) {
fprintf(DBUG_FILE, "%*s", indent + 2, "");
QUICK_RANGE *range = ranges[ix];
if (!(range->flag & NO_MIN_RANGE)) {
print_multiple_key_values(key_parts, range->min_key, range->min_length);
if (range->flag & NEAR_MIN)
fputs(" < ", DBUG_FILE);
else
fputs(" <= ", DBUG_FILE);
}
fputs("X", DBUG_FILE);
if (!(range->flag & NO_MAX_RANGE)) {
if (range->flag & NEAR_MAX)
fputs(" < ", DBUG_FILE);
else
fputs(" <= ", DBUG_FILE);
print_multiple_key_values(key_parts, range->max_key, range->max_length);
}
fputs("\n", DBUG_FILE);
}
}
/* purecov: end */
}
void QUICK_INDEX_MERGE_SELECT::dbug_dump(int indent, bool verbose) {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
fprintf(DBUG_FILE, "%*squick index_merge select\n", indent, "");
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
while ((quick = it++)) quick->dbug_dump(indent + 2, verbose);
if (pk_quick_select) {
fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
pk_quick_select->dbug_dump(indent + 2, verbose);
}
fprintf(DBUG_FILE, "%*s}\n", indent, "");
}
void QUICK_ROR_INTERSECT_SELECT::dbug_dump(int indent, bool verbose) {
List_iterator_fast<QUICK_RANGE_SELECT> it(quick_selects);
QUICK_RANGE_SELECT *quick;
fprintf(DBUG_FILE, "%*squick ROR-intersect select, %scovering\n", indent, "",
need_to_fetch_row ? "" : "non-");
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
while ((quick = it++)) quick->dbug_dump(indent + 2, verbose);
if (cpk_quick) {
fprintf(DBUG_FILE, "%*sclustered PK quick:\n", indent, "");
cpk_quick->dbug_dump(indent + 2, verbose);
}
fprintf(DBUG_FILE, "%*s}\n", indent, "");
}
void QUICK_ROR_UNION_SELECT::dbug_dump(int indent, bool verbose) {
List_iterator_fast<QUICK_SELECT_I> it(quick_selects);
QUICK_SELECT_I *quick;
fprintf(DBUG_FILE, "%*squick ROR-union select\n", indent, "");
fprintf(DBUG_FILE, "%*smerged scans {\n", indent, "");
while ((quick = it++)) quick->dbug_dump(indent + 2, verbose);
fprintf(DBUG_FILE, "%*s}\n", indent, "");
}
/*
Print quick select information to DBUG_FILE.
SYNOPSIS
QUICK_GROUP_MIN_MAX_SELECT::dbug_dump()
indent Indentation offset
verbose If true show more detailed output.
DESCRIPTION
Print the contents of this quick select to DBUG_FILE. The method also
calls dbug_dump() for the used quick select if any.
IMPLEMENTATION
Caller is responsible for locking DBUG_FILE before this call and unlocking
it afterwards.
RETURN
None
*/
void QUICK_GROUP_MIN_MAX_SELECT::dbug_dump(int indent, bool verbose) {
fprintf(DBUG_FILE,
"%*squick_group_min_max_select: index %s (%d), length: %d\n", indent,
"", index_info->name, index, max_used_key_length);
if (key_infix_len > 0) {
fprintf(DBUG_FILE, "%*susing key_infix with length %d:\n", indent, "",
key_infix_len);
}
if (quick_prefix_select) {
fprintf(DBUG_FILE, "%*susing quick_range_select:\n", indent, "");
quick_prefix_select->dbug_dump(indent + 2, verbose);
}
if (min_max_ranges.size() > 0) {
fprintf(DBUG_FILE, "%*susing %d quick_ranges for MIN/MAX:\n", indent, "",
static_cast<int>(min_max_ranges.size()));
}
}
void QUICK_SKIP_SCAN_SELECT::dbug_dump(int indent, bool verbose) {
fprintf(DBUG_FILE, "%*squick_skip_scan_select: index %s (%d), length: %d\n",
indent, "", index_info->name, index, max_used_key_length);
if (eq_prefix_len > 0) {
fprintf(DBUG_FILE, "%*susing eq_prefix with length %d:\n", indent, "",
eq_prefix_len);
}
if (verbose) {
char buff1[512];
buff1[0] = '\0';
String range_result(buff1, sizeof(buff1), system_charset_info);
if (index_range_tree && eq_prefix_key_parts > 0) {
range_result.length(0);
char buff2[128];
String range_so_far(buff2, sizeof(buff2), system_charset_info);
range_so_far.length(0);
append_range_all_keyparts(NULL, &range_result, &range_so_far,
index_range_tree, index_info->key_part, false);
fprintf(DBUG_FILE, "Prefix ranges: %s\n", range_result.c_ptr());
}
{
range_result.length(0);
append_range(&range_result, range_key_part, min_range_key, max_range_key,
range_cond_flag);
fprintf(DBUG_FILE, "Range: %s\n", range_result.c_ptr());
}
}
}
#endif /* !DBUG_OFF */
#endif /* OPT_RANGE_CC_INCLUDED */