用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

718 lines
20 KiB

/* ****************************************************************************
* Copyright (C) 2014-2018 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*
* $Date: 2020-09-08 13:28:39 -0500 (Tue, 08 Sep 2020) $
* $Revision: 55611 $
*
*************************************************************************** */
/* **** Includes **** */
#include <stdint.h>
#include <string.h>
#include "mxc_config.h"
#include "mxc_assert.h"
#include "uart_regs.h"
#include "uart.h"
#include "mxc_lock.h"
#include "mxc_sys.h"
/* **** Definitions **** */
#define UART_ER_IF (MXC_F_UART_INT_FL_RX_FRAME_ERROR | \
MXC_F_UART_INT_FL_RX_PARITY_ERROR | \
MXC_F_UART_INT_FL_RX_OVERRUN)
#define UART_ER_IE (MXC_F_UART_INT_EN_RX_FRAME_ERROR | \
MXC_F_UART_INT_EN_RX_PARITY_ERROR | \
MXC_F_UART_INT_EN_RX_OVERRUN )
#define UART_RX_IF (MXC_F_UART_INT_FL_RX_FIFO_THRESH)
#define UART_RX_IE (MXC_F_UART_INT_EN_RX_FIFO_THRESH)
#define UART_TX_IF (MXC_F_UART_INT_FL_TX_FIFO_ALMOST_EMPTY | \
MXC_F_UART_INT_FL_TX_FIFO_THRESH)
#define UART_TX_IE (MXC_F_UART_INT_EN_TX_FIFO_ALMOST_EMPTY | \
MXC_F_UART_INT_EN_TX_FIFO_THRESH)
#if (TARGET == 32660) || (TARGET == 32665)
#define MAX_FACTOR 3
#else
#define MAX_FACTOR 7
#endif
/* **** File Scope Data **** */
// Saves the state of the non-blocking read requests.
static uart_req_t *rx_states[MXC_UART_INSTANCES];
// Saves the state of the non-blocking write requests.
static uart_req_t *tx_states[MXC_UART_INSTANCES];
/* **** Functions **** */
static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num);
static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num,
uint32_t flags);
static uint32_t uart_error_check(mxc_uart_regs_t *uart);
static void uart_error_clear(mxc_uart_regs_t *uart);
/* ************************************************************************* */
uint32_t uart_error_check(mxc_uart_regs_t *uart)
{
return (uart->int_fl & UART_ER_IF);
}
/* ************************************************************************* */
void uart_error_clear(mxc_uart_regs_t *uart)
{
UART_ClearFlags(uart,UART_ER_IF);
}
/* ************************************************************************* */
int UART_Init(mxc_uart_regs_t *uart, const uart_cfg_t *cfg, const sys_cfg_uart_t* sys_cfg)
{
int err;
int uart_num;
uint32_t baud0 = 0, baud1 = 0,div;
int32_t factor = -1;
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num == -1) {
return E_BAD_PARAM;
}
if ((err = SYS_UART_Init(uart, sys_cfg)) != E_NO_ERROR) {
return err;
}
// Initialize state pointers
rx_states[uart_num] = NULL;
tx_states[uart_num] = NULL;
// Drain FIFOs, enable UART, and set configuration
uart->ctrl = (MXC_F_UART_CTRL_ENABLE | cfg->parity | cfg->size | cfg->stop | cfg->flow | cfg->pol);
// Set the baud rate
// Calculate divisor
#if (TARGET != 32660)
uart->ctrl |= cfg->clksel;
if (cfg->clksel == UART_CLKSEL_ALTERNATE) {
div = UART_ALTERNATE_CLOCK_HZ / ((cfg->baud));
} else {
div = PeripheralClock / ((cfg->baud));
}
#else
div = PeripheralClock / ((cfg->baud));
#endif
// Search for integer and fractional baud rate registers based on divisor
do {
factor += 1;
baud0 = div >> (7-factor); // divide by 128,64,32,16 to extract integer part
baud1 = ((div << factor) - (baud0 << 7)); //subtract factor corrected div - integer parts
} while ((baud0 == 0) && (factor < MAX_FACTOR));
uart->baud0 = ((factor << MXC_F_UART_BAUD0_FACTOR_POS) | baud0);
#if (TARGET == 32660) || (TARGET == 32665) || (TARGET == 32650)
/* Erratum:
* Hardware bug causes exact baud rates to generate framing error. Slightly mis-adjust timing
* to help avoid this bug.
