用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

879 lines
30 KiB

// Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2.0,
// as published by the Free Software Foundation.
//
// This program is also distributed with certain software (including
// but not limited to OpenSSL) that is licensed under separate terms,
// as designated in a particular file or component or in included license
// documentation. The authors of MySQL hereby grant you an additional
// permission to link the program and your derivative works with the
// separately licensed software that they have included with MySQL.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License, version 2.0, for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
/// @file
///
/// This file implements the overlaps functor and function.
#include <memory> // std::unique_ptr
#include <boost/geometry.hpp>
#include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system
#include "sql/gis/box.h"
#include "sql/gis/box_traits.h"
#include "sql/gis/gc_utils.h"
#include "sql/gis/geometries.h"
#include "sql/gis/geometries_traits.h"
#include "sql/gis/mbr_utils.h"
#include "sql/gis/overlaps_functor.h"
#include "sql/gis/relops.h"
#include "sql/sql_exception_handler.h" // handle_gis_exception
namespace bg = boost::geometry;
namespace gis {
/// Apply an Overlaps functor to two geometries, which both may be geometry
/// collections, and return the booelan result of the functor applied on each
/// combination of elements in the collections.
///
/// @tparam GC Coordinate specific gometry collection type.
///
/// @param f Functor to apply.
/// @param g1 First geometry.
/// @param g2 Second geometry.
///
/// @retval true g1 overlaps g2.
/// @retval false g1 doesn't overlap g2.
template <typename GC>
static bool geometry_collection_apply_overlaps(const Overlaps &f,
const Geometry *g1,
const Geometry *g2) {
if (g1->type() == Geometry_type::kGeometrycollection &&
g2->type() == Geometry_type::kGeometrycollection) {
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(f.semi_major(), f.semi_minor(), &g1_mpt, &g1_mls, &g1_mpy);
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy);
int g1_dim;
if (!g1_mpy->empty())
g1_dim = 2;
else if (!g1_mls->empty())
g1_dim = 1;
else if (!g1_mpt->empty())
g1_dim = 0;
else {
DBUG_ASSERT(false); /* purecov: inspected */
g1_dim = -1; /* purecov: inspected */
}
int g2_dim;
if (!g2_mpy->empty())
g2_dim = 2;
else if (!g2_mls->empty())
g2_dim = 1;
else if (!g2_mpt->empty())
g2_dim = 0;
else {
DBUG_ASSERT(false); /* purecov: inspected */
g2_dim = -1; /* purecov: inspected */
}
if (g1_dim != g2_dim) throw null_value_exception();
switch (g1_dim) {
case 0:
return f(g1_mpt.get(), g2_mpt.get());
break;
case 1:
return f(g1_mpt.get(), g2_mpt.get()) || f(g1_mls.get(), g2_mls.get());
break;
case 2:
return f(g1_mpt.get(), g2_mpt.get()) || f(g1_mls.get(), g2_mls.get()) ||
f(g1_mpy.get(), g2_mpy.get());
break;
default:
DBUG_ASSERT(false); /* purecov: inspected */
throw null_value_exception(); /* purecov: inspected */
break;
}
} else if (g1->type() == Geometry_type::kGeometrycollection) {
return f(g2, g1);
} else if (g2->type() == Geometry_type::kGeometrycollection) {
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy);
int g2_dim;
if (!g2_mpy->empty())
g2_dim = 2;
else if (!g2_mls->empty())
g2_dim = 1;
else if (!g2_mpt->empty())
g2_dim = 0;
else {
DBUG_ASSERT(false); /* purecov: inspected */
g2_dim = -1; /* purecov: inspected */
}
switch (g1->type()) {
case Geometry_type::kPoint:
case Geometry_type::kMultipoint:
if (g2_dim != 0) throw null_value_exception();
return f(g1, g2_mpt.get());
case Geometry_type::kLinestring:
case Geometry_type::kMultilinestring:
if (g2_dim != 1) throw null_value_exception();
return f(g1, g2_mls.get());
case Geometry_type::kPolygon:
case Geometry_type::kMultipolygon:
if (g2_dim != 2) throw null_value_exception();
return f(g1, g2_mpy.get());
default:
// All possible combinations should be covered above.
