用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

622 lines
15 KiB

/*
* Copyright (C) 2021, Huada Semiconductor Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-08-19 pjq first version
*/
/*******************************************************************************
* Include files
******************************************************************************/
#include <rtdevice.h>
#include <rthw.h>
#include "gpio.h"
#include "uart.h"
#include "drv_usart.h"
#ifdef RT_USING_SERIAL
#if !defined(BSP_USING_UART0) && !defined(BSP_USING_UART1)
#error "Please define at least one BSP_USING_UARTx"
/* UART instance can be selected at menuconfig -> Hardware Drivers Config -> On-chip Peripheral Drivers -> Enable UART */
#endif
/*******************************************************************************
* Local type definitions ('typedef')
******************************************************************************/
/* HC32 config Rx timeout */
struct hc32_uart_rxto
{
rt_uint32_t channel;
rt_size_t timeout_bits;
};
/* HC32 UART index */
struct uart_index
{
rt_uint8_t index;
rt_uint8_t idx;
};
/* HC32 UART irq handler */
struct uart_irq_handler
{
void (*tx_irq_handler)(void);
void (*rxerr_irq_handler)(void);
void (*rx_irq_handler)(void);
void (*cts_irq_handler)(void);
void (*pei_irq_handler)(void);
};
/*******************************************************************************
* Local pre-processor symbols/macros ('#define')
******************************************************************************/
/*******************************************************************************
* Global variable definitions (declared in header file with 'extern')
******************************************************************************/
/*******************************************************************************
* Local function prototypes ('static')
******************************************************************************/
#ifdef RT_SERIAL_USING_DMA
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag);
#endif
/*******************************************************************************
* Local variable definitions ('static')
******************************************************************************/
enum
{
#ifdef BSP_USING_UART0
UART0_INDEX,
#endif
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
UART_INDEX_MAX,
};
static const struct uart_index uart_map[] =
{
#ifdef BSP_USING_UART0
{UART0_INDEX, UARTCH0},
#endif
#ifdef BSP_USING_UART1
{UART1_INDEX, UARTCH1},
#endif
};
static struct hc32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART0
{ \
.name = "uart0", \
.idx = UARTCH0, \
},
#endif
#ifdef BSP_USING_UART1
{ \
.name = "uart1", \
.idx = UARTCH1, \
}
#endif
};
#ifdef BSP_USING_UART0
static int uart0_rx_flag;
#endif
#ifdef BSP_USING_UART1
static int uart1_rx_flag;
#endif
static struct hc32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static const struct uart_irq_handler uart_irq_handlers[sizeof(uart_obj) / sizeof(uart_obj[0])];
/*******************************************************************************
* Function implementation - global ('extern') and local ('static')
******************************************************************************/
//static uint32_t hc32_get_uart_index(M0P_UART_TypeDef *Instance)
static uint32_t hc32_get_uart_index(uint8_t idx)
{
uint32_t index = UART_INDEX_MAX;
for (uint8_t i = 0U; i < ARRAY_SZ(uart_map); i++)
{
if (uart_map[i].idx == idx)
{
index = uart_map[i].index;
RT_ASSERT(index < UART_INDEX_MAX)
break;
}
}
return index;
}
#if defined(BSP_USING_UART0)
void uart0_gpioinit(void)
{
stc_gpio_config_t stcGpioCfg;
DDL_ZERO_STRUCT(stcGpioCfg);
stcGpioCfg.enDir = GpioDirOut;
Gpio_Init(GpioPortA,GpioPin9,&stcGpioCfg);
Gpio_SetAfMode(GpioPortA,GpioPin9,GpioAf1);//TX
stcGpioCfg.enDir = GpioDirIn;
Gpio_Init(GpioPortA,GpioPin10,&stcGpioCfg);
Gpio_SetAfMode(GpioPortA,GpioPin10,GpioAf1);//RX
}
#endif
#if defined(BSP_USING_UART1)
void uart1_gpioinit(void)
{
stc_gpio_config_t stcGpioCfg;
DDL_ZERO_STRUCT(stcGpioCfg);
stcGpioCfg.enDir = GpioDirOut;
Gpio_Init(GpioPortA,GpioPin2,&stcGpioCfg);