*/
if (baud1 > 3) {
uart->baud1 = baud1 - 3;
} else {
uart->baud1 = baud1 + 3;
}
#else
uart->baud1 = baud1;
#endif
// Clear pending requests
rx_states[uart_num] = NULL;
tx_states[uart_num] = NULL;
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_Shutdown(mxc_uart_regs_t *uart)
{
int uart_num;
uart_req_t *temp_req;
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num < 0) {
return E_BAD_PARAM;
}
// Disable interrupts
uart->int_en = 0;
// Flush RX and TX FIFOS
uart->ctrl |= (MXC_F_UART_CTRL_TX_FLUSH | MXC_F_UART_CTRL_RX_FLUSH);
// Call all of the pending callbacks for this UART
if(rx_states[uart_num] != NULL) {
// Save the request
temp_req = rx_states[uart_num];
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
// Callback if not NULL
if (temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
if (tx_states[uart_num] != NULL) {
// Save the request
temp_req = tx_states[uart_num];
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
// Callback if not NULL
if (temp_req->callback != NULL) {
temp_req->callback(temp_req, E_SHUTDOWN);
}
}
// Wait for not busy
while (uart->status & (MXC_F_UART_STATUS_TX_BUSY | MXC_F_UART_STATUS_RX_BUSY)) {
}
// Shutdown the UART
uart->ctrl = 0;
// Shutdown any system level setup
SYS_UART_Shutdown(uart);
// Clear pending requests
rx_states[uart_num] = NULL;
tx_states[uart_num] = NULL;
return E_NO_ERROR;
}
/* ************************************************************************* */
void UART_Handler(mxc_uart_regs_t *uart)
{
int uart_num; // Holds the current index of rx_states or tx_states
uint32_t intst;
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num == -1) {
return;
}
// Read and clear interrupts
intst = uart->int_fl;
uart->int_fl = intst;
// Read interrupt
if (intst & (UART_RX_IF | UART_ER_IF)) {
UART_ReadHandler(uart, rx_states[uart_num], uart_num, intst);
}
// Write Interrupt
if (intst & (UART_TX_IF | UART_ER_IF)) {
UART_WriteHandler(uart, tx_states[uart_num], uart_num);
}
}
/* ************************************************************************* */
static void UART_WriteHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num)
{
int remain, avail;
req = tx_states[uart_num];
if (req == NULL) {
// Nothing to do
uart->int_en &= ~MXC_F_UART_INT_EN_TX_FIFO_ALMOST_EMPTY; // disable interrupt
return;
}
// Refill the TX FIFO
avail = UART_NumWriteAvail(uart);
remain = req->len - req->num;
while (avail && remain) {
uart->fifo = req->data[req->num++];
remain--;
avail--;
}
// See if we've sent all of the characters
if (req->len == req->num) {
// Disable interrupts
uart->int_en &= ~MXC_F_UART_INT_EN_TX_FIFO_ALMOST_EMPTY;
// Deinit state before callback in case another is requested
tx_states[uart_num] = NULL;
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
// Callback when we've written all the characters
if (req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
}
// Enable the interrupts
uart->int_en |= UART_TX_IE | UART_ER_IE;
}
/* ************************************************************************* */
static void UART_ReadHandler(mxc_uart_regs_t *uart, uart_req_t *req, int uart_num,
uint32_t flags)
{
int remain, avail;
if (req == NULL) {
// Nothing to do
uart->int_en &= ~(UART_RX_IE | UART_ER_IE); // disable interrupts
return;
}
// Save the data in the FIFO while we still need data
avail = UART_NumReadAvail(uart);
remain = req->len - req->num;
while (avail && remain) {
req->data[req->num++] = uart->fifo;
remain--;
avail--;
}
// Check for errors
if (flags & MXC_F_UART_INT_FL_RX_OVERRUN) {
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
if (req->callback != NULL) {
req->callback(req, E_OVERFLOW);
}
return;
}
if (flags & (MXC_F_UART_INT_FL_RX_FRAME_ERROR |
MXC_F_UART_INT_FL_RX_PARITY_ERROR)) {
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
if (req->callback != NULL) {
req->callback(req, E_COMM_ERR);
}
return;
}
// Check to see if we've received all of the characters.