DBUG_ASSERT(false); /* purecov: inspected */
return false;
}
} else {
DBUG_ASSERT(false); /* purecov: inspected */
return f(g1, g2);
}
}
Overlaps::Overlaps(double semi_major, double semi_minor)
: m_semi_major(semi_major),
m_semi_minor(semi_minor),
m_geographic_ll_aa_strategy(
bg::srs::spheroid<double>(semi_major, semi_minor)) {}
bool Overlaps::operator()(const Geometry *g1, const Geometry *g2) const {
return apply(*this, g1, g2);
}
bool Overlaps::operator()(const Box *b1, const Box *b2) const {
DBUG_ASSERT(b1->coordinate_system() == b2->coordinate_system());
switch (b1->coordinate_system()) {
case Coordinate_system::kCartesian:
return eval(down_cast<const Cartesian_box *>(b1),
down_cast<const Cartesian_box *>(b2));
case Coordinate_system::kGeographic:
return eval(down_cast<const Geographic_box *>(b1),
down_cast<const Geographic_box *>(b2));
}
DBUG_ASSERT(false);
return false;
}
bool Overlaps::eval(const Geometry *g1, const Geometry *g2) const {
// All parameter type combinations have been implemented.
DBUG_ASSERT(false);
throw not_implemented_exception::for_non_projected(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_point, *)
bool Overlaps::eval(const Cartesian_point *, const Cartesian_point *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Cartesian_point *,
const Cartesian_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_point *, const Cartesian_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_point *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_point *,
const Cartesian_multipoint *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Cartesian_point *,
const Cartesian_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_point *,
const Cartesian_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_linestring, *)
bool Overlaps::eval(const Cartesian_linestring *,
const Cartesian_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_linestring *g1,
const Cartesian_linestring *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_linestring *,
const Cartesian_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_linestring *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_linestring *,
const Cartesian_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_linestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_linestring *,
const Cartesian_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_polygon, *)
bool Overlaps::eval(const Cartesian_polygon *, const Cartesian_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_polygon *,
const Cartesian_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_polygon *g1,
const Cartesian_polygon *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_polygon *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_polygon *,
const Cartesian_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_polygon *,
const Cartesian_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_polygon *g1,
const Cartesian_multipolygon *g2) const {
return bg::overlaps(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_geometrycollection, *)
bool Overlaps::eval(const Cartesian_geometrycollection *g1,
const Geometry *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_multipoint, *)
bool Overlaps::eval(const Cartesian_multipoint *,
const Cartesian_point *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Cartesian_multipoint *,
const Cartesian_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipoint *,
const Cartesian_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipoint *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_multipoint *g1,
const Cartesian_multipoint *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_multipoint *,
const Cartesian_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipoint *,
const Cartesian_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_multilinestring, *)
bool Overlaps::eval(const Cartesian_multilinestring *,
const Cartesian_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multilinestring *g1,
const Cartesian_linestring *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_multilinestring *,
const Cartesian_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multilinestring *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_multilinestring *,
const Cartesian_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multilinestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_multilinestring *,
const Cartesian_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Cartesian_multipolygon, *)
bool Overlaps::eval(const Cartesian_multipolygon *,
const Cartesian_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipolygon *,
const Cartesian_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipolygon *g1,
const Cartesian_polygon *g2) const {
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Cartesian_multipolygon *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Cartesian_multipolygon *,
const Cartesian_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipolygon *,
const Cartesian_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Cartesian_multipolygon *g1,
const Cartesian_multipolygon *g2) const {
return bg::overlaps(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_point, *)
bool Overlaps::eval(const Geographic_point *, const Geographic_point *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Geographic_point *,
const Geographic_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_point *,
const Geographic_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_point *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_point *,
const Geographic_multipoint *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Geographic_point *,
const Geographic_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_point *,
const Geographic_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_linestring, *)
bool Overlaps::eval(const Geographic_linestring *,
const Geographic_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_linestring *g1,
const Geographic_linestring *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_linestring *,
const Geographic_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_linestring *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_linestring *,
const Geographic_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_linestring *g1,
const Geographic_multilinestring *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_linestring *,
const Geographic_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_polygon, *)
bool Overlaps::eval(const Geographic_polygon *,
const Geographic_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_polygon *,
const Geographic_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_polygon *g1,
const Geographic_polygon *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_polygon *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_polygon *,
const Geographic_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_polygon *,
const Geographic_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_polygon *g1,
const Geographic_multipolygon *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_geometrycollection, *)
bool Overlaps::eval(const Geographic_geometrycollection *g1,
const Geometry *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_multipoint, *)
bool Overlaps::eval(const Geographic_multipoint *,
const Geographic_point *) const {
// The interior of a point can never be within both the interior and exterior
// of another geometry.
return false;
}
bool Overlaps::eval(const Geographic_multipoint *,
const Geographic_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipoint *,
const Geographic_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipoint *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_multipoint *g1,
const Geographic_multipoint *g2) const {
// Default strategy is OK. P/P computations do not depend on shape of
// ellipsoid.
