用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

5121 lines
193 KiB

#ifndef FIELD_INCLUDED
#define FIELD_INCLUDED
/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <limits.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <string>
#include "decimal.h" // E_DEC_OOM
#include "field_types.h" // enum_field_types
#include "lex_string.h"
#include "libbinlogevents/export/binary_log_funcs.h" // my_time_binary_length
#include "m_ctype.h"
#include "m_string.h"
#include "my_base.h" // ha_storage_media
#include "my_bitmap.h"
#include "my_byteorder.h"
#include "my_compiler.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_time.h" // MYSQL_TIME_NOTE_TRUNCATED
#include "mysql/udf_registration_types.h"
#include "mysql_com.h"
#include "mysql_time.h"
#include "mysqld_error.h" // ER_*
#include "nullable.h"
#include "sql/dd/types/column.h"
#include "sql/gis/srid.h"
#include "sql/json_dom.h" // Json_array
#include "sql/sql_bitmap.h"
#include "sql/sql_const.h"
#include "sql/sql_error.h" // Sql_condition
#include "sql/sql_list.h"
#include "sql/table.h"
#include "sql/thr_malloc.h"
#include "sql_string.h" // String
class Blob_mem_storage;
class Create_field;
class Field;
class Field_bit;
class Field_bit_as_char;
class Field_blob;
class Field_datetime;
class Field_decimal;
class Field_double;
class Field_enum;
class Field_float;
class Field_json;
class Field_long;
class Field_longlong;
class Field_medium;
class Field_new_decimal;
class Field_newdate;
class Field_num;
class Field_real;
class Field_set;
class Field_short;
class Field_str;
class Field_string;
class Field_temporal;
class Field_temporal_with_date;
class Field_temporal_with_date_and_time;
class Field_temporal_with_date_and_timef;
class Field_time;
class Field_time_common;
class Field_timef;
class Field_timestamp;
class Field_tiny;
class Field_varstring;
class Field_year;
class Item;
class Json_diff_vector;
class Json_wrapper;
class KEY;
class Protocol;
class Relay_log_info;
class Send_field;
class THD;
class my_decimal;
struct MEM_ROOT;
struct TYPELIB;
struct timeval;
using Mysql::Nullable;
/*
Inside an in-memory data record, memory pointers to pieces of the
record (like BLOBs) are stored in their native byte order and in
this amount of bytes.
*/
#define portable_sizeof_char_ptr 8
/*
Field class hierarchy
Field (abstract)
|
+--Field_bit
| +--Field_bit_as_char
|
+--Field_num (abstract)
| | +--Field_real (abstract)
| | +--Field_decimal
| | +--Field_float
| | +--Field_double
| |
| +--Field_new_decimal
| +--Field_short
| +--Field_medium
| +--Field_long
| +--Field_longlong
| +--Field_tiny
| +--Field_year
|
+--Field_str (abstract)
| +--Field_longstr
| | +--Field_string
| | +--Field_varstring
| | +--Field_blob
| | +--Field_geom
| | +--Field_json
| | +--Field_typed_array
| |
| +--Field_null
| +--Field_enum
| +--Field_set
|
+--Field_temporal (abstract)
+--Field_time_common (abstract)
| +--Field_time
| +--Field_timef
|
+--Field_temporal_with_date (abstract)
+--Field_newdate
+--Field_temporal_with_date_and_time (abstract)
+--Field_timestamp
+--Field_datetime
+--Field_temporal_with_date_and_timef (abstract)
+--Field_timestampf
+--Field_datetimef
*/
enum enum_check_fields : int {
CHECK_FIELD_IGNORE = 0,
CHECK_FIELD_WARN,
CHECK_FIELD_ERROR_FOR_NULL
};
enum Derivation {
DERIVATION_IGNORABLE = 6,
DERIVATION_NUMERIC = 5,
DERIVATION_COERCIBLE = 4,
DERIVATION_SYSCONST = 3,
DERIVATION_IMPLICIT = 2,
DERIVATION_NONE = 1,
DERIVATION_EXPLICIT = 0
};
/* Specifies data storage format for individual columns */
enum column_format_type {
COLUMN_FORMAT_TYPE_DEFAULT = 0, /* Not specified (use engine default) */
COLUMN_FORMAT_TYPE_FIXED = 1, /* FIXED format */
COLUMN_FORMAT_TYPE_DYNAMIC = 2 /* DYNAMIC format */
};
/**
Status when storing a value in a field or converting from one
datatype to another. The values should be listed in order of
increasing seriousness so that if two type_conversion_status
variables are compared, the bigger one is most serious.
*/
enum type_conversion_status {
/// Storage/conversion went fine.
TYPE_OK = 0,
/**
A minor problem when converting between temporal values, e.g.
if datetime is converted to date the time information is lost.
*/
TYPE_NOTE_TIME_TRUNCATED,
/**
Value was stored, but something was cut. What was cut is
considered insignificant enough to only issue a note. Example:
trying to store a number with 5 decimal places into a field that
can only store 3 decimals. The number rounded to 3 decimal places
should be stored. Another example: storing the string "foo " into
a VARCHAR(3). The string "foo" is stored in this case, so only
whitespace is cut.
*/
TYPE_NOTE_TRUNCATED,
/**
Value outside min/max limit of datatype. The min/max value is
stored by Field::store() instead (if applicable)
*/
TYPE_WARN_OUT_OF_RANGE,
/**
Value was stored, but something was cut. What was cut is
considered significant enough to issue a warning. Example: storing
the string "foo" into a VARCHAR(2). The string "fo" is stored in
this case. Another example: storing the string "2010-01-01foo"
into a DATE. The garbage in the end of the string is cut in this
case.
*/
TYPE_WARN_TRUNCATED,
/**
Value has invalid string data. When present in a predicate with
equality operator, range optimizer returns an impossible where.
*/
TYPE_WARN_INVALID_STRING,
/// Trying to store NULL in a NOT NULL field.
TYPE_ERR_NULL_CONSTRAINT_VIOLATION,
/**
Store/convert incompatible values, like converting "foo" to a
date.
*/
TYPE_ERR_BAD_VALUE,
/// Out of memory
TYPE_ERR_OOM
};
/*
Some defines for exit codes for ::is_equal class functions.
*/
#define IS_EQUAL_NO 0
#define IS_EQUAL_YES 1
#define IS_EQUAL_PACK_LENGTH 2
#define my_charset_numeric my_charset_latin1
#define MY_REPERTOIRE_NUMERIC MY_REPERTOIRE_ASCII
struct CACHE_FIELD;
type_conversion_status field_conv(Field *to, Field *from);
inline uint get_enum_pack_length(int elements) {
return elements < 256 ? 1 : 2;
}
inline uint get_set_pack_length(int elements) {
uint len = (elements + 7) / 8;
return len > 4 ? 8 : len;
}
inline type_conversion_status decimal_err_to_type_conv_status(int dec_error) {
if (dec_error & E_DEC_OOM) return TYPE_ERR_OOM;
if (dec_error & (E_DEC_DIV_ZERO | E_DEC_BAD_NUM)) return TYPE_ERR_BAD_VALUE;
if (dec_error & E_DEC_TRUNCATED) return TYPE_NOTE_TRUNCATED;
if (dec_error & E_DEC_OVERFLOW) return TYPE_WARN_OUT_OF_RANGE;
if (dec_error == E_DEC_OK) return TYPE_OK;
// impossible
DBUG_ASSERT(false);
return TYPE_ERR_BAD_VALUE;
}
/**
Convert warnings returned from str_to_time() and str_to_datetime()
to their corresponding type_conversion_status codes.
*/
inline type_conversion_status time_warning_to_type_conversion_status(
const int warn) {
if (warn & MYSQL_TIME_NOTE_TRUNCATED) return TYPE_NOTE_TIME_TRUNCATED;
if (warn & MYSQL_TIME_WARN_OUT_OF_RANGE) return TYPE_WARN_OUT_OF_RANGE;
if (warn & MYSQL_TIME_WARN_TRUNCATED) return TYPE_NOTE_TRUNCATED;
if (warn & (MYSQL_TIME_WARN_ZERO_DATE | MYSQL_TIME_WARN_ZERO_IN_DATE))
return TYPE_ERR_BAD_VALUE;
if (warn & MYSQL_TIME_WARN_INVALID_TIMESTAMP)
// date was fine but pointed to daylight saving time switch gap
return TYPE_OK;
DBUG_ASSERT(!warn);
return TYPE_OK;
}
#define ASSERT_COLUMN_MARKED_FOR_READ \
DBUG_ASSERT(!table || (!table->read_set || \
bitmap_is_set(table->read_set, field_index)))
#define ASSERT_COLUMN_MARKED_FOR_WRITE \
DBUG_ASSERT(!table || (!table->write_set || \
bitmap_is_set(table->write_set, field_index)))
/**
Tests if field type is an integer
@param type Field type, as returned by field->type()
@returns true if integer type, false otherwise
*/
inline bool is_integer_type(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
return true;
default:
return false;
}
}
/**
Tests if field type is a numeric type
@param type Field type, as returned by field->type()
@returns true if numeric type, false otherwise
*/
inline bool is_numeric_type(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TINY:
case MYSQL_TYPE_SHORT:
case MYSQL_TYPE_INT24:
case MYSQL_TYPE_LONG:
case MYSQL_TYPE_LONGLONG:
case MYSQL_TYPE_FLOAT:
case MYSQL_TYPE_DOUBLE:
case MYSQL_TYPE_DECIMAL:
case MYSQL_TYPE_NEWDECIMAL:
return true;
default:
return false;
}
}
/**
Tests if field type is temporal, i.e. represents
DATE, TIME, DATETIME or TIMESTAMP types in SQL.
@param type Field type, as returned by field->type().
@retval true If field type is temporal
@retval false If field type is not temporal
*/
inline bool is_temporal_type(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_TIMESTAMP:
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_NEWDATE:
return true;
default:
return false;
}
}
/**
Tests if field real type is temporal, i.e. represents
all existing implementations of
DATE, TIME, DATETIME or TIMESTAMP types in SQL.
@param type Field real type, as returned by field->real_type()
@retval true If field real type is temporal
@retval false If field real type is not temporal
*/
inline bool is_temporal_real_type(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TIME2:
case MYSQL_TYPE_TIMESTAMP2:
case MYSQL_TYPE_DATETIME2:
return true;
default:
return is_temporal_type(type);
}
}
/**
Tests if field type is temporal and has time part,
i.e. represents TIME, DATETIME or TIMESTAMP types in SQL.
@param type Field type, as returned by field->type().
@retval true If field type is temporal type with time part.
@retval false If field type is not temporal type with time part.
*/
inline bool is_temporal_type_with_time(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_TIME:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_TIMESTAMP:
return true;
default:
return false;
}
}
/**
Tests if field type is temporal and has date part,
i.e. represents DATE, DATETIME or TIMESTAMP types in SQL.
@param type Field type, as returned by field->type().
@retval true If field type is temporal type with date part.
@retval false If field type is not temporal type with date part.
*/
inline bool is_temporal_type_with_date(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_DATE:
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_TIMESTAMP:
return true;
default:
return false;
}
}
/**
Tests if field type is temporal and has date and time parts,
i.e. represents DATETIME or TIMESTAMP types in SQL.
@param type Field type, as returned by field->type().
@retval true If field type is temporal type with date and time parts.
@retval false If field type is not temporal type with date and time parts.
*/
inline bool is_temporal_type_with_date_and_time(enum_field_types type) {
switch (type) {
case MYSQL_TYPE_DATETIME:
case MYSQL_TYPE_TIMESTAMP:
return true;
default:
return false;
}
}
/**
Tests if field real type can have "DEFAULT CURRENT_TIMESTAMP",
i.e. represents TIMESTAMP types in SQL.
@param type Field type, as returned by field->real_type().
@retval true If field real type can have "DEFAULT CURRENT_TIMESTAMP".
@retval false If field real type can not have "DEFAULT CURRENT_TIMESTAMP".
*/
inline bool real_type_with_now_as_default(enum_field_types type) {
return type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_TIMESTAMP2 ||
type == MYSQL_TYPE_DATETIME || type == MYSQL_TYPE_DATETIME2;
}
/**
Tests if field real type can have "ON UPDATE CURRENT_TIMESTAMP",
i.e. represents TIMESTAMP types in SQL.
@param type Field type, as returned by field->real_type().
@retval true If field real type can have "ON UPDATE CURRENT_TIMESTAMP".
@retval false If field real type can not have "ON UPDATE CURRENT_TIMESTAMP".
*/
inline bool real_type_with_now_on_update(enum_field_types type) {
return type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_TIMESTAMP2 ||
type == MYSQL_TYPE_DATETIME || type == MYSQL_TYPE_DATETIME2;
}
/**
Recognizer for concrete data type (called real_type for some reason),
returning true if it is one of the TIMESTAMP types.
*/
inline bool is_timestamp_type(enum_field_types type) {
return type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_TIMESTAMP2;
}
/**
Convert temporal real types as retuned by field->real_type()
to field type as returned by field->type().
@param real_type Real type.
@retval Field type.
*/
inline enum_field_types real_type_to_type(enum_field_types real_type) {
switch (real_type) {
case MYSQL_TYPE_TIME2:
return MYSQL_TYPE_TIME;
case MYSQL_TYPE_DATETIME2:
return MYSQL_TYPE_DATETIME;
case MYSQL_TYPE_TIMESTAMP2:
return MYSQL_TYPE_TIMESTAMP;
case MYSQL_TYPE_NEWDATE:
return MYSQL_TYPE_DATE;
/* Note: NEWDECIMAL is a type, not only a real_type */
default:
return real_type;
}
}
/**
Return the appropriate MYSQL_TYPE_X_BLOB value based on the
pack_length.
@param pack_length pack_length for BLOB
@retval MYSQL_TYPE_X_BLOB corresponding to pack_length.
*/
inline enum_field_types blob_type_from_pack_length(uint pack_length) {
DBUG_TRACE;
switch (pack_length) {
case 1:
return MYSQL_TYPE_TINY_BLOB;
case 2:
return MYSQL_TYPE_BLOB;
case 3:
return MYSQL_TYPE_MEDIUM_BLOB;
case 4:
return MYSQL_TYPE_LONG_BLOB;
default:
DBUG_ASSERT(false);
return MYSQL_TYPE_LONG_BLOB;
}
}
/**
Copies an integer value to a format comparable with memcmp(). The
format is characterized by the following:
- The sign bit goes first and is unset for negative values.
- The representation is big endian.
The function template can be instantiated to copy from little or
big endian values.
@tparam Is_big_endian True if the source integer is big endian.
@param to Where to write the integer.
@param to_length Size in bytes of the destination buffer.
@param from Where to read the integer.
@param from_length Size in bytes of the source integer
@param is_unsigned True if the source integer is an unsigned value.
*/
template <bool Is_big_endian>
void copy_integer(uchar *to, size_t to_length, const uchar *from,
size_t from_length, bool is_unsigned) {
if (to_length == 0) return;
if (Is_big_endian) {
std::copy(from, from + std::min(to_length, from_length), to);
if (!is_unsigned)
to[0] = static_cast<char>(to[0] ^ 128); // Reverse the sign bit.
} else {
const uchar *from_end = from + from_length;
const uchar *from_start = from_end - std::min(from_length, to_length);
std::reverse_copy(from_start, from_end, to);
if (!is_unsigned)
to[0] = static_cast<char>(to[0] ^ 128); // Reverse the sign bit.
}
}
/**
Enum to indicate source for which value generator is used. This is needed
while unpacking value generator expression and pre-validating the
expression for generated column, default expression or check constraint.
*/
enum Value_generator_source : short {
VGS_GENERATED_COLUMN = 0, // Value generator for GENERATED_COLUMN.
VGS_DEFAULT_EXPRESSION, // Value generator for Default expression.
VGS_CHECK_CONSTRAINT // Value generator for check constraints.
};
/**
Used for storing information associated with generated column, default
values generated from expression or check constraint expression.
*/
class Value_generator {
public:
/**
Item representing the generation expression.
This is non-NULL for every Field of a TABLE, if that field is a generated
column.
Contrast this with the Field of a TABLE_SHARE, which has expr_item==NULL
even if it's a generated column; that makes sense, as an Item tree cannot
be shared.
*/
Item *expr_item;
/**
Text of the expression. Used in only one case:
- the text read from the DD is put into the Value_generator::expr_str of
the Field of the TABLE_SHARE; then this expr_str is used as source
to produce expr_item for the Field of every TABLE derived from this
TABLE_SHARE.
*/
LEX_STRING expr_str;
/**
Bit field indicating the type of statement for binary logging.
It needs to be saved because this is determined only once when it is parsed
but it needs to be set on the lex for each statement that uses this
value generator. And since unpacking is done once on table open, it will
be set for the rest of the statements in refix_inner_value_generator_items.
*/
uint32 m_backup_binlog_stmt_flags{0};
/// List of all items created when parsing and resolving generated expression
Item *item_list;
/// Bitmap records base columns which a generated column depends on.
MY_BITMAP base_columns_map;
Value_generator()
: expr_item(nullptr),
item_list(nullptr),
field_type(MYSQL_TYPE_LONG),
stored_in_db(false),
num_non_virtual_base_cols(0),
permanent_changes_completed(false) {
expr_str.str = NULL;
expr_str.length = 0;
}
~Value_generator() {}
enum_field_types get_real_type() const { return field_type; }
void set_field_type(enum_field_types fld_type) { field_type = fld_type; }
/**
Set the binary log flags in m_backup_binlog_stmt_flags
@param backup_binlog_stmt_flags the falgs to be backed up
*/
void backup_stmt_unsafe_flags(uint32 backup_binlog_stmt_flags) {
m_backup_binlog_stmt_flags = backup_binlog_stmt_flags;
}
/**
Get the binary log flags from m_backup_binlog_stmt_flags
@return the flags backed up by unpack_value_generator
*/
uint32 get_stmt_unsafe_flags() { return m_backup_binlog_stmt_flags; }
bool get_field_stored() const { return stored_in_db; }
void set_field_stored(bool stored) { stored_in_db = stored; }
bool register_base_columns(TABLE *table);
/**
Get the number of non virtual base columns that this generated
column needs.
@return number of non virtual base columns
*/
uint non_virtual_base_columns() const { return num_non_virtual_base_cols; }
/**
Duplicates a string into expr_str.
@param root MEM_ROOT to use for allocation
@param src source string
@param len length of 'src' in bytes
*/
void dup_expr_str(MEM_ROOT *root, const char *src, size_t len);
/**
Writes the generation expression into a String with proper syntax.