if (req->num == req->len) {
// Disable interrupts
uart->int_en &= ~(UART_RX_IE | UART_ER_IE);
// Deinit state before callback in case another is requested
rx_states[uart_num] = NULL;
// Call the callback function
if (req->callback != NULL) {
req->callback(req, E_NO_ERROR);
}
return;
} else if (req->num > (req->len - MXC_UART_FIFO_DEPTH)) {
// Set RX threshold less than FIFO_DEPTH characters if needed
uart->thresh_ctrl = ((req->len - req->num)<<
MXC_F_UART_THRESH_CTRL_RX_FIFO_THRESH_POS);
} else {
uart->thresh_ctrl = MXC_UART_FIFO_DEPTH<<
MXC_F_UART_THRESH_CTRL_RX_FIFO_THRESH_POS;
}
}
/* ************************************************************************* */
int UART_Read(mxc_uart_regs_t *uart, uint8_t *data, int len, int *num)
{
int uart_num; // Holds the current index of rx_states
int char_read = 0; // Holds the number of characters successfully read
int error_code =0; // Holds the error to return while reading
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num < 0) {
return E_BAD_PARAM;
}
// Check to make sure baud rate has been set
if (uart->baud0 == 0) {
return E_UNINITIALIZED;
}
// Check data pointer
if (data == NULL) {
return E_BAD_PARAM;
}
// Check if there is already a request in progress
if (rx_states[uart_num] != NULL) {
return E_BUSY;
}
// Lock this UART from reading
while (mxc_get_lock((uint32_t*)&rx_states[uart_num], 1) != E_NO_ERROR) {
}
// Get bytes FIFO
while (char_read < len) {
// Wait for RXFIFO to not be empty
while (uart->status & MXC_F_UART_STATUS_RX_EMPTY) {
// Check for error
if (uart_error_check(uart) != E_NO_ERROR) {
if (uart->int_fl & MXC_F_UART_INT_FL_RX_OVERRUN) {
error_code = E_OVERFLOW;
} else {
error_code = E_COMM_ERR;
}
uart_error_clear(uart);
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
return error_code;
}
}
data[char_read] = uart->fifo;
char_read++;
}
if (num != NULL) {
*num = char_read;
}
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
return char_read;
}
/* ************************************************************************* */
uint8_t UART_ReadByte(mxc_uart_regs_t *uart)
{
while (uart->status & MXC_F_UART_STATUS_RX_EMPTY) {}
return uart->fifo;
}
/* ************************************************************************* */
int UART_Write(mxc_uart_regs_t *uart, const uint8_t *data, int len)
{
int uart_num; // Holds the current index of tx_states
int char_written = 0; // Holds the number of characters successfully written
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num < 0) {
return E_BAD_PARAM;
}
// Check to make sure baud rate has been set
if (uart->baud0 == 0) {
return E_UNINITIALIZED;
}
// Check data pointer
if (data == NULL) {
return E_BAD_PARAM;
}
// Check if there is already a request in progress
if (tx_states[uart_num] != NULL) {
return E_BUSY;
}
// Lock this UART from writing
while (mxc_get_lock((uint32_t*)&tx_states[uart_num], 1) != E_NO_ERROR) {
}
// Clear errors
uart_error_clear(uart);
// Put bytes into FIFO
while (char_written < len) {
UART_WriteByte(uart,data[char_written]);
char_written++;
}
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
return char_written;
}
/* ************************************************************************* */
void UART_WriteByte(mxc_uart_regs_t *uart, uint8_t data)
{
// Wait for TXFIFO if full
while (uart->status & MXC_F_UART_STATUS_TX_FULL) {
}
// Put data into fifo
uart->fifo = data;
}
/* ************************************************************************* */
int UART_ReadAsync(mxc_uart_regs_t *uart, uart_req_t *req)
{
int uart_num; // Holds the current index of tx_states
uint32_t flags; // Holds the Interrupt flags
// Check data pointer
if (req == NULL) {
return E_BAD_PARAM;
}
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num < 0) {
return E_BAD_PARAM;
}
if (req->data == NULL) {
return E_NULL_PTR;
}
// Check to make sure baud rate has been set
if (uart->baud0 == 0) {
return E_UNINITIALIZED;
}
// Check if there is already a request in progress
if (rx_states[uart_num] != NULL) {
return E_BUSY;
}
if (!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
if (mxc_get_lock((uint32_t*)&rx_states[uart_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Clear the data counter
req->num = 0;
// Clear Interrupt Flags
flags = uart->int_fl;