Gpio_SetAfMode(GpioPortA,GpioPin2,GpioAf1);//TX
stcGpioCfg.enDir = GpioDirIn;
Gpio_Init(GpioPortA,GpioPin3,&stcGpioCfg);
Gpio_SetAfMode(GpioPortA,GpioPin3,GpioAf1);//RX
}
#endif
static rt_err_t hc32_configure(struct rt_serial_device *serial,
struct serial_configure *cfg)
{
struct hc32_uart *uart;
uint16_t u16Scnt = 0;
stc_uart_config_t stcConfig;
stc_uart_irq_cb_t stcUartIrqCb;
stc_uart_multimode_t stcMulti;
stc_uart_baud_t stcBaud;
uint8_t index;
en_uart_mmdorck_t enTb8;
DDL_ZERO_STRUCT(stcConfig);
DDL_ZERO_STRUCT(stcUartIrqCb);
DDL_ZERO_STRUCT(stcMulti);
DDL_ZERO_STRUCT(stcBaud);
RT_ASSERT(RT_NULL != cfg);
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
#if defined(BSP_USING_UART0)
if (uart->config->idx == UARTCH0)
{
uart0_gpioinit();
}
#endif
#if defined(BSP_USING_UART1)
if (uart->config->idx == UARTCH1)
{
uart1_gpioinit();
}
#endif
/* Configure USART initialization structure */
index = hc32_get_uart_index(uart->config->idx);
stcUartIrqCb.pfnRxIrqCb = uart_irq_handlers[index].rx_irq_handler;
stcUartIrqCb.pfnTxIrqCb = uart_irq_handlers[index].tx_irq_handler;
stcUartIrqCb.pfnRxFEIrqCb = uart_irq_handlers[index].rxerr_irq_handler;
stcUartIrqCb.pfnPEIrqCb = uart_irq_handlers[index].pei_irq_handler;
stcUartIrqCb.pfnCtsIrqCb = uart_irq_handlers[index].cts_irq_handler;
stcConfig.pstcIrqCb = &stcUartIrqCb;
stcConfig.bTouchNvic = TRUE;
stcConfig.enRunMode = UartMode3;
stcMulti.enMulti_mode = UartNormal;
if(BIT_ORDER_LSB == cfg->bit_order)
{
}
else
{
}
switch(cfg->stop_bits)
{
case STOP_BITS_1:
stcConfig.enStopBit = Uart1bit;
break;
case STOP_BITS_2:
stcConfig.enStopBit = Uart2bit;
break;
default:
break;
}
switch(cfg->parity)
{
case PARITY_NONE:
enTb8 = UartDataOrAddr;
break;
case PARITY_EVEN:
enTb8 = UartEven;
break;
case PARITY_ODD:
enTb8 = UartOdd;
break;
default:
enTb8 = UartDataOrAddr;
break;
}
switch(cfg->data_bits)
{
case DATA_BITS_8:
break;
default:
return -RT_ERROR;
}
Uart_SetMMDOrCk(uart->config->idx, enTb8);
stcConfig.pstcMultiMode = &stcMulti;
Uart_Init(uart->config->idx, &stcConfig);
Uart_SetClkDiv(uart->config->idx, Uart8Or16Div);
stcBaud.u32Pclk = Sysctrl_GetPClkFreq();
stcBaud.enRunMode = UartMode3;
stcBaud.u32Baud = cfg->baud_rate;
u16Scnt = Uart_CalScnt(uart->config->idx, &stcBaud);
Uart_SetBaud(uart->config->idx, u16Scnt);
Uart_ClrStatus(uart->config->idx, UartTC);
Uart_ClrStatus(uart->config->idx, UartRC);
Uart_DisableIrq(uart->config->idx, UartTxIrq);
Uart_DisableIrq(uart->config->idx, UartRxIrq);
Uart_EnableFunc(uart->config->idx, UartRx);
return RT_EOK;
}
static rt_err_t hc32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct hc32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = rt_container_of(serial, struct hc32_uart, serial);
switch (cmd)
{
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
Uart_DisableIrq(uart->config->idx, UartRxIrq);
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
Uart_ClrStatus(uart->config->idx, UartRC);
Uart_EnableIrq(uart->config->idx, UartRxIrq);
break;
case RT_DEVICE_CTRL_CLOSE:
break;
}
return RT_EOK;
}
static int hc32_putc(struct rt_serial_device *serial, char c)
{
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
if(serial->parent.open_flag & RT_DEVICE_FLAG_INT_TX)
{
if (Uart_GetStatus(uart->config->idx, UartTC) == FALSE)
{
return -1;
}
}
Uart_SendData(uart->config->idx, c);
return 1;
}
static int hc32_getc(struct rt_serial_device *serial)
{
int ch= -1;
struct hc32_uart *uart;
RT_ASSERT(RT_NULL != serial);
uart = rt_container_of(serial, struct hc32_uart, serial);
#if defined(BSP_USING_UART0)
if (uart->config->idx == UARTCH0)
{
if (serial->parent.open_flag & RT_DEVICE_FLAG_INT_RX)
{
if (uart0_rx_flag)
{
ch = Uart_ReceiveData(uart->config->idx);
uart0_rx_flag = 0;
}
}
else
{
if(Uart_GetStatus(uart->config->idx, UartRC))
{
Uart_ClrStatus(uart->config->idx, UartRC);
ch = Uart_ReceiveData(uart->config->idx);
}
}
}
#endif
#if defined(BSP_USING_UART1)
if (uart->config->idx == UARTCH1)
{
if (serial->parent.open_flag & RT_DEVICE_FLAG_INT_RX)
{
if (uart1_rx_flag)
{
ch = Uart_ReceiveData(uart->config->idx);
uart1_rx_flag = 0;
}
}
else
{
if(Uart_GetStatus(uart->config->idx, UartRC))
{