@param thd THD
@param out output String
*/
void print_expr(THD *thd, String *out);
private:
/*
The following data is only updated by the parser and read
when a Create_field object is created/initialized.
*/
enum_field_types field_type; /* Real field type*/
bool stored_in_db; /* Indication that the field is
phisically stored in the database*/
/// How many non-virtual base columns in base_columns_map
uint num_non_virtual_base_cols;
public:
/**
Used to make sure permanent changes to the item tree of expr_item are
made only once.
*/
bool permanent_changes_completed;
};
class Field {
public:
/*
Field(const Item &) = delete;
The original intention was seemingly for Field to be non-copyable,
but due to a typo, this was never enforced, and now there's lots of
code that copies Field objects around. Thus, the default copy
constructor needs to stay (assignment is blocked off), but it's probably
better not to write code that depends on it.
*/
Field(const Field &) = default;
void operator=(Field &) = delete;
/**
Checks if the field is marked as having a general expression to generate
default values.
@retval true The field has general expression as default
@retval false The field doesn't have any general expression as default
*/
bool has_insert_default_general_value_expression() const {
return auto_flags & GENERATED_FROM_EXPRESSION;
}
/**
Checks if the field is marked as having a datetime value expression to
generate default values on inserts.
@retval true The field has datetime expression as default
@retval false The field doesn't have a datime value expression as default
*/
bool has_insert_default_datetime_value_expression() const {
return auto_flags & DEFAULT_NOW;
}
/**
Checks if the field is marked as having a datetime value expression to
generate default values on updates.
@retval true The field has datetime expression as default for on update
@retval false The field doesn't have a datime value expression as default
for on update
*/
bool has_update_default_datetime_value_expression() const {
return auto_flags & ON_UPDATE_NOW;
}
/// Holds the position to the field in record
uchar *ptr;
private:
dd::Column::enum_hidden_type m_hidden;
/**
Byte where the @c NULL bit is stored inside a record. If this Field is a
@c NOT @c NULL field, this member is @c NULL.
*/
uchar *m_null_ptr;
/**
Flag: if the NOT-NULL field can be temporary NULL.
*/
bool m_is_tmp_nullable;
/**
This is a flag with the following semantics:
- it can be changed only when m_is_tmp_nullable is true;
- it specifies if this field in the first current record
(TABLE::record[0]) was set to NULL (temporary NULL).
This flag is used for trigger handling.
*/
bool m_is_tmp_null;
/**
The value of THD::check_for_truncated_fields at the moment of setting
m_is_tmp_null attribute.
*/
enum_check_fields m_check_for_truncated_fields_saved;
protected:
/*
null_ptr buffer to be used for Fields that are nullable but
cannot store null. Typically used from create_tmp_field().
*/
static uchar dummy_null_buffer;
const uchar *get_null_ptr() const { return m_null_ptr; }
uchar *get_null_ptr() { return m_null_ptr; }
public:
/*
Note that you can use table->in_use as replacement for current_thd member
only inside of val_*() and store() members (e.g. you can't use it in cons)
*/
TABLE *table; // Pointer for table
TABLE *orig_table; // Pointer to original table
const char **table_name, *field_name;
LEX_CSTRING comment;
/* Field is part of the following keys */
Key_map key_start; /* Keys that starts with this field */
Key_map part_of_key; ///< Keys that includes this field
///< except of prefix keys.
Key_map part_of_prefixkey; ///< Prefix keys
Key_map part_of_sortkey; /* ^ but only keys usable for sorting */
/**
All keys that include this field, but not extended by the storage engine to
include primary key columns.
*/
Key_map part_of_key_not_extended;
/**
Flags for Field::auto_flags / Create_field::auto_flags bitmaps.
@note NEXT_NUMBER and DEFAULT_NOW/ON_UPDATE_NOW/GENERATED flags should
never be set at the same time. Also DEFAULT_NOW and GENERATED
should not be set at the same time.
@warning The values of this enum are used as bit masks for uchar
Field::auto_flags.
*/
enum enum_auto_flags {
NONE = 0,
NEXT_NUMBER = 1, ///< AUTO_INCREMENT
DEFAULT_NOW = 2, ///< DEFAULT CURRENT_TIMESTAMP
ON_UPDATE_NOW = 4, ///< ON UPDATE CURRENT_TIMESTAMP
GENERATED_FROM_EXPRESSION = 8 ///< DEFAULT (expression)
};
enum geometry_type {
GEOM_GEOMETRY = 0,
GEOM_POINT = 1,
GEOM_LINESTRING = 2,
GEOM_POLYGON = 3,
GEOM_MULTIPOINT = 4,
GEOM_MULTILINESTRING = 5,
GEOM_MULTIPOLYGON = 6,
GEOM_GEOMETRYCOLLECTION = 7
};
enum imagetype { itRAW, itMBR };
// Length of field. Never write to this member directly; instead, use
// set_field_length().
uint32 field_length;
virtual void set_field_length(uint32 length) { field_length = length; }
uint32 flags;
uint16 field_index; // field number in fields array
uchar null_bit; // Bit used to test null bit
/**
Bitmap of flags indicating if field value is auto-generated by default
and/or on update, and in which way.
@sa Field::enum_auto_flags for possible options.
@sa Field::utype and Field::unireg_check in pre-8.0 versions of server
for historical perspective.
*/
uchar auto_flags;
/**
If true, this field was created in create_tmp_field_from_item from a NULL
value. This means that the type of the field is just a guess, and the type
may be freely coerced to another type.
@see create_tmp_field_from_item
@see Item_type_holder::get_real_type
*/
bool is_created_from_null_item;
/**
True if this field belongs to some index (unlike part_of_key, the index
might have only a prefix).
*/
bool m_indexed;
private:
enum enum_pushed_warnings {
BAD_NULL_ERROR_PUSHED = 1,
NO_DEFAULT_FOR_FIELD_PUSHED = 2,
NO_DEFAULT_FOR_VIEW_FIELD_PUSHED = 4
};
/*
Bitmask specifying which warnings have been already pushed in order
not to repeat the same warning for the collmn multiple times.
Uses values of enum_pushed_warnings to control pushed warnings.
*/
unsigned int m_warnings_pushed;
public:
/* Generated column data */
Value_generator *gcol_info{nullptr};
/*
Indication that the field is phycically stored in tables
rather than just generated on SQL queries.
As of now, false can only be set for virtual generated columns.
*/
bool stored_in_db;
/**
Whether the field is signed or not. Meaningful only for numeric fields
and numeric arrays.
*/
bool unsigned_flag;
bool is_gcol() const { return gcol_info; }
bool is_virtual_gcol() const { return gcol_info && !stored_in_db; }
/// Holds the expression to be used to generate default values.
Value_generator *m_default_val_expr{nullptr};
/**
Sets the hidden type for this field.
@param hidden the new hidden type to set.
*/
void set_hidden(dd::Column::enum_hidden_type hidden) { m_hidden = hidden; }
/// @returns the hidden type for this field.
dd::Column::enum_hidden_type hidden() const { return m_hidden; }
/**
@retval true if this field should be hidden away from users.
@retval false is this field is visible to the user.
*/
bool is_hidden_from_user() const {
return hidden() != dd::Column::enum_hidden_type::HT_VISIBLE &&
DBUG_EVALUATE_IF("show_hidden_columns", false, true);
}
/**
@returns true if this is a hidden field that is used for implementing
functional indexes. Note that if we need different types of hidden
fields in the future (like invisible columns), this function needs
to be changed so it can distinguish between the different "types"
of hidden.
*/
bool is_field_for_functional_index() const {
return hidden() == dd::Column::enum_hidden_type::HT_HIDDEN_SQL &&
gcol_info != nullptr;
}
Field(uchar *ptr_arg, uint32 length_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg, const char *field_name_arg);
virtual ~Field() = default;
void reset_warnings() { m_warnings_pushed = 0; }
/**
Turn on temporary nullability for the field.
*/
void set_tmp_nullable() { m_is_tmp_nullable = true; }
/**
Turn off temporary nullability for the field.
*/
void reset_tmp_nullable() { m_is_tmp_nullable = false; }
/**
Reset temporary NULL value for field
*/
void reset_tmp_null() { m_is_tmp_null = false; }
void set_tmp_null();
/**
@return temporary NULL-ability flag.
@retval true if NULL can be assigned temporary to the Field.
@retval false if NULL can not be assigned even temporary to the Field.
*/
bool is_tmp_nullable() const { return m_is_tmp_nullable; }
/**
@return whether Field has temporary value NULL.
@retval true if the Field has temporary value NULL.
@retval false if the Field's value is NOT NULL, or if the temporary
NULL-ability flag is reset.
*/
bool is_tmp_null() const { return is_tmp_nullable() && m_is_tmp_null; }
/* Store functions returns 1 on overflow and -1 on fatal error */
virtual type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *cs) = 0;
virtual type_conversion_status store(double nr) = 0;
virtual type_conversion_status store(longlong nr, bool unsigned_val) = 0;
/**
Store a temporal value in packed longlong format into a field.
The packed value is compatible with TIME_to_longlong_time_packed(),
TIME_to_longlong_date_packed() or TIME_to_longlong_datetime_packed().
Note, the value must be properly rounded or truncated according
according to field->decimals().
@param nr temporal value in packed longlong format.
@retval false on success
@retval true on error
*/
virtual type_conversion_status store_packed(longlong nr) {
return store(nr, 0);
}
virtual type_conversion_status store_decimal(const my_decimal *d) = 0;
/**
Store MYSQL_TIME value with the given amount of decimal digits
into a field.
Note, the "dec" parameter represents number of digits of the Item
that previously created the MYSQL_TIME value. It's needed when we
store the value into a CHAR/VARCHAR/TEXT field to display
the proper amount of fractional digits.
For other field types the "dec" value does not matter and is ignored.
@param ltime Time, date or datetime value.
@param dec_arg Number of decimals in ltime.
@retval false on success
@retval true on error
*/
virtual type_conversion_status store_time(MYSQL_TIME *ltime, uint8 dec_arg);
/**
Store MYSQL_TYPE value into a field when the number of fractional
digits is not important or is not know.
@param ltime Time, date or datetime value.
@retval false on success
@retval true on error
*/
type_conversion_status store_time(MYSQL_TIME *ltime) {
return store_time(ltime, 0);
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *cs,
enum_check_fields check_level);
virtual double val_real() const = 0;
virtual longlong val_int() const = 0;
/**
Returns TIME value in packed longlong format.
This method should not be called for non-temporal types.
Temporal field types override the default method.
*/
virtual longlong val_time_temporal() const {
DBUG_ASSERT(0);
return 0;
}
/**
Returns DATE/DATETIME value in packed longlong format.
This method should not be called for non-temporal types.
Temporal field types override the default method.
*/
virtual longlong val_date_temporal() const {
DBUG_ASSERT(0);
return 0;
}
/**
Returns "native" packed longlong representation of
a TIME or DATE/DATETIME field depending on field type.
*/
longlong val_temporal_by_field_type() const {
// Return longlong TIME or DATETIME representation, depending on field type
if (type() == MYSQL_TYPE_TIME) return val_time_temporal();
DBUG_ASSERT(is_temporal_with_date());
return val_date_temporal();
}
virtual my_decimal *val_decimal(my_decimal *) const = 0;
String *val_str(String *str) const { return val_str(str, str); }
/*
val_str(buf1, buf2) gets two buffers and should use them as follows:
if it needs a temp buffer to convert result to string - use buf1
example Field_tiny::val_str()
if the value exists as a string already - use buf2
example Field_string::val_str()
consequently, buf2 may be created as 'String buf;' - no memory
will be allocated for it. buf1 will be allocated to hold a
value if it's too small. Using allocated buffer for buf2 may result in
an unnecessary free (and later, may be an alloc).
This trickery is used to decrease a number of malloc calls.
*/
virtual String *val_str(String *, String *) const = 0;
String *val_int_as_str(String *val_buffer, bool unsigned_flag) const;
/*
str_needs_quotes() returns true if the value returned by val_str() needs
to be quoted when used in constructing an SQL query.
*/
virtual bool str_needs_quotes() const { return false; }
virtual Item_result result_type() const = 0;
/**
Returns Item_result type of a field when it appears
in numeric context such as:
SELECT time_column + 1;
SELECT SUM(time_column);
Examples:
- a column of type TIME, DATETIME, TIMESTAMP act as INT.
- a column of type TIME(1), DATETIME(1), TIMESTAMP(1)
act as DECIMAL with 1 fractional digits.
*/
virtual Item_result numeric_context_result_type() const {
return result_type();
}
virtual Item_result cmp_type() const { return result_type(); }
virtual Item_result cast_to_int_type() const { return result_type(); }
static bool type_can_have_key_part(enum_field_types);
static enum_field_types field_type_merge(enum_field_types, enum_field_types);
static Item_result result_merge_type(enum_field_types);
bool gcol_expr_is_equal(const Create_field *field) const;
virtual bool eq(Field *field) const {
return (ptr == field->ptr && m_null_ptr == field->m_null_ptr &&
null_bit == field->null_bit && field->type() == type());
}
virtual bool eq_def(const Field *field) const;
/*
pack_length() returns size (in bytes) used to store field data in memory
(i.e. it returns the maximum size of the field in a row of the table,
which is located in RAM).
*/
virtual uint32 pack_length() const { return (uint32)field_length; }
/*
pack_length_in_rec() returns size (in bytes) used to store field data on
storage (i.e. it returns the maximal size of the field in a row of the
table, which is located on disk).
*/
virtual uint32 pack_length_in_rec() const { return pack_length(); }
virtual bool compatible_field_size(uint metadata, Relay_log_info *, uint16,
int *order) const;
virtual uint pack_length_from_metadata(uint field_metadata) const {
DBUG_TRACE;
return field_metadata;
}
virtual uint row_pack_length() const { return 0; }
int save_field_metadata(uchar *first_byte) {
return do_save_field_metadata(first_byte);
}
/*
data_length() return the "real size" of the data in memory.
Useful only for variable length datatypes where it's overloaded.
By default assume the length is constant.
*/
virtual uint32 data_length(
ptrdiff_t row_offset MY_ATTRIBUTE((unused)) = 0) const {
return pack_length();
}
virtual uint32 sort_length() const { return pack_length(); }
/**
Get the maximum size of the data in packed format.
@return Maximum data length of the field when packed using the
Field::pack() function.
*/
virtual uint32 max_data_length() const { return pack_length(); }
virtual type_conversion_status reset() {
memset(ptr, 0, pack_length());
return TYPE_OK;
}
virtual void reset_fields() {}
/**
Returns timestamp value in "struct timeval" format.
This method is used in "SELECT UNIX_TIMESTAMP(field)"
to avoid conversion from timestamp to MYSQL_TIME and back.
*/
virtual bool get_timestamp(struct timeval *tm, int *warnings) const;
/**
Stores a timestamp value in timeval format in a field.
@note
- store_timestamp(), get_timestamp() and store_time() do not depend on
timezone and always work "in UTC".
- The default implementation of this interface expects that storing the
value will not fail. For most Field descendent classes, this is not the
case. However, this interface is only used when the function
CURRENT_TIMESTAMP is used as a column default expression, and currently we
only allow TIMESTAMP and DATETIME columns to be declared with this as the
column default. Hence it is enough that the classes implementing columns
with these types either override this interface, or that
store_time(MYSQL_TIME*, uint8) does not fail.
- The column types above interpret decimals() to mean the scale of the
fractional seconds.
- We also have the limitation that the scale of a column must be the same as
the scale of the CURRENT_TIMESTAMP. I.e. we only allow
@code
[ TIMESTAMP | DATETIME ] (n) [ DEFAULT | ON UPDATE ] CURRENT_TIMESTAMP (n)
@endcode
Since this interface relies on the caller to truncate the value according to
this Field's scale, it will work with all constructs that we currently allow.
*/
virtual void store_timestamp(const timeval *) { DBUG_ASSERT(false); }
virtual void set_default();
/**
Evaluates the @c INSERT default function and stores the result in the
field. If no such function exists for the column, or the function is not
valid for the column's data type, invoking this function has no effect.
*/
void evaluate_insert_default_function();
/**
Evaluates the @c UPDATE default function, if one exists, and stores the
result in the record buffer. If no such function exists for the column,
or the function is not valid for the column's data type, invoking this
function has no effect.
*/
void evaluate_update_default_function();
virtual bool binary() const { return 1; }
virtual bool zero_pack() const { return 1; }
virtual enum ha_base_keytype key_type() const { return HA_KEYTYPE_BINARY; }
virtual uint32 key_length() const { return pack_length(); }
virtual enum_field_types type() const = 0;
/// For template-compatibility with Item
enum_field_types data_type() const { return type(); }
virtual enum_field_types real_type() const { return type(); }
virtual enum_field_types binlog_type() const {
/*
Binlog stores field->type() as type code by default.
This puts MYSQL_TYPE_STRING in case of CHAR, VARCHAR, SET and ENUM,
with extra data type details put into metadata.
We cannot store field->type() in case of temporal types with
fractional seconds: TIME(n), DATETIME(n) and TIMESTAMP(n),
because binlog records with MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME
type codes do not have metadata.
So for temporal data types with fractional seconds we'll store
real_type() type codes instead, i.e.
MYSQL_TYPE_TIME2, MYSQL_TYPE_DATETIME2, MYSQL_TYPE_TIMESTAMP2,
and put precision into metatada.
Note: perhaps binlog should eventually be modified to store
real_type() instead of type() for all column types.
*/
return type();
}
int cmp(const uchar *str) const { return cmp(ptr, str); }
virtual int cmp_max(const uchar *a, const uchar *b,
uint max_len MY_ATTRIBUTE((unused))) const {
return cmp(a, b);
}
virtual int cmp(const uchar *, const uchar *) const = 0;
virtual int cmp_binary(const uchar *a, const uchar *b,
uint32 max_length MY_ATTRIBUTE((unused)) = ~0L) const {
return memcmp(a, b, pack_length());
}
virtual int cmp_offset(ptrdiff_t row_offset) const {
return cmp(ptr, ptr + row_offset);
}
virtual int cmp_binary_offset(ptrdiff_t row_offset) const {
return cmp_binary(ptr, ptr + row_offset);
}
virtual int key_cmp(const uchar *a, const uchar *b) const {
return cmp(a, b);
}
virtual int key_cmp(const uchar *str,
uint length MY_ATTRIBUTE((unused))) const {
return cmp(ptr, str);
}
virtual uint decimals() const { return 0; }
virtual bool is_text_key_type() const { return false; }
/*
Caller beware: sql_type can change str.Ptr, so check
ptr() to see if it changed if you are using your own buffer
in str and restore it with set() if needed
*/
virtual void sql_type(String &str) const = 0;
bool is_temporal() const {
return is_temporal_type(real_type_to_type(type()));
}
bool is_temporal_with_date() const {
return is_temporal_type_with_date(real_type_to_type(type()));
}
bool is_temporal_with_time() const {
return is_temporal_type_with_time(real_type_to_type(type()));
}
bool is_temporal_with_date_and_time() const {
return is_temporal_type_with_date_and_time(real_type_to_type(type()));
}
/**
Check whether the full table's row is NULL or the Field has value NULL.