return bg::overlaps(*g1, *g2);
}
bool Overlaps::eval(const Geographic_multipoint *,
const Geographic_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipoint *,
const Geographic_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_multilinestring, *)
bool Overlaps::eval(const Geographic_multilinestring *,
const Geographic_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multilinestring *g1,
const Geographic_linestring *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_multilinestring *,
const Geographic_polygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multilinestring *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_multilinestring *,
const Geographic_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multilinestring *g1,
const Geographic_multilinestring *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_multilinestring *,
const Geographic_multipolygon *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Geographic_multipolygon, *)
bool Overlaps::eval(const Geographic_multipolygon *,
const Geographic_point *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipolygon *,
const Geographic_linestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipolygon *g1,
const Geographic_polygon *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
bool Overlaps::eval(const Geographic_multipolygon *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_overlaps<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Overlaps::eval(const Geographic_multipolygon *,
const Geographic_multipoint *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipolygon *,
const Geographic_multilinestring *) const {
// If dim(g1) != dim(g2), return NULL (SQL/MM 2015, Part 3, Sect. 5.1.54).
throw null_value_exception();
}
bool Overlaps::eval(const Geographic_multipolygon *g1,
const Geographic_multipolygon *g2) const {
return bg::overlaps(*g1, *g2, m_geographic_ll_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// overlaps(Box, Box)
bool Overlaps::eval(const Cartesian_box *b1, const Cartesian_box *b2) const {
// Work around bugs in BG for boxes that have zero height and/or width.
if (mbr_is_point(*b1) || mbr_is_point(*b2)) {
// A bounding box around a point may never overlap another box. The point is
// either entirely in the interior, boundary or exterior of the other box.
return false;
}
if (mbr_is_line(*b1) && mbr_is_line(*b2)) {
Cartesian_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y());
Cartesian_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y());
Cartesian_linestring b1_ls;
b1_ls.push_back(b1_ls_start);
b1_ls.push_back(b1_ls_end);
Cartesian_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Cartesian_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Cartesian_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::overlaps(b1_ls, b2_ls) || bg::crosses(b1_ls, b2_ls);
}
return bg::overlaps(*b1, *b2);
}
bool Overlaps::eval(const Geographic_box *b1, const Geographic_box *b2) const {
// Work around bugs in BG for boxes that have zero height and/or width.
if (mbr_is_point(*b1) || mbr_is_point(*b2)) {
// A bounding box around a point may never overlap another box. The point is
// either entirely in the interior, boundary or exterior of the other box.
return false;
}
if (mbr_is_line(*b1) && mbr_is_line(*b2)) {
Geographic_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y());
Geographic_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y());
Geographic_linestring b1_ls;
b1_ls.push_back(b1_ls_start);
b1_ls.push_back(b1_ls_end);
Geographic_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Geographic_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Geographic_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::overlaps(b1_ls, b2_ls) || bg::crosses(b1_ls, b2_ls);
}
return bg::overlaps(*b1, *b2);
}
//////////////////////////////////////////////////////////////////////////////
bool overlaps(const dd::Spatial_reference_system *srs, const Geometry *g1,
const Geometry *g2, const char *func_name, bool *overlaps,
bool *null) noexcept {
try {
DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system());
DBUG_ASSERT(srs == nullptr ||
((srs->is_cartesian() &&
g1->coordinate_system() == Coordinate_system::kCartesian) ||
(srs->is_geographic() &&
g1->coordinate_system() == Coordinate_system::kGeographic)));
if ((*null = (g1->is_empty() || g2->is_empty()))) return false;
Overlaps overlaps_func(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
*overlaps = overlaps_func(g1, g2);
} catch (const null_value_exception &) {
*null = true;
return false;
} catch (...) {
handle_gis_exception(func_name);
return true;
}
return false;
}
bool mbr_overlaps(const dd::Spatial_reference_system *srs, const Geometry *g1,
const Geometry *g2, const char *func_name, bool *overlaps,
bool *null) noexcept {
try {
DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system());
DBUG_ASSERT(srs == nullptr ||
((srs->is_cartesian() &&
g1->coordinate_system() == Coordinate_system::kCartesian) ||
(srs->is_geographic() &&
g1->coordinate_system() == Coordinate_system::kGeographic)));
if ((*null = (g1->is_empty() || g2->is_empty()))) return false;
Overlaps overlaps_func(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
switch (g1->coordinate_system()) {
case Coordinate_system::kCartesian: {
Cartesian_box mbr1;
box_envelope(g1, srs, &mbr1);
Cartesian_box mbr2;
box_envelope(g2, srs, &mbr2);
*overlaps = overlaps_func(&mbr1, &mbr2);
break;
}
case Coordinate_system::kGeographic: {
Geographic_box mbr1;
box_envelope(g1, srs, &mbr1);
Geographic_box mbr2;
box_envelope(g2, srs, &mbr2);
*overlaps = overlaps_func(&mbr1, &mbr2);
break;
}
}
} catch (...) {
handle_gis_exception(func_name);
return true;
}
return false;
}
} // namespace gis