用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

313 lines
8.5 KiB

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-02-08 RT-Thread the first version
*/
#include <rthw.h>
#include <rtthread.h>
#include <rtdevice.h>
#include "drv_uart.h"
#include "interrupt.h"
#include "drv_gpio.h"
#include "drv_clock.h"
#define readl(addr) (*(volatile unsigned int *)(addr))
#define writel(value,addr) (*(volatile unsigned int *)(addr) = (value))
#ifdef RT_USING_SERIAL
struct device_uart
{
rt_uint32_t hw_base;
rt_uint32_t irqno;
char name[RT_NAME_MAX];
rt_uint32_t gpio_rx_port;
rt_uint32_t gpio_tx_port;
rt_uint32_t gpio_rx_pin;
rt_uint32_t gpio_tx_pin;
rt_uint32_t gpio_rx_fun;
rt_uint32_t gpio_tx_fun;
};
static rt_err_t uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg);
static rt_err_t uart_control(struct rt_serial_device *serial, int cmd, void *arg);
static int uart_putc(struct rt_serial_device *serial, char c);
static int uart_getc(struct rt_serial_device *serial);
static rt_ssize_t uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction);
void uart_irq_handler(int irqno, void *param);
const struct rt_uart_ops _uart_ops =
{
uart_configure,
uart_control,
uart_putc,
uart_getc,
uart_dma_transmit
};
/*
* UART Initiation
*/
int rt_hw_uart_init(void)
{
struct rt_serial_device *serial;
struct device_uart *uart;
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
#ifdef TINA_USING_UART0
{
static struct rt_serial_device serial0;
static struct device_uart uart0;
serial = &serial0;
uart = &uart0;
serial->ops = &_uart_ops;
serial->config = config;
serial->config.baud_rate = 115200;
uart->hw_base = UART0_BASE_ADDR; // UART0_BASE;
uart->irqno = UART0_INTERRUPT; // IRQ_UART0;
uart->gpio_rx_port = GPIO_PORT_E;
uart->gpio_tx_port = GPIO_PORT_E;
uart->gpio_rx_pin = GPIO_PIN_0;
uart->gpio_tx_pin = GPIO_PIN_1;
uart->gpio_rx_fun = IO_FUN_4;
uart->gpio_tx_fun = IO_FUN_4;
rt_hw_serial_register(serial,
"uart0",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
}
#endif
#ifdef TINA_USING_UART1
{
static struct rt_serial_device serial1;
static struct device_uart uart1;
serial = &serial1;
uart = &uart1;
serial->ops = &_uart_ops;
serial->config = config;
serial->config.baud_rate = 115200;
uart->hw_base = UART1_BASE_ADDR; // UART1_BASE;
uart->irqno = UART1_INTERRUPT; // IRQ_UART1;
uart->gpio_rx_port = GPIO_PORT_A;
uart->gpio_tx_port = GPIO_PORT_A;
uart->gpio_rx_pin = GPIO_PIN_2;
uart->gpio_tx_pin = GPIO_PIN_3;
uart->gpio_rx_fun = IO_FUN_4;
uart->gpio_tx_fun = IO_FUN_4;
rt_hw_serial_register(serial,
"uart1",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
}
#endif
#ifdef TINA_USING_UART2
{
static struct rt_serial_device serial2;
static struct device_uart uart2;
serial = &serial2;
uart = &uart2;
serial->ops = &_uart_ops;
serial->config = config;
serial->config.baud_rate = 115200;
uart->hw_base = UART2_BASE_ADDR; // UART1_BASE;
uart->irqno = UART2_INTERRUPT; // IRQ_UART1;
uart->gpio_rx_port = GPIO_PORT_E;
uart->gpio_tx_port = GPIO_PORT_E;
uart->gpio_rx_pin = GPIO_PIN_8;
uart->gpio_tx_pin = GPIO_PIN_7;
uart->gpio_rx_fun = IO_FUN_2;
uart->gpio_tx_fun = IO_FUN_2;
rt_hw_serial_register(serial,
"uart2",
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX,
uart);
}
#endif
return 0;
}
/*
* UART interface
*/
static rt_err_t uart_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