@return true if the full table's row is NULL or the Field has value NULL
false if neither table's row nor the Field has value NULL
*/
bool is_null(ptrdiff_t row_offset = 0) const {
/*
if the field is NULLable, it returns NULLity based
on m_null_ptr[row_offset] value. Otherwise it returns
NULL flag depending on TABLE::has_null_row() value.
The table may have been marked as containing only NULL values
for all fields if it is a NULL-complemented row of an OUTER JOIN
or if the query is an implicitly grouped query (has aggregate
functions but no GROUP BY clause) with no qualifying rows. If
this is the case (in which TABLE::has_null_row() is true) and the
field is not nullable, the field is considered to be NULL.
Do not change the order of testing. Fields may be associated
with a TABLE object without being part of the current row.
For NULL value check to work for these fields, they must
have a valid m_null_ptr, and this pointer must be checked before
TABLE::has_null_row().
*/
if (real_maybe_null()) return (m_null_ptr[row_offset] & null_bit);
if (is_tmp_nullable()) return m_is_tmp_null;
return table->has_null_row();
}
/// For template-compatibility with Item
bool is_null_value() const { return is_null(); }
/// Same as above. Not actually used
bool update_null_value() { return false; /* purecov: inspected */ }
/**
Check whether the Field has value NULL (temporary or actual).
@return true if the Field has value NULL (temporary or actual)
false if the Field has value NOT NULL.
*/
bool is_real_null(ptrdiff_t row_offset = 0) const {
if (real_maybe_null()) return (m_null_ptr[row_offset] & null_bit);
if (is_tmp_nullable()) return m_is_tmp_null;
return false;
}
/**
Check if the Field has value NULL or the record specified by argument
has value NULL for this Field.
@return true if the Field has value NULL or the record has value NULL
for thois Field.
*/
bool is_null_in_record(const uchar *record) const {
if (real_maybe_null()) return (record[null_offset()] & null_bit);
return is_tmp_nullable() ? m_is_tmp_null : false;
}
void set_null(ptrdiff_t row_offset = 0);
void set_notnull(ptrdiff_t row_offset = 0);
// Cannot be const as it calls set_warning
type_conversion_status check_constraints(int mysql_errno);
/**
Remember the value of THD::check_for_truncated_fields to handle possible
NOT-NULL constraint errors after BEFORE-trigger execution is finished.
We should save the value of THD::check_for_truncated_fields before starting
BEFORE-trigger processing since during triggers execution the
value of THD::check_for_truncated_fields could be changed.
*/
void set_check_for_truncated_fields(
enum_check_fields check_for_truncated_fields) {
m_check_for_truncated_fields_saved = check_for_truncated_fields;
}
bool maybe_null() const;
/// @return true if this field is NULL-able, false otherwise.
bool real_maybe_null() const { return m_null_ptr != NULL; }
uint null_offset(const uchar *record) const {
return (uint)(m_null_ptr - record);
}
uint null_offset() const;
void set_null_ptr(uchar *p_null_ptr, uint p_null_bit) {
m_null_ptr = p_null_ptr;
null_bit = p_null_bit;
}
enum { LAST_NULL_BYTE_UNDEF = 0 };
/*
Find the position of the last null byte for the field.
SYNOPSIS
last_null_byte()
DESCRIPTION
Return a pointer to the last byte of the null bytes where the
field conceptually is placed.
RETURN VALUE
The position of the last null byte relative to the beginning of
the record. If the field does not use any bits of the null
bytes, the value 0 (LAST_NULL_BYTE_UNDEF) is returned.
*/
size_t last_null_byte() const;
virtual void make_field(Send_field *) const;
/**
Returns whether make_sort_key() writes variable-length sort keys,
ie., whether it can return fewer bytes than it's asked for.
*/
virtual bool sort_key_is_varlen() const { return false; }
/**
Writes a copy of the current value in the record buffer, suitable for
sorting using byte-by-byte comparison. Integers are always in big-endian
regardless of hardware architecture. At most length bytes are written
into the buffer.
@param buff The buffer, assumed to be at least length bytes.
@param length Number of bytes to write.
@retval The number of bytes actually written. Note that unless
sort_key_is_varlen() returns true, this must be exactly the same
as length.
*/
virtual size_t make_sort_key(uchar *buff, size_t length) const = 0;
virtual bool optimize_range(uint idx, uint part) const;
/*
This should be true for fields which, when compared with constant
items, can be casted to longlong. In this case we will at 'fix_fields'
stage cast the constant items to longlongs and at the execution stage
use field->val_int() for comparison. Used to optimize clauses like
'a_column BETWEEN date_const, date_const'.
*/
virtual bool can_be_compared_as_longlong() const { return false; }
virtual void mem_free() {}
virtual Field *new_field(MEM_ROOT *root, TABLE *new_table,
bool keep_type) const;
virtual Field *new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr,
uchar *new_null_ptr, uint new_null_bit) const;
Field *new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr) const {
return new_key_field(root, new_table, new_ptr, m_null_ptr, null_bit);
}
/**
Makes a shallow copy of the Field object.
@note This member function must be overridden in all concrete
subclasses. Several of the Field subclasses are concrete even though they
are not leaf classes, so the compiler will not always catch this.
@retval NULL If memory allocation failed.
*/
virtual Field *clone() const = 0;
/**
Makes a shallow copy of the Field object.
@note This member function must be overridden in all concrete
subclasses. Several of the Field subclasses are concrete even though they
are not leaf classes, so the compiler will not always catch this.
@param mem_root MEM_ROOT to use for memory allocation.
@retval NULL If memory allocation failed.
*/
virtual Field *clone(MEM_ROOT *mem_root) const = 0;
void move_field(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg) {
ptr = ptr_arg;
m_null_ptr = null_ptr_arg;
null_bit = null_bit_arg;
}
void move_field(uchar *ptr_arg) { ptr = ptr_arg; }
virtual void move_field_offset(ptrdiff_t ptr_diff) {
ptr += ptr_diff;
if (real_maybe_null()) m_null_ptr += ptr_diff;
}
virtual void get_image(uchar *buff, size_t length,
const CHARSET_INFO *) const {
memcpy(buff, ptr, length);
}
virtual void set_image(const uchar *buff, size_t length,
const CHARSET_INFO *) {
memcpy(ptr, buff, length);
}
/*
Copy a field part into an output buffer.
SYNOPSIS
Field::get_key_image()
buff [out] output buffer
length output buffer size
type itMBR for geometry blobs, otherwise itRAW
DESCRIPTION
This function makes a copy of field part of size equal to or
less than "length" parameter value.
For fields of string types (CHAR, VARCHAR, TEXT) the rest of buffer
is padded by zero byte.
NOTES
For variable length character fields (i.e. UTF-8) the "length"
parameter means a number of output buffer bytes as if all field
characters have maximal possible size (mbmaxlen). In the other words,
"length" parameter is a number of characters multiplied by
field_charset->mbmaxlen.
RETURN
Number of copied bytes (excluding padded zero bytes -- see above).
*/
virtual size_t get_key_image(uchar *buff, size_t length,
imagetype type MY_ATTRIBUTE((unused))) const {
get_image(buff, length, &my_charset_bin);
return length;
}
virtual void set_key_image(const uchar *buff, size_t length) {
set_image(buff, length, &my_charset_bin);
}
longlong val_int_offset(ptrdiff_t row_offset) {
ptr += row_offset;
longlong tmp = val_int();
ptr -= row_offset;
return tmp;
}
longlong val_int(uchar *new_ptr) {
uchar *old_ptr = ptr;
longlong return_value;
ptr = new_ptr;
return_value = val_int();
ptr = old_ptr;
return return_value;
}
String *val_str(String *str, uchar *new_ptr) {
uchar *old_ptr = ptr;
ptr = new_ptr;
val_str(str);
ptr = old_ptr;
return str;
}
/**
Send the value of this field over the protocol using the correct
Protocol::store*() function which matches the type of the field.
*/
virtual bool send_to_protocol(Protocol *protocol) const;
virtual uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const;
/**
@overload Field::pack(uchar*, const uchar*, uint, bool) const
*/
uchar *pack(uchar *to, const uchar *from) const {
DBUG_TRACE;
uchar *result = pack(to, from, UINT_MAX, table->s->db_low_byte_first);
return result;
}
virtual const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first);
/**
@overload Field::unpack(uchar*, const uchar*, uint, bool)
*/
const uchar *unpack(uchar *to, const uchar *from) {
DBUG_TRACE;
const uchar *result = unpack(to, from, 0U, table->s->db_low_byte_first);
return result;
}
/**
Write the field for the binary log in diff format.
This should only write the field if the diff format is smaller
than the full format. Otherwise it should leave the buffer
untouched.
@param[in,out] to Pointer to buffer where the field will be
written. This will be changed to point to the next byte after the
last byte that was written.
@param value_options bitmap that indicates if full or partial
JSON format is to be used.
@retval true The field was not written, either because the data
type does not support it, or because it was disabled according to
value_options, or because there was no diff information available
from the optimizer, or because the the diff format was bigger than
the full format. The 'to' parameter is unchanged in this case.
@retval false The field was written.
*/
virtual bool pack_diff(uchar **to MY_ATTRIBUTE((unused)),
ulonglong value_options MY_ATTRIBUTE((unused))) const {
return true;
}
/**
This is a wrapper around pack_length() used by filesort() to determine
how many bytes we need for packing "addon fields".
@returns maximum size of a row when stored in the filesort buffer.
*/
virtual uint max_packed_col_length() const { return pack_length(); }
uint offset(uchar *record) const { return (uint)(ptr - record); }
void copy_data(ptrdiff_t src_record_offset);
uint fill_cache_field(CACHE_FIELD *copy);
virtual bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) const;
virtual bool get_time(MYSQL_TIME *ltime) const;
virtual const CHARSET_INFO *charset() const { return &my_charset_bin; }
const CHARSET_INFO *charset_for_protocol() const {
return binary() ? &my_charset_bin : charset();
}
virtual const CHARSET_INFO *sort_charset() const { return charset(); }
virtual bool has_charset() const { return false; }
/*
match_collation_to_optimize_range() is to distinguish in
range optimizer (see opt_range.cc) between real string types:
CHAR, VARCHAR, TEXT
and the other string-alike types with result_type() == STRING_RESULT:
DATE, TIME, DATETIME, TIMESTAMP
We need it to decide whether to test if collation of the operation
matches collation of the field (needed only for real string types).
QQ: shouldn't DATE/TIME types have their own XXX_RESULT types eventually?
*/
virtual bool match_collation_to_optimize_range() const { return false; }
virtual enum Derivation derivation() const { return DERIVATION_IMPLICIT; }
virtual uint repertoire() const { return MY_REPERTOIRE_UNICODE30; }
virtual void set_derivation(enum Derivation) {}
/**
Produce warning or note about data saved into field.
@param level - level of message (Note/Warning/Error)
@param code - error code of message to be produced
@param cut_increment - whenever we should increase cut fields count
@note
This function won't produce warning and increase cut fields counter
if check_for_truncated_fields == CHECK_FIELD_IGNORE for current thread.
if check_for_truncated_fields == CHECK_FIELD_IGNORE then we ignore notes.
This allows us to avoid notes in optimization, like
convert_constant_item().
@retval
1 if check_for_truncated_fields == CHECK_FIELD_IGNORE and error level
is not NOTE
@retval
0 otherwise
*/
bool set_warning(Sql_condition::enum_severity_level level, unsigned int code,
int cut_increment) {
return set_warning(level, code, cut_increment, NULL, NULL);
}
bool set_warning(Sql_condition::enum_severity_level level, uint code,
int cut_increment, const char *view_db,
const char *view_name);
bool warn_if_overflow(int op_result);
virtual void init(TABLE *table_arg);
/* maximum possible display length */
virtual uint32 max_display_length() const = 0;
/**
Whether a field being created is type-compatible with an existing one.
Used by the ALTER TABLE code to evaluate whether the new definition
of a table is compatible with the old definition so that it can
determine if data needs to be copied over (table data change).
Constraints and generation clause (default value, generation expression)
are not checked by this function.
@param new_field new field definition from alter.
@retval IS_EQUAL_YES if there is no change.
@retval IS_EQUAL_PACK_LENGTH if the data are unchanged, but the length
requirements have changed
@retval IS_EQUAL_NO if there is an incompatible change requiring copy.
*/
virtual uint is_equal(const Create_field *new_field) const;
/* convert decimal to longlong with overflow check */
longlong convert_decimal2longlong(const my_decimal *val, bool unsigned_flag,
bool *has_overflow);
/* The max. number of characters */
virtual uint32 char_length() const {
return field_length / charset()->mbmaxlen;
}
virtual geometry_type get_geometry_type() const {
/* shouldn't get here. */
DBUG_ASSERT(0);
return GEOM_GEOMETRY;
}
#ifndef DBUG_OFF
/* Print field value into debug trace, in NULL-aware way. */
void dbug_print() const {
if (is_real_null())
fprintf(DBUG_FILE, "NULL");
else {
char buf[256];
String str(buf, sizeof(buf), &my_charset_bin);
str.length(0);
String *pstr;
pstr = val_str(&str);
fprintf(DBUG_FILE, "'%s'", pstr->c_ptr_safe());
}
}
#endif
ha_storage_media field_storage_type() const {
return (ha_storage_media)((flags >> FIELD_FLAGS_STORAGE_MEDIA) & 3);
}
void set_storage_type(ha_storage_media storage_type_arg) {
DBUG_ASSERT(field_storage_type() == HA_SM_DEFAULT);
flags |= (storage_type_arg << FIELD_FLAGS_STORAGE_MEDIA);
}
column_format_type column_format() const {
return (column_format_type)((flags >> FIELD_FLAGS_COLUMN_FORMAT) & 3);
}
void set_column_format(column_format_type column_format_arg) {
DBUG_ASSERT(column_format() == COLUMN_FORMAT_TYPE_DEFAULT);
flags |= (column_format_arg << FIELD_FLAGS_COLUMN_FORMAT);
}
/* Validate the value stored in a field */
virtual type_conversion_status validate_stored_val(
THD *thd MY_ATTRIBUTE((unused))) {
return TYPE_OK;
}
/* Hash value */
virtual void hash(ulong *nr, ulong *nr2) const;
/**
Get the upper limit of the MySQL integral and floating-point type.
@return maximum allowed value for the field
*/
virtual ulonglong get_max_int_value() const {
DBUG_ASSERT(false);
return 0ULL;
}
/** Return a pointer to the actual data in memory. */
virtual const uchar *get_ptr() const { return ptr; }
/**
Checks whether a string field is part of write_set.
@return
false - If field is not char/varchar/....
- If field is char/varchar/.. and is not part of write set.
true - If field is char/varchar/.. and is part of write set.
*/
virtual bool is_updatable() const { return false; }
/**
Check whether field is part of the index taking the index extensions flag
into account. Index extensions are also not applicable to UNIQUE indexes
for loose index scans.
@param[in] thd THD object
@param[in] cur_index Index of the key
@param[in] cur_index_info key_info object
@retval true Field is part of the key
@retval false otherwise
*/
bool is_part_of_actual_key(THD *thd, uint cur_index,
KEY *cur_index_info) const;
/**
Get covering prefix keys.
@retval covering prefix keys.
*/
Key_map get_covering_prefix_keys() const;
friend class Copy_field;
friend class Item_avg_field;
friend class Item_std_field;
friend class Item_sum_num;
friend class Item_sum_sum;
friend class Item_sum_str;
friend class Item_sum_count;
friend class Item_sum_avg;
friend class Item_sum_std;
friend class Item_sum_min;
friend class Item_sum_max;
friend class Item_func_group_concat;
/// Whether the field is a typed array
virtual bool is_array() const { return false; }
/**
Return number of bytes the field's length takes
Valid only for varchar and typed arrays of varchar
*/
virtual uint32 get_length_bytes() const {
DBUG_ASSERT(0);
return 0;
}
/**
Whether field's old valued have to be handled.
@returns
true if field is virtual an either one of BLOB types or typed array
false otherwise
*/
bool handle_old_value() const {
return (((flags & BLOB_FLAG) != 0 || is_array()) && is_virtual_gcol());
}
private:
/*
Primitive for implementing last_null_byte().
SYNOPSIS
do_last_null_byte()
DESCRIPTION
Primitive for the implementation of the last_null_byte()
function. This represents the inheritance interface and can be
overridden by subclasses.
*/
virtual size_t do_last_null_byte() const;
/**
Retrieve the field metadata for fields.
This default implementation returns 0 and saves 0 in the metadata_ptr
value.
@param metadata_ptr First byte of field metadata
@returns 0 no bytes written.
*/
virtual int do_save_field_metadata(
uchar *metadata_ptr MY_ATTRIBUTE((unused))) const {
return 0;
}
protected:
uchar *pack_int16(uchar *to, const uchar *from, uint max_length,
bool low_byte_first_to) const;
const uchar *unpack_int16(uchar *to, const uchar *from,
bool low_byte_first_from) const;
uchar *pack_int24(uchar *to, const uchar *from, uint max_length,
bool low_byte_first_to) const;
const uchar *unpack_int24(uchar *to, const uchar *from,
bool low_byte_first_from) const;
uchar *pack_int32(uchar *to, const uchar *from, uint max_length,
bool low_byte_first_to) const;
const uchar *unpack_int32(uchar *to, const uchar *from,
bool low_byte_first_from) const;
uchar *pack_int64(uchar *to, const uchar *from, uint max_length,
bool low_byte_first_to) const;
const uchar *unpack_int64(uchar *to, const uchar *from,
bool low_byte_first_from) const;
};
/**
This class is a substitute for the Field classes during CREATE TABLE
When adding a functional index at table creation, we need to resolve the
expression we are indexing. All functions that references one or more
columns expects a Field to be available. But during CREATE TABLE, we only
have access to Create_field. So this class acts as a subsitute for the
Field classes so that expressions can be properly resolved. Thus, trying
to call store or val_* on this class will cause an assertion.
