用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

319 lines
9.1 KiB

#include <rthw.h>
#include <rtthread.h>
#include "io.h"
#include <asm/ppc4xx-intvec.h>
#define UART0_BASE 0xef600300
#define UART1_BASE 0xef600400
#define UCR0_MASK 0x0000007f
#define UCR1_MASK 0x00007f00
#define UCR0_UDIV_POS 0
#define UCR1_UDIV_POS 8
#define UDIV_MAX 127
#define UART_RBR 0x00
#define UART_THR 0x00
#define UART_IER 0x01
#define UART_IIR 0x02
#define UART_FCR 0x02
#define UART_LCR 0x03
#define UART_MCR 0x04
#define UART_LSR 0x05
#define UART_MSR 0x06
#define UART_SCR 0x07
#define UART_DLL 0x00
#define UART_DLM 0x01
/*-----------------------------------------------------------------------------+
| Line Status Register.
+-----------------------------------------------------------------------------*/
#define asyncLSRDataReady1 0x01
#define asyncLSROverrunError1 0x02
#define asyncLSRParityError1 0x04
#define asyncLSRFramingError1 0x08
#define asyncLSRBreakInterrupt1 0x10
#define asyncLSRTxHoldEmpty1 0x20
#define asyncLSRTxShiftEmpty1 0x40
#define asyncLSRRxFifoError1 0x80
/* PPC405 serial device */
struct rt_ppc405_serial
{
/* inherit from device */
struct rt_device parent;
rt_uint32_t hw_base;
rt_uint32_t irqno;
rt_uint32_t baudrate;
/* reception field */
rt_uint16_t save_index, read_index;
rt_uint8_t rx_buffer[RT_UART_RX_BUFFER_SIZE];
};
struct rt_ppc405_serial ppc405_serial;
/* serial character device */
static rt_err_t rt_serial_init (rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t rt_serial_open(rt_device_t dev, rt_uint16_t oflag)
{
struct rt_ppc405_serial* device;
device = (struct rt_ppc405_serial*) dev;
RT_ASSERT(device != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* Enable "RX Data Available" Interrupt on UART */
out_8((rt_uint8_t*)device->hw_base + UART_IER, 0x01);
/* Setup UART FIFO: RX trigger level: 1 byte, Enable FIFO */
out_8((rt_uint8_t*)device->hw_base + UART_FCR, 1);
/* init UART rx interrupt */
rt_hw_interrupt_unmask(device->irqno);
}
return RT_EOK;
}
static rt_err_t rt_serial_close(rt_device_t dev)
{
struct rt_ppc405_serial* device;
device = (struct rt_ppc405_serial*) dev;
RT_ASSERT(device != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
/* mask UART rx interrupt */
rt_hw_interrupt_mask(device->irqno);
}
return RT_EOK;
}
static rt_err_t rt_serial_control(rt_device_t dev, int cmd, void *args)
{
return RT_EOK;
}
static rt_ssize_t rt_serial_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
struct rt_ppc405_serial* device;
device = (struct rt_ppc405_serial*) dev;
RT_ASSERT(device != RT_NULL);
/* point to buffer */
ptr = (rt_uint8_t*) buffer;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
while (size)
{
/* interrupt receive */
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
if (device->read_index != device->save_index)
{
*ptr = device->rx_buffer[device->read_index];
device->read_index ++;
if (device->read_index >= RT_UART_RX_BUFFER_SIZE)
device->read_index = 0;
}
else
{
/* no data in rx buffer */
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
ptr ++; size --;
}
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_RX)
{
/* not support right now */
RT_ASSERT(0);
}
/* polling mode */
RT_ASSERT(0);
return (rt_size_t)ptr - (rt_size_t)buffer;
}
static rt_ssize_t rt_serial_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
char *ptr;
struct rt_ppc405_serial* device;
device = (struct rt_ppc405_serial*) dev;
RT_ASSERT(device != RT_NULL);
if (dev->flag & RT_DEVICE_FLAG_INT_TX)
{
/* not support */
RT_ASSERT(0);
}
else if (dev->flag & RT_DEVICE_FLAG_DMA_TX)
{
/* not support */
RT_ASSERT(0);
}
/* polling write */
ptr = (char *)buffer;