Uart_ClrStatus(uart->config->idx, UartRC);
ch = Uart_ReceiveData(uart->config->idx);
}
}
}
#endif
return ch;
}
static rt_ssize_t hc32_dma_transmit(struct rt_serial_device *serial,
rt_uint8_t *buf,
rt_size_t size,
int direction)
{
return 0;
}
static void hc32_uart_rx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_RX_IND);
}
static void hc32_uart_tx_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
if (uart->serial.parent.open_flag & RT_DEVICE_FLAG_INT_TX)
{
rt_hw_serial_isr(&uart->serial, RT_SERIAL_EVENT_TX_DONE);
}
}
static void hc32_uart_rxerr_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
}
static void hc32_uart_cts_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
}
static void hc32_uart_pei_irq_handler(struct hc32_uart *uart)
{
RT_ASSERT(RT_NULL != uart);
}
#ifdef RT_SERIAL_USING_DMA
static void hc32_dma_config(struct rt_serial_device *serial, rt_ubase_t flag)
{
}
#endif
#if defined(BSP_USING_UART0)
static void hc32_uart0_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart0_rx_flag = 1;
hc32_uart_rx_irq_handler(&uart_obj[UART0_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart0_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART0_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart0_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART0_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart0_cts_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_cts_irq_handler(&uart_obj[UART0_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart0_pei_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_pei_irq_handler(&uart_obj[UART0_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART0 */
#if defined(BSP_USING_UART1)
static void hc32_uart1_tx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_tx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_rxerr_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_rxerr_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_rx_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart1_rx_flag = 1;
hc32_uart_rx_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_cts_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_cts_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
static void hc32_uart1_pei_irq_handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
hc32_uart_pei_irq_handler(&uart_obj[UART1_INDEX]);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* BSP_USING_UART1 */
static const struct uart_irq_handler uart_irq_handlers[] =
{
#ifdef BSP_USING_UART0
{ hc32_uart0_tx_irq_handler, hc32_uart0_rxerr_irq_handler, hc32_uart0_rx_irq_handler,
hc32_uart0_cts_irq_handler, hc32_uart0_pei_irq_handler
},
#endif
#ifdef BSP_USING_UART1
{ hc32_uart1_tx_irq_handler, hc32_uart1_rxerr_irq_handler, hc32_uart1_rx_irq_handler,
hc32_uart1_cts_irq_handler, hc32_uart1_pei_irq_handler
},
#endif
};
static void hc32_uart_get_dma_config(void)
{
}
static const struct rt_uart_ops hc32_uart_ops =
{
.configure = hc32_configure,
.control = hc32_control,
.putc = hc32_putc,
.getc = hc32_getc,
.dma_transmit = hc32_dma_transmit
};
int hc32_hw_uart_init(void)
{
rt_err_t result = RT_EOK;
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct hc32_uart);
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
hc32_uart_get_dma_config();
Sysctrl_SetPeripheralGate(SysctrlPeripheralGpio,TRUE);
#ifdef BSP_USING_UART0
Sysctrl_SetPeripheralGate(SysctrlPeripheralUart0,TRUE);
#endif
#ifdef BSP_USING_UART1
Sysctrl_SetPeripheralGate(SysctrlPeripheralUart1,TRUE);
#endif
for (int i = 0; i < obj_num; i++)
{
/* init UART object */
uart_obj[i].serial.ops = &hc32_uart_ops;
uart_obj[i].serial.config = config;
uart_obj[i].config = &uart_config[i];
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,
uart_obj[i].config->name,
(RT_DEVICE_FLAG_RDWR |
RT_DEVICE_FLAG_INT_RX |
RT_DEVICE_FLAG_INT_TX |
uart_obj[i].uart_dma_flag),
&uart_obj[i]);
RT_ASSERT(result == RT_EOK);
}
return result;
}
INIT_BOARD_EXPORT(hc32_hw_uart_init);
#endif /* RT_USING_SERIAL */
/*******************************************************************************
* EOF (not truncated)
******************************************************************************/