*/
class Create_field_wrapper final : public Field {
const Create_field *m_field;
public:
Create_field_wrapper(const Create_field *fld);
Item_result result_type() const final override;
Item_result numeric_context_result_type() const final override;
enum_field_types type() const final override;
uint32 max_display_length() const final override;
const CHARSET_INFO *charset() const final override;
uint32 pack_length() const final override;
// Since it's not a real field, functions below shouldn't be used.
/* purecov: begin deadcode */
type_conversion_status store(const char *, size_t,
const CHARSET_INFO *) final override {
DBUG_ASSERT(false);
return TYPE_ERR_BAD_VALUE;
}
type_conversion_status store(double) final override {
DBUG_ASSERT(false);
return TYPE_ERR_BAD_VALUE;
}
type_conversion_status store(longlong, bool) final override {
DBUG_ASSERT(false);
return TYPE_ERR_BAD_VALUE;
}
type_conversion_status store_decimal(const my_decimal *) final override {
DBUG_ASSERT(false);
return TYPE_ERR_BAD_VALUE;
}
double val_real(void) const final override {
DBUG_ASSERT(false);
return 0.0;
}
longlong val_int(void) const final override {
DBUG_ASSERT(false);
return 0;
}
my_decimal *val_decimal(my_decimal *) const final override {
DBUG_ASSERT(false);
return nullptr;
}
String *val_str(String *, String *) const final override {
DBUG_ASSERT(false);
return nullptr;
}
int cmp(const uchar *, const uchar *) const final override {
DBUG_ASSERT(false);
return -1;
}
void sql_type(String &) const final override { DBUG_ASSERT(false); }
size_t make_sort_key(uchar *, size_t) const final override {
DBUG_ASSERT(false);
return 0;
}
Field *clone() const final override {
return new (*THR_MALLOC) Create_field_wrapper(*this);
}
Field *clone(MEM_ROOT *mem_root) const final override {
return new (mem_root) Create_field_wrapper(*this);
}
/* purecov: end */
};
class Field_num : public Field {
public:
const uint8 dec;
bool zerofill; // Purify cannot handle bit fields
Field_num(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg);
Item_result result_type() const override { return REAL_RESULT; }
enum Derivation derivation() const final override {
return DERIVATION_NUMERIC;
}
uint repertoire() const final override { return MY_REPERTOIRE_NUMERIC; }
const CHARSET_INFO *charset() const final override {
return &my_charset_numeric;
}
void prepend_zeros(String *value) const;
void add_zerofill_and_unsigned(String &res) const;
uint decimals() const final override { return (uint)dec; }
bool eq_def(const Field *field) const final override;
type_conversion_status store_decimal(const my_decimal *) override;
type_conversion_status store_time(MYSQL_TIME *ltime, uint8 dec) override;
my_decimal *val_decimal(my_decimal *) const override;
bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) const override;
bool get_time(MYSQL_TIME *ltime) const override;
uint is_equal(const Create_field *new_field) const override;
uint row_pack_length() const override { return pack_length(); }
uint32 pack_length_from_metadata(
uint field_metadata MY_ATTRIBUTE((unused))) const override {
return pack_length();
}
type_conversion_status check_int(const CHARSET_INFO *cs, const char *str,
size_t length, const char *int_end,
int error);
type_conversion_status get_int(const CHARSET_INFO *cs, const char *from,
size_t len, longlong *rnd,
ulonglong unsigned_max, longlong signed_min,
longlong signed_max);
};
class Field_str : public Field {
protected:
const CHARSET_INFO *field_charset;
enum Derivation field_derivation;
public:
Field_str(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, const CHARSET_INFO *charset);
Item_result result_type() const override { return STRING_RESULT; }
Item_result numeric_context_result_type() const final override {
return REAL_RESULT;
}
uint decimals() const override { return DECIMAL_NOT_SPECIFIED; }
void make_field(Send_field *field) const final override;
type_conversion_status store(double nr) override;
type_conversion_status store(longlong nr, bool unsigned_val) override = 0;
type_conversion_status store_decimal(const my_decimal *) override;
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *cs) override = 0;
uint repertoire() const final override {
return my_charset_repertoire(field_charset);
}
const CHARSET_INFO *charset() const override { return field_charset; }
void set_charset(const CHARSET_INFO *charset_arg) {
field_charset = charset_arg;
char_length_cache = char_length();
}
void set_field_length(uint32 length) final override {
Field::set_field_length(length);
char_length_cache = char_length();
}
enum Derivation derivation() const final override { return field_derivation; }
void set_derivation(enum Derivation derivation_arg) final override {
field_derivation = derivation_arg;
}
bool binary() const override { return field_charset == &my_charset_bin; }
uint32 max_display_length() const override { return field_length; }
bool str_needs_quotes() const final override { return true; }
uint is_equal(const Create_field *new_field) const override;
// An always-updated cache of the result of char_length(), because
// dividing by charset()->mbmaxlen can be surprisingly costly compared
// to the rest of e.g. make_sort_key().
uint32 char_length_cache;
};
/* base class for Field_string, Field_varstring and Field_blob */
class Field_longstr : public Field_str {
private:
type_conversion_status report_if_important_data(const char *ptr,
const char *end,
bool count_spaces);
protected:
type_conversion_status check_string_copy_error(
const char *well_formed_error_pos, const char *cannot_convert_error_pos,
const char *from_end_pos, const char *end, bool count_spaces,
const CHARSET_INFO *cs);
public:
Field_longstr(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, const CHARSET_INFO *charset_arg)
: Field_str(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, charset_arg) {}
type_conversion_status store_decimal(const my_decimal *d) override;
uint32 max_data_length() const override;
bool is_updatable() const final override;
};
/* base class for float and double and decimal (old one) */
class Field_real : public Field_num {
public:
bool not_fixed;
enum Truncate_result {
TR_OK = 0,
TR_POSITIVE_OVERFLOW = 1,
TR_NEGATIVE_OVERFLOW = 2
};
Field_real(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, dec_arg, zero_arg, unsigned_arg),
not_fixed(dec_arg >= DECIMAL_NOT_SPECIFIED) {}
type_conversion_status store_decimal(const my_decimal *) final override;
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec) final override;
my_decimal *val_decimal(my_decimal *) const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
bool get_time(MYSQL_TIME *ltime) const final override;
Truncate_result truncate(double *nr, double max_length);
uint32 max_display_length() const final override { return field_length; }
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) override;
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const override;
};
class Field_decimal final : public Field_real {
public:
Field_decimal(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg)
: Field_real(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, dec_arg, zero_arg, unsigned_arg) {}
enum_field_types type() const final override { return MYSQL_TYPE_DECIMAL; }
enum ha_base_keytype key_type() const final override {
return zerofill ? HA_KEYTYPE_BINARY : HA_KEYTYPE_NUM;
}
type_conversion_status reset() final override;
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
void overflow(bool negative);
bool zero_pack() const final override { return 0; }
void sql_type(String &str) const final override;
Field_decimal *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DECIMAL);
return new (mem_root) Field_decimal(*this);
}
Field_decimal *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DECIMAL);
return new (*THR_MALLOC) Field_decimal(*this);
}
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override {
return Field::unpack(to, from, param_data, low_byte_first);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return Field::pack(to, from, max_length, low_byte_first);
}
};
/* New decimal/numeric field which use fixed point arithmetic */
class Field_new_decimal : public Field_num {
private:
/**
Normally, the underlying decimal code will degrade values' excessive
precision. E.g. value 0.0 stored as decimal(10,4) will be returned as
decimal(4,4). This is fine for general purpose, but isn't usable for
multi-valued index. Field_typed_array uses a field for conversion and it
expects the value read from it to be exactly same as it would be stored
in SE, i.e with preserved precision. Otherwise, SE won't be able to
index it.
TRUE here tells underlying DECIMAL reading code to keep the precision as
is.
*/
bool m_keep_precision{false};
int do_save_field_metadata(uchar *first_byte) const final override;
public:
/* The maximum number of decimal digits can be stored */
uint precision;
uint bin_size;
/*
Constructors take max_length of the field as a parameter - not the
precision as the number of decimal digits allowed.
So for example we need to count length from precision handling
CREATE TABLE ( DECIMAL(x,y))
*/
Field_new_decimal(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg);
Field_new_decimal(uint32 len_arg, bool maybe_null_arg,
const char *field_name_arg, uint8 dec_arg,
bool unsigned_arg);
enum_field_types type() const final override { return MYSQL_TYPE_NEWDECIMAL; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_BINARY;
}
Item_result result_type() const final override { return DECIMAL_RESULT; }
type_conversion_status reset() final override;
type_conversion_status store_value(const my_decimal *decimal_value);
void set_value_on_overflow(my_decimal *decimal_value, bool sign) const;
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec) final override;
type_conversion_status store_decimal(const my_decimal *) final override;
double val_real() const final override;
longlong val_int() const final override;
my_decimal *val_decimal(my_decimal *) const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
bool get_time(MYSQL_TIME *ltime) const final override;
String *val_str(String *, String *) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
bool zero_pack() const final override { return 0; }
void sql_type(String &str) const final override;
uint32 max_display_length() const final override { return field_length; }
uint32 pack_length() const final override { return (uint32)bin_size; }
uint pack_length_from_metadata(uint field_metadata) const final override;
uint row_pack_length() const final override { return pack_length(); }
bool compatible_field_size(uint field_metadata, Relay_log_info *, uint16,
int *order_var) const final override;
uint is_equal(const Create_field *new_field) const final override;
Field_new_decimal *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_NEWDECIMAL);
return new (mem_root) Field_new_decimal(*this);
}
Field_new_decimal *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_NEWDECIMAL);
return new (*THR_MALLOC) Field_new_decimal(*this);
}
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override;
static Field *create_from_item(Item *);
bool send_to_protocol(Protocol *protocol) const final override;
void set_keep_precision(bool arg) { m_keep_precision = arg; }
};
class Field_tiny : public Field_num {
public:
Field_tiny(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, bool zero_arg, bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0, zero_arg, unsigned_arg) {}
Field_tiny(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
bool unsigned_arg)
: Field_num(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, 0, false, unsigned_arg) {}
enum Item_result result_type() const final override { return INT_RESULT; }
enum_field_types type() const override { return MYSQL_TYPE_TINY; }
enum ha_base_keytype key_type() const final override {
return unsigned_flag ? HA_KEYTYPE_BINARY : HA_KEYTYPE_INT8;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(double nr) override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
type_conversion_status reset() final override {
ptr[0] = 0;
return TYPE_OK;
}
double val_real() const override;
longlong val_int() const override;
String *val_str(String *, String *) const override;
bool send_to_protocol(Protocol *protocol) const override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return 1; }
void sql_type(String &str) const override;
uint32 max_display_length() const final override { return 4; }
Field_tiny *clone(MEM_ROOT *mem_root) const override {
DBUG_ASSERT(type() == MYSQL_TYPE_TINY);
return new (mem_root) Field_tiny(*this);
}
Field_tiny *clone() const override {
DBUG_ASSERT(type() == MYSQL_TYPE_TINY);
return new (*THR_MALLOC) Field_tiny(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length, bool) const final {
if (max_length > 0) *to = *from;
return to + 1;
}
const uchar *unpack(
uchar *to, const uchar *from, uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first MY_ATTRIBUTE((unused))) final override {
*to = *from;
return from + 1;
}
ulonglong get_max_int_value() const final override {
return unsigned_flag ? 0xFFULL : 0x7FULL;
}
};
class Field_short final : public Field_num {
public:
Field_short(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, bool zero_arg, bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0, zero_arg, unsigned_arg) {}
Field_short(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
bool unsigned_arg)
: Field_num(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, 0, false, unsigned_arg) {}
Field_short(uint32 len_arg, const char *field_name_arg, bool unsigned_arg)
: Field_short(len_arg, false, field_name_arg, unsigned_arg) {}
enum Item_result result_type() const final override { return INT_RESULT; }
enum_field_types type() const final override { return MYSQL_TYPE_SHORT; }
enum ha_base_keytype key_type() const final override {
return unsigned_flag ? HA_KEYTYPE_USHORT_INT : HA_KEYTYPE_SHORT_INT;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = 0;
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return 2; }
void sql_type(String &str) const final override;
uint32 max_display_length() const final override { return 6; }
Field_short *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_SHORT);
return new (mem_root) Field_short(*this);
}
Field_short *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_SHORT);
return new (*THR_MALLOC) Field_short(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return pack_int16(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from,
uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first) final override {
return unpack_int16(to, from, low_byte_first);
}
ulonglong get_max_int_value() const final override {
return unsigned_flag ? 0xFFFFULL : 0x7FFFULL;
}
};
class Field_medium final : public Field_num {
public:
Field_medium(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, bool zero_arg, bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0, zero_arg, unsigned_arg) {}
Field_medium(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
bool unsigned_arg)
: Field_num(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, 0, false, unsigned_arg) {}
enum Item_result result_type() const final override { return INT_RESULT; }
enum_field_types type() const final override { return MYSQL_TYPE_INT24; }
enum ha_base_keytype key_type() const final override {
return unsigned_flag ? HA_KEYTYPE_UINT24 : HA_KEYTYPE_INT24;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = 0;
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return 3; }
void sql_type(String &str) const final override;
uint32 max_display_length() const final override { return 8; }
Field_medium *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_INT24);
return new (mem_root) Field_medium(*this);
}
Field_medium *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_INT24);
return new (*THR_MALLOC) Field_medium(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return Field::pack(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override {
return Field::unpack(to, from, param_data, low_byte_first);
}
ulonglong get_max_int_value() const final override {
return unsigned_flag ? 0xFFFFFFULL : 0x7FFFFFULL;
}
};
class Field_long : public Field_num {
public:
static const int PACK_LENGTH = 4;
Field_long(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, bool zero_arg, bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0, zero_arg, unsigned_arg) {}
Field_long(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
bool unsigned_arg)
: Field_num(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, 0, false, unsigned_arg) {}
enum Item_result result_type() const final override { return INT_RESULT; }
enum_field_types type() const final override { return MYSQL_TYPE_LONG; }
enum ha_base_keytype key_type() const final override {
return unsigned_flag ? HA_KEYTYPE_ULONG_INT : HA_KEYTYPE_LONG_INT;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = ptr[3] = 0;
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const final override;
bool send_to_protocol(Protocol *protocol) const final override;
String *val_str(String *, String *) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return PACK_LENGTH; }
void sql_type(String &str) const final override;
uint32 max_display_length() const final override {
return MY_INT32_NUM_DECIMAL_DIGITS;
}
Field_long *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_LONG);
return new (mem_root) Field_long(*this);
}
Field_long *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_LONG);
return new (*THR_MALLOC) Field_long(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return pack_int32(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from,
uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first) final override {
return unpack_int32(to, from, low_byte_first);
}
ulonglong get_max_int_value() const final override {
return unsigned_flag ? 0xFFFFFFFFULL : 0x7FFFFFFFULL;
}
};
class Field_longlong : public Field_num {
public:
static const int PACK_LENGTH = 8;
Field_longlong(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, bool zero_arg, bool unsigned_arg)
: Field_num(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0, zero_arg, unsigned_arg) {}
Field_longlong(uint32 len_arg, bool maybe_null_arg,
const char *field_name_arg, bool unsigned_arg)
: Field_num(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, 0, 0, unsigned_arg) {}
enum Item_result result_type() const final override { return INT_RESULT; }
enum_field_types type() const final override { return MYSQL_TYPE_LONGLONG; }
enum ha_base_keytype key_type() const final override {
return unsigned_flag ? HA_KEYTYPE_ULONGLONG : HA_KEYTYPE_LONGLONG;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = ptr[3] = ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0;
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return PACK_LENGTH; }
void sql_type(String &str) const final override;
bool can_be_compared_as_longlong() const final override { return true; }
uint32 max_display_length() const final override { return 20; }
Field_longlong *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_LONGLONG);
return new (mem_root) Field_longlong(*this);
}
Field_longlong *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_LONGLONG);
return new (*THR_MALLOC) Field_longlong(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return pack_int64(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from,
uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first) final override {
return unpack_int64(to, from, low_byte_first);
}
ulonglong get_max_int_value() const final override {
return unsigned_flag ? 0xFFFFFFFFFFFFFFFFULL : 0x7FFFFFFFFFFFFFFFULL;
}
};
class Field_float final : public Field_real {
public:
Field_float(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg)
: Field_real(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, dec_arg, zero_arg, unsigned_arg) {}
Field_float(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg, bool unsigned_arg)
: Field_real(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, dec_arg, false, unsigned_arg) {}
enum_field_types type() const final override { return MYSQL_TYPE_FLOAT; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_FLOAT;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status reset() final override {
memset(ptr, 0, sizeof(float));
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return sizeof(float); }
uint row_pack_length() const final override { return pack_length(); }
void sql_type(String &str) const final override;
Field_float *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_FLOAT);
return new (mem_root) Field_float(*this);
}
Field_float *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_FLOAT);
return new (*THR_MALLOC) Field_float(*this);
}
ulonglong get_max_int_value() const final override {
/*
We use the maximum as per IEEE754-2008 standard, 2^24
*/
return 0x1000000ULL;
}
private:
int do_save_field_metadata(uchar *first_byte) const final override;
};
class Field_double final : public Field_real {
public:
Field_double(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg, bool zero_arg,
bool unsigned_arg)
: Field_real(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, dec_arg, zero_arg, unsigned_arg) {}
Field_double(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg)
: Field_real(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, dec_arg, false, false) {}
Field_double(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg, bool unsigned_arg)
: Field_real(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, dec_arg, false, unsigned_arg) {}
Field_double(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg, bool unsigned_arg, bool not_fixed_arg)
: Field_real(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, dec_arg, false, unsigned_arg) {
not_fixed = not_fixed_arg;
}
enum_field_types type() const final override { return MYSQL_TYPE_DOUBLE; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_DOUBLE;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status reset() final override {
memset(ptr, 0, sizeof(double));
return TYPE_OK;
}
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return sizeof(double); }
uint row_pack_length() const final override { return pack_length(); }
void sql_type(String &str) const final override;
Field_double *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DOUBLE);
return new (mem_root) Field_double(*this);
}
Field_double *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DOUBLE);
return new (*THR_MALLOC) Field_double(*this);
}
ulonglong get_max_int_value() const final override {
/*
We use the maximum as per IEEE754-2008 standard, 2^53
*/
return 0x20000000000000ULL;
}
private:
int do_save_field_metadata(uchar *first_byte) const final override;
};
/* Everything saved in this will disappear. It will always return NULL */
class Field_null final : public Field_str {
static uchar null[1];
public:
Field_null(uchar *ptr_arg, uint32 len_arg, uchar auto_flags_arg,
const char *field_name_arg, const CHARSET_INFO *cs)
: Field_str(ptr_arg, len_arg, null, 1, auto_flags_arg, field_name_arg,
cs) {}
enum_field_types type() const final override { return MYSQL_TYPE_NULL; }
type_conversion_status store(const char *, size_t,
const CHARSET_INFO *) final override {
null[0] = 1;
return TYPE_OK;
}
type_conversion_status store(double) final override {
null[0] = 1;
return TYPE_OK;
}
type_conversion_status store(
longlong, bool unsigned_val MY_ATTRIBUTE((unused))) final override {
null[0] = 1;
return TYPE_OK;
}
type_conversion_status store_decimal(const my_decimal *) final override {
null[0] = 1;
return TYPE_OK;
}
type_conversion_status reset() final override { return TYPE_OK; }
double val_real() const final override { return 0.0; }
longlong val_int() const final override { return 0; }
my_decimal *val_decimal(my_decimal *) const final override { return 0; }
String *val_str(String *, String *value2) const final override {
value2->length(0);
return value2;
}
int cmp(const uchar *, const uchar *) const final override { return 0; }
size_t make_sort_key(uchar *, size_t len) const final override { return len; }
uint32 pack_length() const final override { return 0; }
void sql_type(String &str) const final override;
uint32 max_display_length() const final override { return 4; }
Field_null *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_NULL);
return new (mem_root) Field_null(*this);
}
Field_null *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_NULL);
return new (*THR_MALLOC) Field_null(*this);
}
};
/*
Abstract class for TIME, DATE, DATETIME, TIMESTAMP
with and without fractional part.