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
while ((in_8((rt_uint8_t*)device->hw_base + UART_LSR) & 0x20) != 0x20);
out_8((rt_uint8_t*)device->hw_base + UART_THR, '\r');
}
while ((in_8((rt_uint8_t*)device->hw_base + UART_LSR) & 0x20) != 0x20);
out_8((rt_uint8_t*)device->hw_base + UART_THR, *ptr);
ptr ++;
size --;
}
}
else
{
while (size)
{
while ((in_8((rt_uint8_t*)device->hw_base + UART_LSR) & 0x20) != 0x20);
out_8((rt_uint8_t*)device->hw_base + UART_THR, *ptr);
ptr ++;
size --;
}
}
return (rt_size_t) ptr - (rt_size_t) buffer;
}
void rt_serial_set_baudrate(struct rt_ppc405_serial* device)
{
rt_uint32_t bdiv;
bdiv = 115200;
out_8((rt_uint8_t *)device->hw_base + UART_DLL, bdiv); /* set baudrate divisor */
out_8((rt_uint8_t *)device->hw_base + UART_DLM, bdiv >> 8); /* set baudrate divisor */
}
void rt_serial_isr(int irqno, void* param)
{
unsigned char status;
struct rt_ppc405_serial *device;
device = (struct rt_ppc405_serial*) param;
status = in_8((rt_uint8_t *)device->hw_base + UART_LSR);
if (status & 0x01)
{
rt_base_t level;
while (status & 0x01)
{
/* disable interrupt */
level = rt_hw_interrupt_disable();
/* read character */
device->rx_buffer[device->save_index] = (0xff & (int) in_8((rt_uint8_t *)device->hw_base));
device->save_index ++;
if (device->save_index >= RT_UART_RX_BUFFER_SIZE)
device->save_index = 0;
/* if the next position is read index, discard this 'read char' */
if (device->save_index == device->read_index)
{
device->read_index ++;
if (device->read_index >= RT_UART_RX_BUFFER_SIZE)
device->read_index = 0;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
/* check error */
if ((status & ( asyncLSRFramingError1 |
asyncLSROverrunError1 |
asyncLSRParityError1 |
asyncLSRBreakInterrupt1 )) != 0)
{
out_8((rt_uint8_t *)device->hw_base + UART_LSR,
asyncLSRFramingError1 |
asyncLSROverrunError1 |
asyncLSRParityError1 |
asyncLSRBreakInterrupt1);
}
status = in_8((rt_uint8_t *)device->hw_base + UART_LSR);
}
/* invoke callback */
if(device->parent.rx_indicate != RT_NULL)
{
device->parent.rx_indicate(&device->parent, 1);
}
}
}
void rt_hw_serial_init(void)
{
volatile rt_uint8_t val;
struct rt_ppc405_serial* device;
device = (struct rt_ppc405_serial*) &ppc405_serial;
device->parent.type = RT_Device_Class_Char;
device->hw_base = UART0_BASE;
device->baudrate = 115200;
device->irqno = VECNUM_U0;
rt_hw_interrupt_install(device->irqno, rt_serial_isr, device, "serial"); /* install isr */
rt_memset(device->rx_buffer, 0, sizeof(device->rx_buffer));
device->read_index = device->save_index = 0;
out_8((rt_uint8_t *)device->hw_base + UART_LCR, 0x80); /* set DLAB bit */
/* setup baudrate */
rt_serial_set_baudrate(device);
out_8((rt_uint8_t *)device->hw_base + UART_LCR, 0x03); /* clear DLAB; set 8 bits, no parity */
out_8((rt_uint8_t *)device->hw_base + UART_FCR, 0x00); /* disable FIFO */
out_8((rt_uint8_t *)device->hw_base + UART_MCR, 0x00); /* no modem control DTR RTS */
val = in_8((rt_uint8_t *)device->hw_base + UART_LSR); /* clear line status */
val = in_8((rt_uint8_t *)device->hw_base + UART_RBR); /* read receive buffer */
out_8((rt_uint8_t *)device->hw_base + UART_SCR, 0x00); /* set scratchpad */
out_8((rt_uint8_t *)device->hw_base + UART_IER, 0x00); /* set interrupt enable reg */
device->parent.type = RT_Device_Class_Char;
device->parent.init = rt_serial_init;
device->parent.open = rt_serial_open;
device->parent.close = rt_serial_close;
device->parent.read = rt_serial_read;
device->parent.write = rt_serial_write;
device->parent.control = rt_serial_control;
device->parent.user_data = RT_NULL;
rt_device_register(&device->parent,
"uart1", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_STREAM);
}