用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Guo XIn 291e661666 first commit 10 months ago
..
figures first commit 10 months ago
.config first commit 10 months ago
Kconfig first commit 10 months ago
README.md first commit 10 months ago
SConscript first commit 10 months ago
SConstruct first commit 10 months ago
application.c first commit 10 months ago
avr32elf_uc3a0256.lds first commit 10 months ago
board.c first commit 10 months ago
rtconfig.h first commit 10 months ago
rtconfig.py first commit 10 months ago
startup.c first commit 10 months ago

README.md

SimpleMachines' Mizar32 Development Board

Introduction

The Mizar32 is a 32-bit computer based on the AVR32 processor. It is clocked at 66MHz and has 32MB of main memory. It supports mass storage on SD card, a USB connector, an on-board LED, two buttons, a JTAG port and six bus connectors.

board-snap

The bus connectors let you add other stackable hardware modules such as serial ports, ethernet, a 16x2 character LCD display and a VGA/keyboard/mouse/audio board based on the 8-core Parallax Propeller processor.

The Mizar32 is designed by SimpleMachines, Italy.

This board support package aims at adding RT-Thread support for the following Mizar32 development boards.

Model Flash SRAM SDRAM
Mizar32-A 512KB 64KB 32MB
Mizar32-B 256KB 64KB 32MB
Mizar32-C 128KB 64KB 32MB

Specification

  • Main processor: AVR32 UC3A0 @ 66 MHz
  • Internal fast SRAM: 32KB or 64KB with single-cycle access time
  • On-board SDRAM: 32MB with 2-cycle access time
  • Internal Flash memory: 128/256/512KB with single-cycle access time
  • External Flash memory: up to 4GB on micro SD card.
  • Internal operating Voltage: 3.3V with 5V input tolerant I/O
  • Digital I/O Pins: 66
  • Timer/Counter: 3 channel, 16-bit.
  • Analog-to-Digital input pins: 8 with 10-bit resolution measuring 0-3.3v at up to 384,000 samples per second
  • Stereo audio bitstream Digital-to-Analog Converter with 16 bit resolution at up to 48kHz
  • Pulse Width Modulation channels (PWM): 7
  • Universal Sync/Async RX/TX (USART): 2
  • Serial Periperal Interface (SPI): 2
  • Two-Wire Interface (TWI): 1, I2C-compatible at up to 400kbit/s
  • Universal Serial Bus (USB): 1 OTG host with dedicated cable.
  • Debug Port: JTAG connector
  • Ethernet MAC 10/100: 1 (requires add-on hardware module)
  • Oscillators: 2 (12MHz and 32768Hz)
  • Buttons: Reset button, user button
  • LEDs: Power LED, User LED
  • Power supply: 5V USB or 7.5V-35V DC, 80mA (base board) to 222mA (with all add-on modules)
  • Dimensions: 96,5mm x 63,5mm
  • Weight: 42.5 grams
  • Temperature range: -45 to +85°C

Embedded Hardware Interfaces

  • MicroSD
  • USB
  • JTAG
  • Add-on bus connectors 1-6 interfaces on the Add-on Bus
  • 12 General Purpose I/O pins
  • 2 UARTs: one basic, one with modem control signals
  • 2 SPI
  • I2C interface with 2-way splitter
  • 8 ADC inputs
  • 3 high-resolution timers
  • Ethernet

Optional Stacked Modules

Ethernet and Real Time Clock

16x2 I2C LCD Module

RS-232/RS-485 Module

VGA Output, PS/2 Input, Audio Output

PHT Prototype Board

SMD Prototype Board

This README is essentially a work-in-progress. I will try to further and documentation as and when I further the device driver base for the Mizar32 target.

If you feel like reaching out to me for questions pertaining to the target development board, you can write to me: ramangopalan AT gmail dot com.

Supported compiler

This BSP is built with the AVR32 GCC that comes with the Microchip Studio. I am using the Microchip Studio version 7.0.2594. Make sure that avr32-gcc.exe is visible on your command line. Add the binary directory to you PATH.

env-windows-avr32-gcc

I use Git Bash (Windows) for compiling the RT-Thread system. Once you set your path correctly, invoke Git Bash to query avr32-gcc.exe's version. The output should look similar to this:

$ avr32-gcc.exe --version
avr32-gcc.exe (AVR_32_bit_GNU_Toolchain_3.4.2_435) 4.4.7
Copyright (C) 2010 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

If you see this, you're all set to compile RT-Thread for Mizar32.

Program firmware

Step 1: download the RT-Thread codebase and navigate to bsp/avr32uc3a0.

$ cd bsp/avr32uc3a0/

Step 2: build

scons -c
scons

Step 3: flash

If everything went well, scons should have generated an elf file: rtthread-uc3a0256.elf. Let us program the file. The program 'atprogram' comes with Microchip Studio. I didn't have to do much here. Just make sure `atprogram.exe' is in your PATH.

atprogram -t atmelice -i jtag -d at32uc3a0256 program -f rtthread-uc3a0256.elf

Note that you should already see the on-board LED (PB29) blink if your programming was successful. I use the Atmel ICE programmer. To access msh with the default menuconfig's configuration, you'll need the VGA shield. Connect the target board to a 12 VDC wall adapter. Also connect the shield to a VGA monitor and a PS/2 keyboard.

Running Result

The output information on serial port for `ps' the command should look like this:

0x000003c0 tidle0    31  ready   0x00000054 0x00000100    67%   0x00000009 OK
0x00001650 tshell    20  running 0x000000b4 0x00001000    13%   0x0000000a OK
0x00001350 led1       5  suspend 0x0000007c 0x00000400    12%   0x00000005 EINTRPT

Here is a picture of the RT-Thread session on the VGA monitor:

RT-Thread VGA Session on Mizar32

Peripheral Support

Drive Support Remark
UART Support UART0/1
GPIO Support -
I2C - -
RTC - -
SPI - -
TIMER - -
WDT - -