*/
class Field_temporal : public Field {
protected:
uint8 dec; // Number of fractional digits
/**
Adjust number of decimal digits from DECIMAL_NOT_SPECIFIED to
DATETIME_MAX_DECIMALS
*/
static uint8 normalize_dec(uint8 dec_arg) {
return dec_arg == DECIMAL_NOT_SPECIFIED ? DATETIME_MAX_DECIMALS : dec_arg;
}
/**
Low level routine to store a MYSQL_TIME value into a field.
The value must be already properly rounded or truncated
and checked for being a valid TIME/DATE/DATETIME value.
@param[in] ltime MYSQL_TIME value.
@param[out] error Error flag vector, set in case of error.
@retval false In case of success.
@retval true In case of error.
*/
virtual type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) = 0;
/**
Low level routine to store a MYSQL_TIME value into a field
with rounding/truncation according to the field decimals() value and
sql_mode.
@param[in] ltime MYSQL_TIME value.
@param[out] warnings Error flag vector, set in case of error.
@retval false In case of success.
@retval true In case of error.
*/
virtual type_conversion_status store_internal_adjust_frac(MYSQL_TIME *ltime,
int *warnings) = 0;
/**
Store a temporal value in lldiv_t into a field,
with rounding according to the field decimals() value.
@param[in] lld Temporal value.
@param[out] warning Warning flag vector.
@retval false In case of success.
@retval true In case of error.
*/
type_conversion_status store_lldiv_t(const lldiv_t *lld, int *warning);
/**
Convert a string to MYSQL_TIME, according to the field type.
@param[in] str String
@param[in] len String length
@param[in] cs String character set
@param[out] ltime The value is stored here
@param[out] status Conversion status
@retval false Conversion went fine, ltime contains a valid time
@retval true Conversion failed, ltime was reset and contains nothing
*/
virtual bool convert_str_to_TIME(const char *str, size_t len,
const CHARSET_INFO *cs, MYSQL_TIME *ltime,
MYSQL_TIME_STATUS *status) = 0;
/**
Convert a number with fractional part with nanosecond precision
into MYSQL_TIME, according to the field type. Nanoseconds
are rounded to milliseconds and added to ltime->second_part.
@param[in] nr Number
@param[in] unsigned_val SIGNED/UNSIGNED flag
@param[in] nanoseconds Fractional part in nanoseconds
@param[out] ltime The value is stored here
@param[in,out] warning Warnings found during execution
@return Conversion status
@retval false On success
@retval true On error
*/
virtual type_conversion_status convert_number_to_TIME(longlong nr,
bool unsigned_val,
int nanoseconds,
MYSQL_TIME *ltime,
int *warning) = 0;
/**
Convert an integer number into MYSQL_TIME, according to the field type.
@param[in] nr Number
@param[in] unsigned_val SIGNED/UNSIGNED flag
@param[out] ltime The value is stored here
@param[in,out] warnings Warnings found during execution
@retval false On success
@retval true On error
*/
longlong convert_number_to_datetime(longlong nr, bool unsigned_val,
MYSQL_TIME *ltime, int *warnings);
/**
Set a warning according to warning bit flag vector.
Multiple warnings are possible at the same time.
Every warning in the bit vector is set by an individual
set_datetime_warning() call.
@param str Warning parameter
@param warnings Warning bit flag
@retval false Function reported warning
@retval true Function reported error
*/
bool set_warnings(const ErrConvString &str, int warnings)
MY_ATTRIBUTE((warn_unused_result));
/**
Flags that are passed as "flag" argument to
check_date(), number_to_datetime(), str_to_datetime().
Flags depend on the session sql_mode settings, such as
MODE_NO_ZERO_DATE, MODE_NO_ZERO_IN_DATE.
Also, Field_newdate, Field_datetime, Field_datetimef add TIME_FUZZY_DATE
to the session sql_mode settings, to allow relaxed date format,
while Field_timestamp, Field_timestampf do not.
@param thd THD
@retval sql_mode flags mixed with the field type flags.
*/
virtual my_time_flags_t date_flags(
const THD *thd MY_ATTRIBUTE((unused))) const {
return 0;
}
/**
Flags that are passed as "flag" argument to
check_date(), number_to_datetime(), str_to_datetime().
Similar to the above when we don't have a THD value.
*/
my_time_flags_t date_flags() const;
/**
Set a single warning using make_truncated_value_warning().
@param[in] level Warning level (error, warning, note)
@param[in] code Warning code
@param[in] val Warning parameter
@param[in] ts_type Timestamp type (time, date, datetime, none)
@param[in] truncate_increment Incrementing of truncated field counter
@retval false Function reported warning
@retval true Function reported error
*/
bool set_datetime_warning(Sql_condition::enum_severity_level level, uint code,
const ErrConvString &val,
enum_mysql_timestamp_type ts_type,
int truncate_increment)
MY_ATTRIBUTE((warn_unused_result));
public:
/**
Constructor for Field_temporal
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param len_arg Number of characters in the integer part.
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_temporal(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
uint32 len_arg, uint8 dec_arg)
: Field(ptr_arg,
len_arg +
((normalize_dec(dec_arg)) ? normalize_dec(dec_arg) + 1 : 0),
null_ptr_arg, null_bit_arg, auto_flags_arg, field_name_arg) {
flags |= BINARY_FLAG;
dec = normalize_dec(dec_arg);
}
Item_result result_type() const final override { return STRING_RESULT; }
uint32 max_display_length() const final override { return field_length; }
bool str_needs_quotes() const final override { return true; }
uint is_equal(const Create_field *new_field) const final override;
Item_result numeric_context_result_type() const final override {
return dec ? DECIMAL_RESULT : INT_RESULT;
}
enum Item_result cmp_type() const final override { return INT_RESULT; }
enum Derivation derivation() const final override {
return DERIVATION_NUMERIC;
}
uint repertoire() const final override { return MY_REPERTOIRE_NUMERIC; }
const CHARSET_INFO *charset() const final override {
return &my_charset_numeric;
}
bool can_be_compared_as_longlong() const final override { return true; }
bool binary() const final override { return true; }
type_conversion_status store(const char *str, size_t len,
const CHARSET_INFO *cs) final override;
type_conversion_status store_decimal(
const my_decimal *decimal) final override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
type_conversion_status store(double nr) final override;
double val_real() const override // FSP-enable types redefine it.
{
return (double)val_int();
}
my_decimal *val_decimal(
my_decimal *decimal_value) const override; // FSP types redefine it
};
/**
Abstract class for types with date
with optional time, with or without fractional part:
DATE, DATETIME, DATETIME(N), TIMESTAMP, TIMESTAMP(N).
*/
class Field_temporal_with_date : public Field_temporal {
protected:
/**
Low level function to get value into MYSQL_TIME,
without checking for being valid.
*/
virtual bool get_date_internal(MYSQL_TIME *ltime) const = 0;
/**
Get value into MYSQL_TIME and check TIME_NO_ZERO_DATE flag.
@retval True on error: we get a zero value but flags disallow zero dates.
@retval False on success.
*/
bool get_internal_check_zero(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const;
type_conversion_status convert_number_to_TIME(longlong nr, bool unsigned_val,
int nanoseconds,
MYSQL_TIME *ltime,
int *warning) final override;
bool convert_str_to_TIME(const char *str, size_t len, const CHARSET_INFO *cs,
MYSQL_TIME *ltime,
MYSQL_TIME_STATUS *status) final override;
type_conversion_status store_internal_adjust_frac(
MYSQL_TIME *ltime, int *warnings) final override;
using Field_temporal::date_flags;
public:
/**
Constructor for Field_temporal
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param int_length_arg Number of characters in the integer part.
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_temporal_with_date(uchar *ptr_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 int_length_arg,
uint8 dec_arg)
: Field_temporal(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, int_length_arg, dec_arg) {}
bool send_to_protocol(Protocol *protocol) const override;
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec) final override;
String *val_str(String *, String *) const override;
longlong val_time_temporal() const override;
longlong val_date_temporal() const override;
bool get_time(MYSQL_TIME *ltime) const final override {
return get_date(ltime, TIME_FUZZY_DATE);
}
/* Validate the value stored in a field */
type_conversion_status validate_stored_val(THD *thd) override;
};
/**
Abstract class for types with date and time,
with or without fractional part:
DATETIME, DATETIME(N), TIMESTAMP, TIMESTAMP(N).
*/
class Field_temporal_with_date_and_time : public Field_temporal_with_date {
private:
int do_save_field_metadata(uchar *metadata_ptr) const override {
if (decimals()) {
*metadata_ptr = decimals();
return 1;
}
return 0;
}
protected:
/**
Initialize flags for TIMESTAMP DEFAULT CURRENT_TIMESTAMP / ON UPDATE
CURRENT_TIMESTAMP columns.
@todo get rid of TIMESTAMP_FLAG and ON_UPDATE_NOW_FLAG.
*/
void init_timestamp_flags();
/**
Store "struct timeval" value into field.
The value must be properly rounded or truncated according
to the number of fractional second digits.
*/
virtual void store_timestamp_internal(const struct timeval *tm) = 0;
bool convert_TIME_to_timestamp(THD *thd, const MYSQL_TIME *ltime,
struct timeval *tm, int *error);
public:
/**
Constructor for Field_temporal_with_date_and_time
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_temporal_with_date_and_time(uchar *ptr_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg)
: Field_temporal_with_date(ptr_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg,
MAX_DATETIME_WIDTH, dec_arg) {}
void store_timestamp(const struct timeval *tm) override;
};
/**
Abstract class for types with date and time, with fractional part:
DATETIME, DATETIME(N), TIMESTAMP, TIMESTAMP(N).
*/
class Field_temporal_with_date_and_timef
: public Field_temporal_with_date_and_time {
private:
int do_save_field_metadata(uchar *metadata_ptr) const final override {
*metadata_ptr = decimals();
return 1;
}
public:
/**
Constructor for Field_temporal_with_date_and_timef
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_temporal_with_date_and_timef(uchar *ptr_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint8 dec_arg)
: Field_temporal_with_date_and_time(ptr_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg,
dec_arg) {}
uint decimals() const final override { return dec; }
const CHARSET_INFO *sort_charset() const final override {
return &my_charset_bin;
}
size_t make_sort_key(uchar *to, size_t length) const final override {
memcpy(to, ptr, length);
return length;
}
int cmp(const uchar *a_ptr, const uchar *b_ptr) const final override {
return memcmp(a_ptr, b_ptr, pack_length());
}
uint row_pack_length() const final override { return pack_length(); }
double val_real() const final override;
longlong val_int() const final override;
my_decimal *val_decimal(my_decimal *decimal_value) const final override;
};
/*
Field implementing TIMESTAMP data type without fractional seconds.
We will be removed eventually.
*/
class Field_timestamp : public Field_temporal_with_date_and_time {
protected:
my_time_flags_t date_flags(const THD *thd) const final override;
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
bool get_date_internal(MYSQL_TIME *ltime) const final override;
void store_timestamp_internal(const struct timeval *tm) final override;
public:
static const int PACK_LENGTH = 4;
Field_timestamp(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg);
Field_timestamp(bool maybe_null_arg, const char *field_name_arg);
enum_field_types type() const final override { return MYSQL_TYPE_TIMESTAMP; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_ULONG_INT;
}
type_conversion_status store_packed(longlong nr) final override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = ptr[3] = 0;
return TYPE_OK;
}
longlong val_int() const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return PACK_LENGTH; }
void sql_type(String &str) const final override;
bool zero_pack() const final override { return 0; }
/* Get TIMESTAMP field value as seconds since begging of Unix Epoch */
bool get_timestamp(struct timeval *tm, int *warnings) const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
Field_timestamp *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIMESTAMP);
return new (mem_root) Field_timestamp(*this);
}
Field_timestamp *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIMESTAMP);
return new (*THR_MALLOC) Field_timestamp(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return pack_int32(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from,
uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first) final override {
return unpack_int32(to, from, low_byte_first);
}
/* Validate the value stored in a field */
type_conversion_status validate_stored_val(THD *thd) final override;
};
/*
Field implementing TIMESTAMP(N) data type, where N=0..6.
*/
class Field_timestampf : public Field_temporal_with_date_and_timef {
protected:
bool get_date_internal(MYSQL_TIME *ltime) const final override;
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
my_time_flags_t date_flags(const THD *thd) const final override;
void store_timestamp_internal(const struct timeval *tm) override;
public:
/**
Field_timestampf constructor
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of fractional second digits, 0..6.
*/
Field_timestampf(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
uint8 dec_arg);
/**
Field_timestampf constructor
@param maybe_null_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of fractional second digits, 0..6.
*/
Field_timestampf(bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg);
Field_timestampf *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIMESTAMP);
return new (mem_root) Field_timestampf(*this);
}
Field_timestampf *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIMESTAMP);
return new (*THR_MALLOC) Field_timestampf(*this);
}
enum_field_types type() const final override { return MYSQL_TYPE_TIMESTAMP; }
enum_field_types real_type() const final override {
return MYSQL_TYPE_TIMESTAMP2;
}
enum_field_types binlog_type() const final override {
return MYSQL_TYPE_TIMESTAMP2;
}
bool zero_pack() const final override { return 0; }
uint32 pack_length() const final override {
return my_timestamp_binary_length(dec);
}
uint pack_length_from_metadata(uint field_metadata) const final override {
DBUG_TRACE;
uint tmp = my_timestamp_binary_length(field_metadata);
return tmp;
}
type_conversion_status reset() final override;
type_conversion_status store_packed(longlong nr) final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
void sql_type(String &str) const final override;
bool get_timestamp(struct timeval *tm, int *warnings) const final override;
/* Validate the value stored in a field */
type_conversion_status validate_stored_val(THD *thd) final override;
};
class Field_year final : public Field_tiny {
public:
enum Limits { MIN_YEAR = 1901, MAX_YEAR = 2155 };
Field_year(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg)
: Field_tiny(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, true, true) {}
Field_year(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg)
: Field_tiny(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, true, true) {}
enum_field_types type() const final override { return MYSQL_TYPE_YEAR; }
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec) final override;
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
void sql_type(String &str) const final override;
bool can_be_compared_as_longlong() const final override { return true; }
Field_year *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_YEAR);
return new (mem_root) Field_year(*this);
}
Field_year *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_YEAR);
return new (*THR_MALLOC) Field_year(*this);
}
};
class Field_newdate : public Field_temporal_with_date {
protected:
static const int PACK_LENGTH = 3;
my_time_flags_t date_flags(const THD *thd) const final override;
bool get_date_internal(MYSQL_TIME *ltime) const final override;
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
public:
Field_newdate(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg)
: Field_temporal_with_date(ptr_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg, MAX_DATE_WIDTH,
0) {}
Field_newdate(bool maybe_null_arg, const char *field_name_arg)
: Field_temporal_with_date(nullptr,
maybe_null_arg ? &dummy_null_buffer : nullptr,
0, NONE, field_name_arg, MAX_DATE_WIDTH, 0) {}
enum_field_types type() const final override { return MYSQL_TYPE_DATE; }
enum_field_types real_type() const final override {
return MYSQL_TYPE_NEWDATE;
}
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_UINT24;
}
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = 0;
return TYPE_OK;
}
type_conversion_status store_packed(longlong nr) final override;
longlong val_int() const final override;
longlong val_time_temporal() const final override;
longlong val_date_temporal() const final override;
String *val_str(String *, String *) const final override;
bool send_to_protocol(Protocol *protocol) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return PACK_LENGTH; }
void sql_type(String &str) const final override;
bool zero_pack() const final override { return 1; }
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
Field_newdate *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATE);
DBUG_ASSERT(real_type() == MYSQL_TYPE_NEWDATE);
return new (mem_root) Field_newdate(*this);
}
Field_newdate *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATE);
DBUG_ASSERT(real_type() == MYSQL_TYPE_NEWDATE);
return new (*THR_MALLOC) Field_newdate(*this);
}
};
/**
Abstract class for TIME and TIME(N).
*/
class Field_time_common : public Field_temporal {
protected:
bool convert_str_to_TIME(const char *str, size_t len, const CHARSET_INFO *cs,
MYSQL_TIME *ltime,
MYSQL_TIME_STATUS *status) final override;
/**
@todo: convert_number_to_TIME returns conversion status through
two different interfaces: return value and warning. It should be
refactored to only use return value.
*/
type_conversion_status convert_number_to_TIME(longlong nr, bool unsigned_val,
int nanoseconds,
MYSQL_TIME *ltime,
int *warning) final override;
/**
Low-level function to store MYSQL_TIME value.
The value must be rounded or truncated according to decimals().
*/
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) override = 0;
/**
Function to store time value.
The value is rounded/truncated according to decimals() and sql_mode.
*/
type_conversion_status store_internal_adjust_frac(
MYSQL_TIME *ltime, int *warnings) final override;
my_time_flags_t date_flags(const THD *thd) const final override;
using Field_temporal::date_flags;
public:
/**
Constructor for Field_time_common
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_time_common(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
uint8 dec_arg)
: Field_temporal(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, MAX_TIME_WIDTH, dec_arg) {}
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec) final override;
String *val_str(String *, String *) const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
longlong val_date_temporal() const final override;
bool send_to_protocol(Protocol *protocol) const final override;
};
/*
Field implementing TIME data type without fractional seconds.