uart->int_fl = flags;
UART_ReadHandler(uart,req,uart_num,flags);
// Enable the interrupts
uart->int_en |= UART_RX_IE | UART_ER_IE;
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_WriteAsync(mxc_uart_regs_t *uart, uart_req_t *req)
{
int uart_num; // Holds the current index of tx_states
// Check data pointer
if (req == NULL) {
return E_BAD_PARAM;
}
// Get the state array index
uart_num = MXC_UART_GET_IDX(uart);
if (uart_num < 0) {
return E_BAD_PARAM;
}
if (req->data == NULL) {
return E_NULL_PTR;
}
// Check to make sure baud rate has been set
if (uart->baud0 == 0) {
return E_UNINITIALIZED;
}
// Check if there is already a request in progress
if (tx_states[uart_num] != NULL) {
return E_BUSY;
}
if (!(req->len > 0)) {
return E_NO_ERROR;
}
// Attempt to register this write request
if (mxc_get_lock((uint32_t*)&tx_states[uart_num], (uint32_t)req) != E_NO_ERROR) {
return E_BUSY;
}
// Clear the data counter
req->num = 0;
UART_WriteHandler(uart, req, uart_num);
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_Busy(mxc_uart_regs_t *uart)
{
int uart_num = MXC_UART_GET_IDX(uart); // Holds the current index of tx_states
MXC_ASSERT(uart_num >= 0);
if ((uart->status & MXC_F_UART_STATUS_TX_BUSY) || (uart->status & MXC_F_UART_STATUS_RX_BUSY)) {
return E_BUSY;
}
// Check to see if there are any ongoing transactions and the UART has room in its FIFO
if ((tx_states[uart_num] == NULL) &&
!(uart->status & MXC_F_UART_STATUS_TX_FULL)) {
return E_NO_ERROR;
}
return E_BUSY;
}
/* ************************************************************************* */
int UART_PrepForSleep(mxc_uart_regs_t *uart)
{
if (UART_Busy(uart) != E_NO_ERROR) {
return E_BUSY;
}
// Leave read interrupts enabled, if already enabled
uart->int_en &= (UART_RX_IE | UART_ER_IE);
return E_NO_ERROR;
}
/* ************************************************************************* */
int UART_AbortAsync(uart_req_t *req)
{
int uart_num;
// Figure out if this was a read or write request, find the request, set to NULL
for (uart_num = 0; uart_num < MXC_UART_INSTANCES; uart_num++) {
if (req == rx_states[uart_num]) {
// Disable read interrupts, clear flags.
MXC_UART_GET_UART(uart_num)->int_en &= ~(UART_RX_IE | UART_ER_IE);
MXC_UART_GET_UART(uart_num)->int_fl = (UART_RX_IF | UART_ER_IF);
// Unlock this UART to read
mxc_free_lock((uint32_t*)&rx_states[uart_num]);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
if (req == tx_states[uart_num]) {
// Disable write interrupts, clear flags.
MXC_UART_GET_UART(uart_num)->int_en &= ~(UART_TX_IE | UART_ER_IE);
MXC_UART_GET_UART(uart_num)->int_fl = (UART_TX_IF | UART_ER_IF);
// Unlock this UART to write
mxc_free_lock((uint32_t*)&tx_states[uart_num]);
// Callback if not NULL
if (req->callback != NULL) {
req->callback(req, E_ABORT);
}
return E_NO_ERROR;
}
}
return E_BAD_PARAM;
}
/* ************************************************************************* */
unsigned UART_NumWriteAvail(mxc_uart_regs_t *uart)
{
return MXC_UART_FIFO_DEPTH - ((uart->status & MXC_F_UART_STATUS_TX_FIFO_CNT) >>
MXC_F_UART_STATUS_TX_FIFO_CNT_POS);
}
/* ************************************************************************* */
unsigned UART_NumReadAvail(mxc_uart_regs_t *uart)
{
return ((uart->status & MXC_F_UART_STATUS_RX_FIFO_CNT) >>
MXC_F_UART_STATUS_RX_FIFO_CNT_POS);
}
/* ************************************************************************* */
unsigned UART_GetFlags(mxc_uart_regs_t *uart)
{
return (uart->int_fl);
}
/* ************************************************************************* */
void UART_ClearFlags(mxc_uart_regs_t *uart, uint32_t mask)
{
uart->int_fl = mask;
}
/* ************************************************************************* */
void UART_Enable(mxc_uart_regs_t *uart)
{
uart->ctrl |= MXC_F_UART_CTRL_ENABLE;
}
/* ************************************************************************* */
void UART_Disable(mxc_uart_regs_t *uart)
{
uart->ctrl &= ~MXC_F_UART_CTRL_ENABLE;
}
/* ************************************************************************* */
void UART_DrainRX(mxc_uart_regs_t *uart)
{
uart->ctrl |= MXC_F_UART_CTRL_RX_FLUSH;
}
/* ************************************************************************* */
void UART_DrainTX(mxc_uart_regs_t *uart)
{
uart->ctrl |= MXC_F_UART_CTRL_TX_FLUSH;
}