It will be removed eventually.
*/
class Field_time final : public Field_time_common {
protected:
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
public:
Field_time(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg)
: Field_time_common(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, 0) {}
Field_time(const char *field_name_arg)
: Field_time_common(nullptr, nullptr, 0, NONE, field_name_arg, 0) {}
enum_field_types type() const final override { return MYSQL_TYPE_TIME; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_INT24;
}
type_conversion_status store_packed(longlong nr) final override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = 0;
return TYPE_OK;
}
longlong val_int() const final override;
longlong val_time_temporal() const final override;
bool get_time(MYSQL_TIME *ltime) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return 3; }
void sql_type(String &str) const final override;
bool zero_pack() const final override { return 1; }
Field_time *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIME);
return new (mem_root) Field_time(*this);
}
Field_time *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIME);
return new (*THR_MALLOC) Field_time(*this);
}
};
/*
Field implementing TIME(N) data type, where N=0..6.
*/
class Field_timef final : public Field_time_common {
private:
int do_save_field_metadata(uchar *metadata_ptr) const final override {
*metadata_ptr = decimals();
return 1;
}
protected:
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
public:
/**
Constructor for Field_timef
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_timef(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg, uint8 dec_arg)
: Field_time_common(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, dec_arg) {}
/**
Constructor for Field_timef
@param maybe_null_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_timef(bool maybe_null_arg, const char *field_name_arg, uint8 dec_arg)
: Field_time_common(nullptr,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0,
NONE, field_name_arg, dec_arg) {}
Field_timef *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIME);
return new (mem_root) Field_timef(*this);
}
Field_timef *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_TIME);
return new (*THR_MALLOC) Field_timef(*this);
}
uint decimals() const final override { return dec; }
enum_field_types type() const final override { return MYSQL_TYPE_TIME; }
enum_field_types real_type() const final override { return MYSQL_TYPE_TIME2; }
enum_field_types binlog_type() const final override {
return MYSQL_TYPE_TIME2;
}
type_conversion_status store_packed(longlong nr) final override;
type_conversion_status reset() final override;
double val_real() const final override;
longlong val_int() const final override;
longlong val_time_temporal() const final override;
bool get_time(MYSQL_TIME *ltime) const final override;
my_decimal *val_decimal(my_decimal *) const final override;
uint32 pack_length() const final override {
return my_time_binary_length(dec);
}
uint pack_length_from_metadata(uint field_metadata) const final override {
DBUG_TRACE;
uint tmp = my_time_binary_length(field_metadata);
return tmp;
}
uint row_pack_length() const final override { return pack_length(); }
void sql_type(String &str) const final override;
bool zero_pack() const final override { return 1; }
const CHARSET_INFO *sort_charset() const final override {
return &my_charset_bin;
}
size_t make_sort_key(uchar *to, size_t length) const final override {
memcpy(to, ptr, length);
return length;
}
int cmp(const uchar *a_ptr, const uchar *b_ptr) const final override {
return memcmp(a_ptr, b_ptr, pack_length());
}
};
/*
Field implementing DATETIME data type without fractional seconds.
We will be removed eventually.
*/
class Field_datetime : public Field_temporal_with_date_and_time {
protected:
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
bool get_date_internal(MYSQL_TIME *ltime) const final override;
my_time_flags_t date_flags(const THD *thd) const final override;
void store_timestamp_internal(const struct timeval *tm) final override;
public:
static const int PACK_LENGTH = 8;
/**
DATETIME columns can be defined as having CURRENT_TIMESTAMP as the
default value on inserts or updates. This constructor accepts a
auto_flags argument which controls the column default expressions.
For DATETIME columns this argument is a bitmap combining two flags:
- DEFAULT_NOW - means that column has DEFAULT CURRENT_TIMESTAMP attribute.
- ON_UPDATE_NOW - means that column has ON UPDATE CURRENT_TIMESTAMP.
(these two flags can be used orthogonally to each other).
*/
Field_datetime(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg)
: Field_temporal_with_date_and_time(ptr_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg, 0) {}
Field_datetime(const char *field_name_arg)
: Field_temporal_with_date_and_time(nullptr, nullptr, 0, NONE,
field_name_arg, 0) {}
enum_field_types type() const final override { return MYSQL_TYPE_DATETIME; }
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_ULONGLONG;
}
using Field_temporal_with_date_and_time::store; // Make -Woverloaded-virtual
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status store_packed(longlong nr) final override;
type_conversion_status reset() final override {
ptr[0] = ptr[1] = ptr[2] = ptr[3] = ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0;
return TYPE_OK;
}
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return PACK_LENGTH; }
void sql_type(String &str) const final override;
bool zero_pack() const final override { return 1; }
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
Field_datetime *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATETIME);
return new (mem_root) Field_datetime(*this);
}
Field_datetime *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATETIME);
return new (*THR_MALLOC) Field_datetime(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override {
return pack_int64(to, from, max_length, low_byte_first);
}
const uchar *unpack(uchar *to, const uchar *from,
uint param_data MY_ATTRIBUTE((unused)),
bool low_byte_first) final override {
return unpack_int64(to, from, low_byte_first);
}
};
/*
Field implementing DATETIME(N) data type, where N=0..6.
*/
class Field_datetimef : public Field_temporal_with_date_and_timef {
protected:
bool get_date_internal(MYSQL_TIME *ltime) const final override;
type_conversion_status store_internal(const MYSQL_TIME *ltime,
int *error) final override;
my_time_flags_t date_flags(const THD *thd) const final override;
void store_timestamp_internal(const struct timeval *tm) final override;
public:
/**
Constructor for Field_datetimef
@param ptr_arg See Field definition
@param null_ptr_arg See Field definition
@param null_bit_arg See Field definition
@param auto_flags_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_datetimef(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
uint8 dec_arg)
: Field_temporal_with_date_and_timef(ptr_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg,
dec_arg) {}
/**
Constructor for Field_datetimef
@param maybe_null_arg See Field definition
@param field_name_arg See Field definition
@param dec_arg Number of second fraction digits, 0..6.
*/
Field_datetimef(bool maybe_null_arg, const char *field_name_arg,
uint8 dec_arg)
: Field_temporal_with_date_and_timef(
nullptr, maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, dec_arg) {}
Field_datetimef *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATETIME);
return new (mem_root) Field_datetimef(*this);
}
Field_datetimef *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_DATETIME);
return new (*THR_MALLOC) Field_datetimef(*this);
}
enum_field_types type() const final override { return MYSQL_TYPE_DATETIME; }
enum_field_types real_type() const final override {
return MYSQL_TYPE_DATETIME2;
}
enum_field_types binlog_type() const final override {
return MYSQL_TYPE_DATETIME2;
}
uint32 pack_length() const final override {
return my_datetime_binary_length(dec);
}
uint pack_length_from_metadata(uint field_metadata) const final override {
DBUG_TRACE;
uint tmp = my_datetime_binary_length(field_metadata);
return tmp;
}
bool zero_pack() const final override { return 1; }
type_conversion_status store_packed(longlong nr) final override;
type_conversion_status reset() final override;
longlong val_date_temporal() const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
void sql_type(String &str) const final override;
};
class Field_string : public Field_longstr {
public:
Field_string(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, const CHARSET_INFO *cs)
: Field_longstr(ptr_arg, len_arg, null_ptr_arg, null_bit_arg,
auto_flags_arg, field_name_arg, cs) {}
Field_string(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
const CHARSET_INFO *cs)
: Field_longstr(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, cs) {}
enum_field_types type() const final override { return MYSQL_TYPE_STRING; }
bool match_collation_to_optimize_range() const final override { return true; }
enum ha_base_keytype key_type() const final override {
return binary() ? HA_KEYTYPE_BINARY : HA_KEYTYPE_TEXT;
}
bool zero_pack() const final override { return 0; }
type_conversion_status reset() final override {
charset()->cset->fill(charset(), (char *)ptr, field_length,
(has_charset() ? ' ' : 0));
return TYPE_OK;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
// Inherit the store() overloads that have not been overridden.
using Field_longstr::store;
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
/**
Get the C-string value, without using String class.
@returns The C-string value of this field.
*/
LEX_CSTRING val_str_quick() const {
const char *string = pointer_cast<const char *>(ptr);
return {string,
field_charset->cset->lengthsp(field_charset, string, field_length)};
}
my_decimal *val_decimal(my_decimal *) const final override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
void sql_type(String &str) const final override;
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override;
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override;
uint pack_length_from_metadata(uint field_metadata) const final override {
DBUG_PRINT("debug", ("field_metadata: 0x%04x", field_metadata));
if (field_metadata == 0) return row_pack_length();
return (((field_metadata >> 4) & 0x300) ^ 0x300) +
(field_metadata & 0x00ff);
}
bool compatible_field_size(uint field_metadata, Relay_log_info *rli,
uint16 mflags,
int *order_var) const final override;
uint row_pack_length() const final override { return field_length; }
uint max_packed_col_length() const final override;
enum_field_types real_type() const final override {
return MYSQL_TYPE_STRING;
}
bool has_charset() const final override {
return charset() == &my_charset_bin ? false : true;
}
Field *new_field(MEM_ROOT *root, TABLE *new_table,
bool keep_type) const final override;
Field_string *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_STRING);
return new (mem_root) Field_string(*this);
}
Field_string *clone() const final override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_STRING);
return new (*THR_MALLOC) Field_string(*this);
}
size_t get_key_image(uchar *buff, size_t length,
imagetype type) const final override;
bool is_text_key_type() const final override {
return binary() ? false : true;
}
private:
int do_save_field_metadata(uchar *first_byte) const final override;
};
class Field_varstring : public Field_longstr {
public:
/* Store number of bytes used to store length (1 or 2) */
uint32 length_bytes;
Field_varstring(uchar *ptr_arg, uint32 len_arg, uint length_bytes_arg,
uchar *null_ptr_arg, uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, TABLE_SHARE *share,
const CHARSET_INFO *cs);
Field_varstring(uint32 len_arg, bool maybe_null_arg,
const char *field_name_arg, TABLE_SHARE *share,
const CHARSET_INFO *cs);
enum_field_types type() const final override { return MYSQL_TYPE_VARCHAR; }
bool match_collation_to_optimize_range() const final override { return true; }
enum ha_base_keytype key_type() const final override;
uint row_pack_length() const final override { return field_length; }
bool zero_pack() const final override { return 0; }
type_conversion_status reset() final override {
memset(ptr, 0, field_length + length_bytes);
return TYPE_OK;
}
uint32 pack_length() const final override {
return (uint32)field_length + length_bytes;
}
uint32 key_length() const final override { return (uint32)field_length; }
uint32 sort_length() const final override { return (uint32)field_length; }
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
// Inherit the store() overloads that have not been overridden.
using Field_longstr::store;
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const override;
my_decimal *val_decimal(my_decimal *) const final override;
int cmp_max(const uchar *, const uchar *,
uint max_length) const final override;
int cmp(const uchar *a, const uchar *b) const final override {
return cmp_max(a, b, ~0L);
}
bool sort_key_is_varlen() const final override {
return (field_charset->pad_attribute == NO_PAD);
}
size_t make_sort_key(uchar *buff, size_t length) const final override;
size_t get_key_image(uchar *buff, size_t length,
imagetype type) const final override;
void set_key_image(const uchar *buff, size_t length) final override;
void sql_type(String &str) const final override;
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override;
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override;
int cmp_binary(const uchar *a, const uchar *b,
uint32 max_length = ~0L) const final override;
int key_cmp(const uchar *, const uchar *) const final override;
int key_cmp(const uchar *str, uint length) const final override;
uint32 data_length(ptrdiff_t row_offset = 0) const final override;
enum_field_types real_type() const final override {
return MYSQL_TYPE_VARCHAR;
}
bool has_charset() const final override {
return charset() == &my_charset_bin ? false : true;
}
Field *new_field(MEM_ROOT *root, TABLE *new_table,
bool keep_type) const final override;
Field *new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr,
uchar *new_null_ptr,
uint new_null_bit) const final override;
Field_varstring *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_VARCHAR);
DBUG_ASSERT(real_type() == MYSQL_TYPE_VARCHAR);
return new (mem_root) Field_varstring(*this);
}
Field_varstring *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_VARCHAR);
DBUG_ASSERT(real_type() == MYSQL_TYPE_VARCHAR);
return new (*THR_MALLOC) Field_varstring(*this);
}
uint is_equal(const Create_field *new_field) const final override;
void hash(ulong *nr, ulong *nr2) const final override;
const uchar *get_ptr() const final override { return ptr + length_bytes; }
bool is_text_key_type() const final override {
return binary() ? false : true;
}
virtual uint32 get_length_bytes() const override { return length_bytes; }
private:
int do_save_field_metadata(uchar *first_byte) const final override;
};
class Field_blob : public Field_longstr {
virtual type_conversion_status store_internal(const char *from, size_t length,
const CHARSET_INFO *cs);
/**
Copy value to memory storage.
*/
type_conversion_status store_to_mem(const char *from, size_t length,
const CHARSET_INFO *cs, size_t max_length,
Blob_mem_storage *);
protected:
/**
The number of bytes used to represent the length of the blob.
*/
uint packlength;
/**
The 'value'-object is a cache fronting the storage engine.
*/
String value;
private:
/**
In order to support update of virtual generated columns of blob type,
we need to allocate the space blob needs on server for old_row and
new_row respectively. This variable is used to record the
allocated blob space for old_row.
*/
String old_value;
/**
Whether we need to move the content of 'value' to 'old_value' before
updating the BLOB stored in 'value'. This needs to be done for
updates of BLOB columns that are virtual since the storage engine
does not have its own copy of the old 'value'. This variable is set
to true when we read the data into 'value'. It is reset when we move
'value' to 'old_value'. The purpose of having this is to avoid that we
do the move operation from 'value' to 'old_value' more than one time per
record.
Currently, this variable is introduced because the following call in
sql_data_change.cc:
\/\**
@todo combine this call to update_generated_write_fields() with the one
in fill_record() to avoid updating virtual generated fields twice.
*\/
if (table->has_gcol())
update_generated_write_fields(table->write_set, table);
When the @todo is done, m_keep_old_value can be deleted.
*/
bool m_keep_old_value;
/**
Backup String for table's blob fields.
UPDATE of a virtual field (for index update) requires two values to be
kept at the same time - 'new' and 'old' since SE (InnoDB) doesn't know the
latter. In the case when there was an indexed record, it got deleted and
When INSERT inserts into an index a record that coincides with a
previously deleted one, InnoDB needs to recalculate value that was
deleted in order to properly insert the new one.
When two above overlap, a field have to keep 3 different values at the
same time - 'new', 'old' and 'deleted'.
This backup_value is used by @see my_eval_gcolumn_expr_helper() to save
'new' and provide space for 'deleted' to avoid thrashing the former.
Unlike the old_value, backup_value is allocated once and reused for each
new re-calculation, to avoid excessive [re-]allocations. It's freed at the
end of statement. Since InnoDB consumes calculated values only after all
needed table's virtual fields were calculated, we have to have such backup
buffer for each field.
*/
String m_blob_backup;
#ifndef DBUG_OFF
/**
Whether the field uses table's backup value storage. @see
TABLE::m_blob_backup. Used only for debug.
*/
bool m_uses_backup{false};
#endif
protected:
/**
Store ptr and length.
*/
void store_ptr_and_length(const char *from, uint32 length) {
store_length(length);
memmove(ptr + packlength, &from, sizeof(char *));
}
public:
Field_blob(uchar *ptr_arg, uchar *null_ptr_arg, uchar null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
TABLE_SHARE *share, uint blob_pack_length, const CHARSET_INFO *cs);
Field_blob(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
const CHARSET_INFO *cs, bool set_packlength)
: Field_longstr(nullptr, len_arg, maybe_null_arg ? &dummy_null_buffer : 0,
0, NONE, field_name_arg, cs),
packlength(4),
m_keep_old_value(false) {
flags |= BLOB_FLAG;
if (set_packlength) {
packlength = len_arg <= 255
? 1
: len_arg <= 65535 ? 2 : len_arg <= 16777215 ? 3 : 4;
}
}
explicit Field_blob(uint32 packlength_arg);
/* Note that the default copy constructor is used, in clone() */
enum_field_types type() const override { return MYSQL_TYPE_BLOB; }
bool match_collation_to_optimize_range() const override { return true; }
enum ha_base_keytype key_type() const override {
return binary() ? HA_KEYTYPE_VARBINARY2 : HA_KEYTYPE_VARTEXT2;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(double nr) override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
double val_real() const override;
longlong val_int() const override;
String *val_str(String *, String *) const override;
my_decimal *val_decimal(my_decimal *) const override;
int cmp_max(const uchar *, const uchar *,
uint max_length) const final override;
int cmp(const uchar *a, const uchar *b) const final override {
return cmp_max(a, b, ~0L);
}
int cmp(const uchar *a, uint32 a_length, const uchar *b,
uint32 b_length) const; // No override.
int cmp_binary(const uchar *a, const uchar *b,
uint32 max_length = ~0L) const override;
int key_cmp(const uchar *, const uchar *) const override;
int key_cmp(const uchar *str, uint length) const override;
uint32 key_length() const override { return 0; }
size_t make_sort_key(uchar *buff, size_t length) const override;
uint32 pack_length() const final override {
return (uint32)(packlength + portable_sizeof_char_ptr);
}
/**
Return the packed length without the pointer size added.
This is used to determine the size of the actual data in the row
buffer.
@returns The length of the raw data itself without the pointer.
*/
uint32 pack_length_no_ptr() const { return (uint32)(packlength); }
uint row_pack_length() const final override { return pack_length_no_ptr(); }
uint32 sort_length() const final override;
bool sort_key_is_varlen() const override {
return (field_charset->pad_attribute == NO_PAD);
}
uint32 max_data_length() const final override {
return (uint32)(((ulonglong)1 << (packlength * 8)) - 1);
}
type_conversion_status reset() override {
memset(ptr, 0, packlength + sizeof(uchar *));
return TYPE_OK;
}
void reset_fields() final override {
value = String();
old_value = String();
m_blob_backup = String();
}
size_t get_field_buffer_size() { return value.alloced_length(); }
void store_length(uchar *i_ptr, uint i_packlength, uint32 i_number);
inline void store_length(uint32 number) {
store_length(ptr, packlength, number);
}
uint32 data_length(ptrdiff_t row_offset = 0) const final override {
return get_length(row_offset);
}
uint32 get_length(ptrdiff_t row_offset = 0) const;
uint32 get_length(const uchar *ptr, uint packlength,
bool low_byte_first) const;
uint32 get_length(const uchar *ptr_arg) const;
/** Get a const pointer to the BLOB data of this field. */
const uchar *get_ptr() const final override {
return get_blob_data(ptr + packlength);
}
/** Get a non-const pointer to the BLOB data of this field. */
uchar *get_blob_data(ptrdiff_t row_offset = 0) {
return get_blob_data(ptr + packlength + row_offset);
}
private:
/**
Get the BLOB data pointer stored at the specified position in the record
buffer.
*/
static uchar *get_blob_data(const uchar *position) {
uchar *data;
memcpy(&data, position, sizeof(data));
return data;
}
public:
void set_ptr(const uchar *length, const uchar *data) {
memcpy(ptr, length, packlength);
memcpy(ptr + packlength, &data, sizeof(char *));
}
void set_ptr_offset(ptrdiff_t ptr_diff, uint32 length, const uchar *data) {
uchar *ptr_ofs = ptr + ptr_diff;
store_length(ptr_ofs, packlength, length);
memcpy(ptr_ofs + packlength, &data, sizeof(char *));
}
void set_ptr(uint32 length, const uchar *data) {
set_ptr_offset(0, length, data);
}
size_t get_key_image(uchar *buff, size_t length,
imagetype type) const override;
void set_key_image(const uchar *buff, size_t length) final override;
void sql_type(String &str) const override;
bool copy();
Field_blob *clone(MEM_ROOT *mem_root) const override {
DBUG_ASSERT(type() == MYSQL_TYPE_BLOB);
return new (mem_root) Field_blob(*this);
}
Field_blob *clone() const override {
DBUG_ASSERT(type() == MYSQL_TYPE_BLOB);
return new (*THR_MALLOC) Field_blob(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override;
const uchar *unpack(uchar *, const uchar *from, uint param_data,
bool low_byte_first) final override;
uint max_packed_col_length() const final override;
void mem_free() final override {
// Free all allocated space
value.mem_free();
old_value.mem_free();
m_blob_backup.mem_free();
}
friend type_conversion_status field_conv(Field *to, Field *from);
bool has_charset() const override {
return charset() == &my_charset_bin ? false : true;
}
uint32 max_display_length() const final override;
uint32 char_length() const override;
bool copy_blob_value(MEM_ROOT *mem_root);
uint is_equal(const Create_field *new_field) const override;
bool is_text_key_type() const final override {
return binary() ? false : true;
}
/**
Mark that the BLOB stored in value should be copied before updating it.
When updating virtual generated columns we need to keep the old
'value' for BLOBs since this can be needed when the storage engine
does the update. During read of the record the old 'value' for the
BLOB is evaluated and stored in 'value'. This function is to be used
to specify that we need to copy this BLOB 'value' into 'old_value'
before we compute the new BLOB 'value'. For more information @see
Field_blob::keep_old_value().
*/
void set_keep_old_value(bool old_value_flag) {
/*
We should only need to keep a copy of the blob 'value' in the case
where this is a virtual genarated column (that is indexed).
*/
DBUG_ASSERT(is_virtual_gcol());
/*
If set to true, ensure that 'value' is copied to 'old_value' when
keep_old_value() is called.
*/
m_keep_old_value = old_value_flag;
}
/**
Save the current BLOB value to avoid that it gets overwritten.
This is used when updating virtual generated columns that are
BLOBs. Some storage engines require that we have both the old and
new BLOB value for virtual generated columns that are indexed in
order for the storage engine to be able to maintain the index. This
function will transfer the buffer storing the current BLOB value
from 'value' to 'old_value'. This avoids that the current BLOB value
is over-written when the new BLOB value is saved into this field.
The reason this requires special handling when updating/deleting
virtual columns of BLOB type is that the BLOB value is not known to
the storage engine. For stored columns, the "old" BLOB value is read
by the storage engine, Field_blob is made to point to the engine's
internal buffer; Field_blob's internal buffer (Field_blob::value)
isn't used and remains available to store the "new" value. For
virtual generated columns, the "old" value is written directly into
Field_blob::value when reading the record to be
updated/deleted. This is done in update_generated_read_fields().
Since, in this case, the "old" value already occupies the place to
store the "new" value, we must call this function before we write
the "new" value into Field_blob::value object so that the "old"
value does not get over-written. The table->record[1] buffer will
have a pointer that points to the memory buffer inside
old_value. The storage engine will use table->record[1] to read the
old value for the BLOB and use table->record[0] to read the new
value.
This function must be called before we store the new BLOB value in
this field object.
*/
void keep_old_value() {
/*
We should only need to keep a copy of the blob value in the case
where this is a virtual genarated column (that is indexed).
*/
DBUG_ASSERT(is_virtual_gcol());
// Transfer ownership of the current BLOB value to old_value
if (m_keep_old_value) {
old_value.takeover(value);
m_keep_old_value = false;
}
}
/**
Use to store the blob value into an allocated space.
*/
void store_in_allocated_space(const char *from, uint32 length) {
store_ptr_and_length(from, length);
}
/**
Backup data stored in 'value' into the backup_value
@see Field_blob::backup_value
@returns
true if backup fails
false otherwise
*/
bool backup_blob_field();
/**
Restore backup value
@see Field_blob::backup_value
*/
void restore_blob_backup();
private:
int do_save_field_metadata(uchar *first_byte) const override;
};
class Field_geom final : public Field_blob {
private:
const Nullable<gis::srid_t> m_srid;
type_conversion_status store_internal(const char *from, size_t length,
const CHARSET_INFO *cs) final override;
public:
enum geometry_type geom_type;
Field_geom(uchar *ptr_arg, uchar *null_ptr_arg, uint null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
TABLE_SHARE *share, uint blob_pack_length,
enum geometry_type geom_type_arg, Nullable<gis::srid_t> srid)
: Field_blob(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, share, blob_pack_length, &my_charset_bin),
m_srid(srid),
geom_type(geom_type_arg) {}
Field_geom(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
enum geometry_type geom_type_arg, Nullable<gis::srid_t> srid)
: Field_blob(len_arg, maybe_null_arg, field_name_arg, &my_charset_bin,
false),
m_srid(srid),
geom_type(geom_type_arg) {}
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_VARBINARY2;
}
enum_field_types type() const final override { return MYSQL_TYPE_GEOMETRY; }
bool match_collation_to_optimize_range() const final override {
return false;
}
void sql_type(String &str) const final override;
using Field_blob::store;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status store_decimal(const my_decimal *) final override;
type_conversion_status store(const char *from, size_t length,
const CHARSET_INFO *cs) final override;
/**
Non-nullable GEOMETRY types cannot have defaults,
but the underlying blob must still be reset.
*/
type_conversion_status reset() final override {
type_conversion_status res = Field_blob::reset();
if (res != TYPE_OK) return res;
return maybe_null() ? TYPE_OK : TYPE_ERR_NULL_CONSTRAINT_VIOLATION;
}
geometry_type get_geometry_type() const final override { return geom_type; }
Field_geom *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_GEOMETRY);
return new (mem_root) Field_geom(*this);
}
Field_geom *clone() const final override {
DBUG_ASSERT(type() == MYSQL_TYPE_GEOMETRY);
return new (*THR_MALLOC) Field_geom(*this);
}
uint is_equal(const Create_field *new_field) const final override;
Nullable<gis::srid_t> get_srid() const { return m_srid; }
};
/// A field that stores a JSON value.
class Field_json : public Field_blob {
type_conversion_status unsupported_conversion();
type_conversion_status store_binary(const char *ptr, size_t length);
/**
Diagnostics utility for ER_INVALID_JSON_TEXT.
@param err error message argument for ER_INVALID_JSON_TEXT
@param err_offset location in text at which there is an error
*/
void invalid_text(const char *err, size_t err_offset) const {
String s;
s.append(*table_name);
s.append('.');
s.append(field_name);
my_error(ER_INVALID_JSON_TEXT, MYF(0), err, err_offset, s.c_ptr_safe());
}
public:
Field_json(uchar *ptr_arg, uchar *null_ptr_arg, uint null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
TABLE_SHARE *share, uint blob_pack_length)
: Field_blob(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, share, blob_pack_length, &my_charset_bin) {}
Field_json(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg)
: Field_blob(len_arg, maybe_null_arg, field_name_arg, &my_charset_bin,
false) {}
enum_field_types type() const override { return MYSQL_TYPE_JSON; }
void sql_type(String &str) const override;
/**
Return a text charset so that string functions automatically
convert the field value to string and treat it as a non-binary
string.
*/
const CHARSET_INFO *charset() const override {
return &my_charset_utf8mb4_bin;
}
/**
Sort should treat the field as binary and not attempt any
conversions.
*/
const CHARSET_INFO *sort_charset() const final override {
return field_charset;
}
/**
JSON columns don't have an associated charset. Returning false
here prevents SHOW CREATE TABLE from attaching a CHARACTER SET
clause to the column.
*/
bool has_charset() const final override { return false; }
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(double nr) override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
type_conversion_status store_decimal(const my_decimal *) final override;
virtual type_conversion_status store_json(const Json_wrapper *json);
type_conversion_status store_time(MYSQL_TIME *ltime,
uint8 dec_arg) final override;
type_conversion_status store(Field_json *field);
bool pack_diff(uchar **to, ulonglong value_options) const final override;
/**
Return the length of this field, taking into consideration that it may be in
partial format.
This is the format used when writing the binary log in row format
and using a partial format according to
@@session.binlog_row_value_options.
@param[in] value_options The value of binlog_row_value options.
@param[out] diff_vector_p If this is not NULL, the pointer it
points to will be set to NULL if the field is to be stored in full
format, or to the Json_diff_vector if the field is to be stored in
partial format.
@return The number of bytes needed when writing to the binlog: the
size of the full format if stored in full format and the size of
the diffs if stored in partial format.
*/
longlong get_diff_vector_and_length(
ulonglong value_options,
const Json_diff_vector **diff_vector_p = nullptr) const;
/**
Return true if the before-image and after-image for this field are
equal.
*/
bool is_before_image_equal_to_after_image() const;
/**
Read the binary diff from the given buffer, and apply it to this field.
@param[in,out] from Pointer to buffer where the binary diff is stored.
This will be changed to point to the next byte after the field.
@retval false Success
@retval true Error (e.g. failed to apply the diff). The error has
been reported through my_error.
*/
bool unpack_diff(const uchar **from);
/**
Retrieve the field's value as a JSON wrapper. It
there is an error, wr is not modified and we return
false, else true.
@param[out] wr the JSON value
@return true if a value is retrieved (or NULL), false if error
*/
bool val_json(Json_wrapper *wr) const;
/**
Retrieve the JSON as an int if possible. This requires a JSON scalar
of suitable type.
@returns the JSON value as an int
*/
longlong val_int() const final override;
/**
Retrieve the JSON as a double if possible. This requires a JSON scalar
of suitable type.
@returns the JSON value as a double
*/
double val_real() const final override;
/**
Retrieve the JSON value stored in this field as text
@param[in,out] buf1 string buffer for converting JSON value to string
@param[in,out] buf2 unused
*/
String *val_str(String *buf1, String *buf2) const final override;
my_decimal *val_decimal(my_decimal *m) const final override;
bool get_time(MYSQL_TIME *ltime) const final override;
bool get_date(MYSQL_TIME *ltime,
my_time_flags_t fuzzydate) const final override;
Field_json *clone(MEM_ROOT *mem_root) const override;
Field_json *clone() const override;
uint is_equal(const Create_field *new_field) const final override;
Item_result cast_to_int_type() const final override { return INT_RESULT; }
int cmp_binary(const uchar *a, const uchar *b,
uint32 max_length = ~0L) const final override;
bool sort_key_is_varlen() const final override { return true; }
size_t make_sort_key(uchar *to, size_t length) const override;
/**
Make a hash key that can be used by sql_executor.cc/unique_hash
in order to support SELECT DISTINCT
@param[in] hash_val An initial hash value.
*/
ulonglong make_hash_key(ulonglong hash_val);
/**
Get a read-only pointer to the binary representation of the JSON document
in this field.
@param row_offset Field's data offset
*/
const char *get_binary(ptrdiff_t row_offset = 0) const;
};
class Json_array;
class Item_func_array_cast;
/**
Field that stores array of values of the same type.
This Field class is used together with Item_func_array_cast class
(CAST( .. AS .. ARRAY) function) in implementation of multi-valued index.
Effectively it's a JSON field that contains a single JSON array. When a
JSON value is stored, it's checked to be either a scalar, or an array.
All source values are converted using the internal conversion field and
stored as an array. Field_typed_array ensures that all values stored
in the array have the same type and precision - the one specified by user.
This way InnoDB doesn't have to do the conversion on its own and can easily
index them.
The Field_typed_array always reports type of its element and from this
point of view it's undistinguishable from regular field having the same
type. Due to that, fields are differentiated by is_array() property.
Field_typed_array returns true, all other fields - false.
For conversion and index applicability tests, Field_typed_array employs a
conversion field, which is a regular Field class of array's element type.
It's stored in the m_conv_field. All Field_typed_array::store_*() methods
store values to the conversion field. Conversion field and typed array
field are sharing same field_index, to allow correct read/write_set
checks. So the field always have to be marked for read in order to allow
read of conversions' results.
@see Item_func_array_cast
*/
class Field_typed_array : public Field_json {
/// Conversion field
Field *m_conv_field;
/// Null byte for conv_field
uchar null_byte;
/// conversion field's buffer
uchar *m_conv_buf;
/// Array's element type
enum_field_types m_elt_type;
/// Element's decimals
uint m_elt_decimals;
/// Element's charset
const CHARSET_INFO *m_elt_charset;
/// Result array
Json_array m_array;
public:
Field_typed_array(const Field_typed_array &);
Field_typed_array(enum_field_types elt_type, bool elt_is_unsigned,
size_t elt_length, uint elt_decimals, uchar *ptr_arg,
uchar *null_ptr_arg, uint null_bit_arg,
uchar auto_flags_arg, const char *field_name_arg,
TABLE_SHARE *share, uint blob_pack_length,
const CHARSET_INFO *cs)
: Field_json(ptr_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, share, blob_pack_length),
m_conv_field(NULL),
m_elt_type(elt_type),
m_elt_decimals(elt_decimals),
m_elt_charset(cs) {
if (elt_is_unsigned) {
unsigned_flag = true;
flags |= UNSIGNED_FLAG;
}
if (binary()) flags |= BINARY_FLAG;
field_length = elt_length;
/*
Arrays of BLOB aren't supported and can't be created, so mask the BLOB
flag of JSON
*/
flags &= ~BLOB_FLAG;
DBUG_ASSERT(elt_type != MYSQL_TYPE_STRING &&
elt_type != MYSQL_TYPE_VAR_STRING);
}
uint32 char_length() const override {
return field_length / charset()->mbmaxlen;
}
void init(TABLE *table_arg) override;
enum_field_types type() const override {
return real_type_to_type(m_elt_type);
}
enum_field_types real_type() const override { return m_elt_type; }
enum_field_types binlog_type() const override {
return MYSQL_TYPE_TYPED_ARRAY;
}
uint32 key_length() const override;
Field_typed_array *clone(MEM_ROOT *mem_root) const override;
Field_typed_array *clone() const override;
bool is_array() const override { return true; }
Item_result result_type() const override;
uint decimals() const override { return m_elt_decimals; }
bool binary() const override {
return (m_elt_type != MYSQL_TYPE_VARCHAR ||
m_elt_charset == &my_charset_bin);
}
const CHARSET_INFO *charset() const override { return m_elt_charset; }
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override {
return m_conv_field->store(to, length, charset);
}
type_conversion_status store(double nr) override {
return m_conv_field->store(nr);
}
type_conversion_status store(longlong nr, bool unsigned_val) override {
return m_conv_field->store(nr, unsigned_val);
}
type_conversion_status store_json(const Json_wrapper *json) override;
size_t get_key_image(uchar *buff, size_t length,
imagetype type) const override {
return m_conv_field->get_key_image(buff, length, type);
}
Field *new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr,
uchar *, uint) const override {
Field *res = m_conv_field->new_key_field(root, new_table, new_ptr);
if (res != nullptr) {
// Keep the field hidden to allow error handler to catch functional
// index's errors
res->set_hidden(dd::Column::enum_hidden_type::HT_HIDDEN_SQL);
res->part_of_key = part_of_key;
}
return res;
}
/**
These methods are used by handler to prevent returning a row past the
end_range during range access. Since there's no order defined for sorting
set of arrays, always return -1 here, allowing all records fetched from
SE to be returned to server. They will be filtered by WHERE condition later.
*/
int key_cmp(const uchar *, const uchar *) const override { return -1; }
int key_cmp(const uchar *, uint) const override { return -1; }
/**
Multi-valued index always works only as a pre-filter for actual
condition check, and the latter always use binary collation, so no point
to match collations in optimizer.
*/
bool match_collation_to_optimize_range() const override { return false; }
friend class Item_func_array_cast;
/**
Convert arbitrary JSON value to the array's type using the conversion field.
If conversion fails and it's not a coercion test (no_error= false) then an
error is thrown. The converted value is guaranteed to match the field's
type and can be indexed by SE without any additional handling.
@param[in] wr Source data
@param[in] no_error Whether an error should be thrown if value can't be
coerced. Error should be thrown when inserting data
into the index, and shouldn't be thrown when the range
optimizer tests index applicability.
@param[out] coerced The converted value. Can be nullptr if no_error is
true.
@returns
true conversion failed
false conversion succeeded
*/
bool coerce_json_value(const Json_wrapper *wr, bool no_error,
Json_wrapper *coerced);
/**
Get name of the index defined over this field.
Since typed array fields can be created only as an underlying GC field of
a multi-valued functional index, there's always only one index defined
over the field.
@returns
name of the index defined over the field.
*/
const char *get_index_name();
virtual uint32 get_length_bytes() const override {
DBUG_ASSERT(m_elt_type == MYSQL_TYPE_VARCHAR);
return field_length > 255 ? 2 : 1;
}
size_t make_sort_key(uchar *to, size_t max_len) const override {
// Not supported yet
DBUG_ASSERT(false);
// Dummy
return Field_json::make_sort_key(to, max_len);
}
/**
Create sort key out of given JSON value according to array's element type
@param wr JSON value to create sort key from
@param to buffer to create sort key in
@param length buffer's length
@returns
actual sort key length
*/
size_t make_sort_key(Json_wrapper *wr, uchar *to, size_t length);
/**
Save the field metadata for typed array fields.
Saved metadata contains element type (1 byte) and up to 3 bytes of
metadata - the same as each respective Field class saves
(e.g Field_new_decimal for DECIMAL type). The only difference is that
for VARCHAR type length is stored in 3 bytes. This allows to store longer
strings, as its supported by JSON storage.
@param metadata_ptr First byte of field metadata
@returns number of bytes written to metadata_ptr
*/
virtual int do_save_field_metadata(uchar *metadata_ptr) const override;
virtual uint pack_length_from_metadata(uint) const override {
return pack_length_no_ptr();
}
void sql_type(String &str) const final override;
};
class Field_enum : public Field_str {
protected:
uint packlength;
public:
TYPELIB *typelib;
Field_enum(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint packlength_arg,
TYPELIB *typelib_arg, const CHARSET_INFO *charset_arg)
: Field_str(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, charset_arg),
packlength(packlength_arg),
typelib(typelib_arg) {
flags |= ENUM_FLAG;
}
Field_enum(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint packlength_arg, TYPELIB *typelib_arg,
const CHARSET_INFO *charset_arg)
: Field_enum(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, packlength_arg, typelib_arg, charset_arg) {}
Field *new_field(MEM_ROOT *root, TABLE *new_table,
bool keep_type) const final override;
enum_field_types type() const final override { return MYSQL_TYPE_STRING; }
bool match_collation_to_optimize_range() const final override {
return false;
}
enum Item_result cmp_type() const final override { return INT_RESULT; }
enum Item_result cast_to_int_type() const final override {
return INT_RESULT;
}
enum ha_base_keytype key_type() const final override;
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(double nr) override;
type_conversion_status store(longlong nr, bool unsigned_val) override;
double val_real() const final override;
my_decimal *val_decimal(my_decimal *decimal_value) const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const override;
int cmp(const uchar *, const uchar *) const final override;
size_t make_sort_key(uchar *buff, size_t length) const final override;
uint32 pack_length() const final override { return (uint32)packlength; }
void store_type(ulonglong value);
void sql_type(String &str) const override;
enum_field_types real_type() const override { return MYSQL_TYPE_ENUM; }
uint pack_length_from_metadata(uint field_metadata) const final override {
return (field_metadata & 0x00ff);
}
uint row_pack_length() const final override { return pack_length(); }
bool zero_pack() const override { return 0; }
bool optimize_range(uint, uint) const final override { return false; }
bool eq_def(const Field *field) const final override;
bool has_charset() const override { return true; }
/* enum and set are sorted as integers */
const CHARSET_INFO *sort_charset() const final override {
return &my_charset_bin;
}
Field_enum *clone(MEM_ROOT *mem_root) const override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_ENUM);
return new (mem_root) Field_enum(*this);
}
Field_enum *clone() const override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_ENUM);
return new (*THR_MALLOC) Field_enum(*this);
}
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool low_byte_first) const final override;
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool low_byte_first) final override;
private:
int do_save_field_metadata(uchar *first_byte) const final override;
uint is_equal(const Create_field *new_field) const final override;
};
class Field_set final : public Field_enum {
public:
Field_set(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg, uint32 packlength_arg,
TYPELIB *typelib_arg, const CHARSET_INFO *charset_arg)
: Field_enum(ptr_arg, len_arg, null_ptr_arg, null_bit_arg, auto_flags_arg,
field_name_arg, packlength_arg, typelib_arg, charset_arg),
empty_set_string("", 0, charset_arg) {
flags = (flags & ~ENUM_FLAG) | SET_FLAG;
}
Field_set(uint32 len_arg, bool maybe_null_arg, const char *field_name_arg,
uint32 packlength_arg, TYPELIB *typelib_arg,
const CHARSET_INFO *charset_arg)
: Field_set(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0, NONE,
field_name_arg, packlength_arg, typelib_arg, charset_arg) {}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
type_conversion_status store(double nr) final override {
return Field_set::store((longlong)nr, false);
}
type_conversion_status store(longlong nr, bool unsigned_val) final override;
bool zero_pack() const final override { return 1; }
String *val_str(String *, String *) const final override;
void sql_type(String &str) const final override;
enum_field_types real_type() const final override { return MYSQL_TYPE_SET; }
bool has_charset() const final override { return true; }
Field_set *clone(MEM_ROOT *mem_root) const final override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_SET);
return new (mem_root) Field_set(*this);
}
Field_set *clone() const final override {
DBUG_ASSERT(real_type() == MYSQL_TYPE_SET);
return new (*THR_MALLOC) Field_set(*this);
}
private:
const String empty_set_string;
};
/*
Note:
To use Field_bit::cmp_binary() you need to copy the bits stored in
the beginning of the record (the NULL bytes) to each memory you
want to compare (where the arguments point).
This is the reason:
- Field_bit::cmp_binary() is only implemented in the base class
(Field::cmp_binary()).
- Field::cmp_binary() currenly use pack_length() to calculate how
long the data is.
- pack_length() includes size of the bits stored in the NULL bytes
of the record.
*/
class Field_bit : public Field {
public:
uchar *bit_ptr; // position in record where 'uneven' bits store
uchar bit_ofs; // offset to 'uneven' high bits
uint bit_len; // number of 'uneven' high bits
uint bytes_in_rec;
Field_bit(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar *bit_ptr_arg, uchar bit_ofs_arg,
uchar auto_flags_arg, const char *field_name_arg);
enum_field_types type() const final override { return MYSQL_TYPE_BIT; }
enum ha_base_keytype key_type() const override { return HA_KEYTYPE_BIT; }
uint32 key_length() const final override {
return (uint32)(field_length + 7) / 8;
}
uint32 max_data_length() const final override {
return (field_length + 7) / 8;
}
uint32 max_display_length() const final override { return field_length; }
Item_result result_type() const final override { return INT_RESULT; }
type_conversion_status reset() final override;
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) override;
type_conversion_status store(double nr) final override;
type_conversion_status store(longlong nr, bool unsigned_val) final override;
type_conversion_status store_decimal(const my_decimal *) final override;
double val_real() const final override;
longlong val_int() const final override;
String *val_str(String *, String *) const final override;
bool str_needs_quotes() const final override { return true; }
my_decimal *val_decimal(my_decimal *) const final override;
int cmp(const uchar *a, const uchar *b) const final override {
DBUG_ASSERT(ptr == a || ptr == b);
const uint cmp_len = bytes_in_rec + (bit_len != 0 ? 1 : 0);
if (ptr == a)
return Field_bit::key_cmp(b, cmp_len);
else
return -Field_bit::key_cmp(a, cmp_len);
}
int cmp_binary_offset(ptrdiff_t row_offset) const final override {
return cmp_offset(row_offset);
}
int cmp_max(const uchar *a, const uchar *b,
uint max_length) const final override;
int key_cmp(const uchar *a, const uchar *b) const final override {
return cmp_binary(a, b);
}
int key_cmp(const uchar *str, uint length) const final override;
int cmp_offset(ptrdiff_t row_offset) const final override;
void get_image(uchar *buff, size_t length,
const CHARSET_INFO *) const final override {
get_key_image(buff, length, itRAW);
}
void set_image(const uchar *buff, size_t length,
const CHARSET_INFO *cs) final override {
Field_bit::store(pointer_cast<const char *>(buff), length, cs);
}
size_t get_key_image(uchar *buff, size_t length,
imagetype type) const final override;
void set_key_image(const uchar *buff, size_t length) final override {
Field_bit::store(pointer_cast<const char *>(buff), length, &my_charset_bin);
}
size_t make_sort_key(uchar *buff, size_t length) const final override {
get_key_image(buff, length, itRAW);
return length;
}
uint32 pack_length() const final override {
return (uint32)(field_length + 7) / 8;
}
uint32 pack_length_in_rec() const final override { return bytes_in_rec; }
uint pack_length_from_metadata(uint field_metadata) const final override;
uint row_pack_length() const final override {
return (bytes_in_rec + ((bit_len > 0) ? 1 : 0));
}
bool compatible_field_size(uint metadata, Relay_log_info *, uint16 mflags,
int *order_var) const final override;
void sql_type(String &str) const override;
uchar *pack(uchar *to, const uchar *from, uint max_length,
bool) const final override;
const uchar *unpack(uchar *to, const uchar *from, uint param_data,
bool) final override;
void set_default() final override;
Field *new_key_field(MEM_ROOT *root, TABLE *new_table, uchar *new_ptr,
uchar *new_null_ptr,
uint new_null_bit) const final override;
void set_bit_ptr(uchar *bit_ptr_arg, uchar bit_ofs_arg) {
bit_ptr = bit_ptr_arg;
bit_ofs = bit_ofs_arg;
}
bool eq(Field *field) const final override {
return (Field::eq(field) && bit_ptr == ((Field_bit *)field)->bit_ptr &&
bit_ofs == ((Field_bit *)field)->bit_ofs);
}
uint is_equal(const Create_field *new_field) const final override;
void move_field_offset(ptrdiff_t ptr_diff) final override {
Field::move_field_offset(ptr_diff);
if (bit_ptr != nullptr) bit_ptr += ptr_diff;
}
void hash(ulong *nr, ulong *nr2) const final override;
Field_bit *clone(MEM_ROOT *mem_root) const override {
DBUG_ASSERT(type() == MYSQL_TYPE_BIT);
return new (mem_root) Field_bit(*this);
}
Field_bit *clone() const override {
DBUG_ASSERT(type() == MYSQL_TYPE_BIT);
return new (*THR_MALLOC) Field_bit(*this);
}
private:
size_t do_last_null_byte() const final override;
int do_save_field_metadata(uchar *first_byte) const final override;
};
/**
BIT field represented as chars for non-MyISAM tables.
@todo The inheritance relationship is backwards since Field_bit is
an extended version of Field_bit_as_char and not the other way
around. Hence, we should refactor it to fix the hierarchy order.
*/
class Field_bit_as_char final : public Field_bit {
public:
Field_bit_as_char(uchar *ptr_arg, uint32 len_arg, uchar *null_ptr_arg,
uchar null_bit_arg, uchar auto_flags_arg,
const char *field_name_arg);
Field_bit_as_char(uint32 len_arg, bool maybe_null_arg,
const char *field_name_arg)
: Field_bit_as_char(nullptr, len_arg,
maybe_null_arg ? &dummy_null_buffer : nullptr, 0,
NONE, field_name_arg) {}
enum ha_base_keytype key_type() const final override {
return HA_KEYTYPE_BINARY;
}
type_conversion_status store(const char *to, size_t length,
const CHARSET_INFO *charset) final override;
// Inherit the store() overloads that have not been overridden.
using Field_bit::store;
void sql_type(String &str) const final override;
Field_bit_as_char *clone(MEM_ROOT *mem_root) const final override {
return new (mem_root) Field_bit_as_char(*this);
}
Field_bit_as_char *clone() const final override {
return new (*THR_MALLOC) Field_bit_as_char(*this);
}
};
/// This function should only be called from legacy code.
Field *make_field(MEM_ROOT *mem_root_arg, TABLE_SHARE *share, uchar *ptr,
size_t field_length, uchar *null_pos, uchar null_bit,
enum_field_types field_type,
const CHARSET_INFO *field_charset,
Field::geometry_type geom_type, uchar auto_flags,
TYPELIB *interval, const char *field_name, bool maybe_null,
bool is_zerofill, bool is_unsigned, uint decimals,
bool treat_bit_as_char, uint pack_length_override,
Nullable<gis::srid_t> srid, bool is_array);
/**
Instantiates a Field object with the given name and record buffer values.
@param create_field The column meta data.
@param share The table share object.
@param field_name Create_field::field_name is overridden with this value
when instantiating the Field object.
@param field_length Create_field::length is overridden with this value
when instantiating the Field object.
@param null_pos The address of the null bytes.
*/
Field *make_field(const Create_field &create_field, TABLE_SHARE *share,
const char *field_name, size_t field_length, uchar *null_pos);
/**
Instantiates a Field object with the given record buffer values.
@param create_field The column meta data.
@param share The table share object.
@param ptr The start of the record buffer.
@param null_pos The address of the null bytes.
@param null_bit The position of the column's null bit within the row's null
bytes.
*/
Field *make_field(const Create_field &create_field, TABLE_SHARE *share,
uchar *ptr, uchar *null_pos, size_t null_bit);
/**
Instantiates a Field object without a record buffer.
@param create_field The column meta data.
@param share The table share object.
*/
Field *make_field(const Create_field &create_field, TABLE_SHARE *share);
/*
A class for sending info to the client
*/
class Send_field {
public:
const char *db_name;
const char *table_name, *org_table_name;
const char *col_name, *org_col_name;
ulong length;
uint charsetnr, flags, decimals;
enum_field_types type;
/*
true <=> source item is an Item_field. Needed to workaround lack of
architecture in legacy Protocol_text implementation. Needed only for
Protocol_classic and descendants.
*/
bool field;
Send_field() {}
};
/**
Constitutes a mapping from columns of tables in the from clause to
aggregated columns. Typically, this means that they represent the mapping
between columns of temporary tables used for aggregatation, but not
always. They are also used for aggregation that can be executed "on the
fly" without a temporary table.
*/
class Copy_field {
/**
Convenience definition of a copy function returned by
get_copy_func.
*/
typedef void Copy_func(Copy_field *);
Copy_func *get_copy_func(Field *to, Field *from);
public:
String tmp; // For items
Copy_field() : m_from_field(NULL), m_to_field(NULL) {}
Copy_field(Field *to, Field *from, bool save) : Copy_field() {
set(to, from, save);
}
Copy_field(uchar *to, Field *from) : Copy_field() { set(to, from); }
void set(Field *to, Field *from, bool save); // Field to field
void set(uchar *to, Field *from); // Field to string
/// Whether the from field is currently NULL or not (by itself, or by
/// means of being in a NULL row).
bool from_is_null() const;
/// Set the to field to NULL or not NULL (if it is non-nullable,
/// sets the NULL row in the containing row).
void set_to_is_null(bool is_null);
private:
void (*m_do_copy)(Copy_field *);
void (*m_do_copy2)(Copy_field *); // Used to handle null values
/**
Number of bytes in the fields pointed to by 'from_ptr' and
'to_ptr'. Usually this is the number of bytes that are copied from
'from_ptr' to 'to_ptr'.
For variable-length fields (VARCHAR), the first byte(s) describe
the actual length of the text. For VARCHARs with length
< 256 there is 1 length byte
>= 256 there is 2 length bytes
Thus, if from_field is VARCHAR(10), from_length (and in most cases
to_length) is 11. For VARCHAR(1024), the length is 1026. @see
Field_varstring::length_bytes
Note that for VARCHARs, do_copy() will be do_varstring*() which
only copies the length-bytes (1 or 2) + the actual length of the
text instead of from/to_length bytes. @see get_copy_func()
*/
uint m_from_length;
uint m_to_length;
/**
The field in the table in the from clause that is read from. If this
Copy_field is used without a temporary table, this member is nullptr.
*/
Field *m_from_field;
Field *m_to_field;
// Pointing into the NULL information of the fields in question,
// if they are nullable. See from_is_null().
uchar *from_null_ptr;
public:
uchar *from_ptr, *to_ptr; // Public by legacy only.
uchar *to_null_ptr; // Needs to be public for the time being; see
// setup_copy_fields().
private:
uint from_bit, to_bit;
void check_and_set_temporary_null() {
if (m_from_field && m_from_field->is_tmp_null() &&
!m_to_field->is_tmp_null()) {
m_to_field->set_tmp_nullable();
m_to_field->set_tmp_null();
}
}
public:
void invoke_do_copy(Copy_field *f);
void invoke_do_copy2(Copy_field *f);
Field *from_field() { return m_from_field; }
Field *to_field() { return m_to_field; }
uint from_length() const { return m_from_length; }
uint to_length() const { return m_to_length; }
void swap_direction();
};
enum_field_types get_blob_type_from_length(size_t length);
size_t calc_pack_length(enum_field_types type, size_t length);
/**
Calculate the length of the in-memory representation of the column from
information which can be retrieved from dd::Column or Ha_fk_column_type
describing it.
This function calculates the amount of memory necessary to store values
in the record buffer. It is used in cases when we want to calculate
this value from the description of column in the form compatible with
dd::Column without constructing full-blown Field object.
@note The implementation is based on Create_field::init() and
Create_field::create_length_to_internal_length().
@param type Column DD type.
@param char_length Column length as stored in DD.
@param elements_count Number of elements in column of ENUM/SET type.
@param treat_bit_as_char Indicates whether this BIT column is represented
as char column internally.
@param numeric_scale Column numeric scale as stored in DD.
@param is_unsigned Column unsignedness.
*/
size_t calc_pack_length(dd::enum_column_types type, size_t char_length,
size_t elements_count, bool treat_bit_as_char,
uint numeric_scale, bool is_unsigned);
uint32 calc_key_length(enum_field_types sql_type, uint32 length,
uint32 decimals, bool is_unsigned, uint32 elements);
type_conversion_status set_field_to_null(Field *field);
type_conversion_status set_field_to_null_with_conversions(Field *field,
bool no_conversions);
type_conversion_status store_internal_with_error_check(Field_new_decimal *field,
int conversion_err,
my_decimal *value);
/**
Generate a Create_field, based on an Item.
This function will generate a Create_field based on an existing Item. This
is used for multiple purposes, including CREATE TABLE AS SELECT and creating
hidden generated columns for functional indexes.
@param thd Thread handler
@param item The Item to generate a Create_field from
@param tmp_table A temporary TABLE object that is used for holding Field
objects that are created
@returns A Create_field allocated on the THDs MEM_ROOT.
*/
Create_field *generate_create_field(THD *thd, Item *item, TABLE *tmp_table);
inline bool is_blob(enum_field_types sql_type) {
return (sql_type == MYSQL_TYPE_BLOB || sql_type == MYSQL_TYPE_MEDIUM_BLOB ||
sql_type == MYSQL_TYPE_TINY_BLOB || sql_type == MYSQL_TYPE_LONG_BLOB);
}
/**
@returns the expression if the input field is a hidden generated column that
represents a functional key part. If not, return the field name. In case of
a functional index; the expression is allocated on the THD's MEM_ROOT.
*/
const char *get_field_name_or_expression(THD *thd, const Field *field);
/**
Perform per item-type checks to determine if the expression is allowed for
a generated column, default value expression, a functional index or a check
constraint. Note that validation of the specific function is done later in
procedures open_table_from_share and fix_value_generators_fields.
@param expression the expression to check for validity
@param name used for error reporting
@param source Source of value generator(a generated column, a
regular column with generated default value or
a check constraint).
@return false if ok, true otherwise
*/
bool pre_validate_value_generator_expr(Item *expression, const char *name,
Value_generator_source source);
#endif /* FIELD_INCLUDED */