rt_uint32_t addr, val;
struct device_uart *uart;
RT_ASSERT(serial != RT_NULL);
serial->config = *cfg;
uart = serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
/* config gpio port */
gpio_set_func(uart->gpio_rx_port, uart->gpio_rx_pin, uart->gpio_rx_fun);
gpio_set_func(uart->gpio_tx_port, uart->gpio_tx_pin, uart->gpio_tx_fun);
/* Enable UART clock */
/* Open the clock gate for uart */
if ((rt_uint32_t)(uart->hw_base) == UART0_BASE_ADDR)
{
bus_gate_clk_enalbe(UART0_GATING);
bus_software_reset_enalbe(UART0_GATING);
bus_software_reset_disalbe(UART0_GATING);
}
else if ((rt_uint32_t)(uart->hw_base) == UART1_BASE_ADDR)
{
bus_gate_clk_enalbe(UART1_GATING);
bus_software_reset_enalbe(UART1_GATING);
bus_software_reset_disalbe(UART1_GATING);
}
else if ((rt_uint32_t)(uart->hw_base) == UART2_BASE_ADDR)
{
bus_gate_clk_enalbe(UART2_GATING);
bus_software_reset_enalbe(UART2_GATING);
bus_software_reset_disalbe(UART2_GATING);
}
else
RT_ASSERT(0);
/* Config uart0 to 115200-8-1-0 */
addr = uart->hw_base;
/* close uart irq */
writel(0x0, addr + UART_IER);
/* config fifo */
writel(0x37, addr + UART_FCR);
/* config modem */
writel(0x0, addr + UART_MCR);
/* config baud */
val = readl(addr + UART_LCR);
val |= (1 << 7);
writel(val, addr + UART_LCR);
val = apb_get_clk() / 16 / serial->config.baud_rate;
writel(val & 0xff, addr + UART_DLL);
writel((val >> 8) & 0xff, addr + UART_DLH);
val = readl(addr + UART_LCR);
val &= ~(1 << 7);
writel(val, addr + UART_LCR);
val = readl(addr + UART_LCR);
val &= ~0x1f;
val |= ((serial->config.data_bits - DATA_BITS_5) << 0) | (0 << 2) | (0x0 << 3);
writel(val, addr + UART_LCR);
writel(0xf, addr + UART_TFL);
writel(0x3F, addr + UART_RFL);
writel(0x1, addr + UART_IER);
return RT_EOK;
}
static rt_err_t uart_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct device_uart *uart;
uart = serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
switch (cmd)
{
case RT_DEVICE_CTRL_CLR_INT:
/* Disable the UART Interrupt */
rt_hw_interrupt_mask(uart->irqno);
writel(0x00, uart->hw_base + UART_IER);
break;
case RT_DEVICE_CTRL_SET_INT:
/* install interrupt */
rt_hw_interrupt_install(uart->irqno, uart_irq_handler,
serial, uart->name);
rt_hw_interrupt_umask(uart->irqno);
writel(0x01, uart->hw_base + UART_IER);
/* Enable the UART Interrupt */
break;
}
return (RT_EOK);
}
static int uart_putc(struct rt_serial_device *serial, char c)
{
struct device_uart *uart;
volatile rt_uint32_t *sed_buf;
volatile rt_uint32_t *sta;
uart = serial->parent.user_data;
sed_buf = (rt_uint32_t *)(uart->hw_base + UART_THR);
sta = (rt_uint32_t *)(uart->hw_base + UART_USR);
/* FIFO status, contain valid data */
while (!(*sta & 0x02));
*sed_buf = c;
return (1);
}
static int uart_getc(struct rt_serial_device *serial)
{
int ch = -1;
volatile rt_uint32_t *rec_buf;
volatile rt_uint32_t *sta;
struct device_uart *uart = serial->parent.user_data;
RT_ASSERT(serial != RT_NULL);
rec_buf = (rt_uint32_t *)(uart->hw_base + UART_RHB);
sta = (rt_uint32_t *)(uart->hw_base + UART_USR);
/* Receive Data Available */
if (*sta & 0x08)
{
ch = *rec_buf & 0xff;
}
return ch;
}
static rt_ssize_t uart_dma_transmit(struct rt_serial_device *serial, rt_uint8_t *buf, rt_size_t size, int direction)
{
return (0);
}
/* UART ISR */
void uart_irq_handler(int irqno, void *param)
{
rt_uint32_t val;
struct rt_serial_device *serial = (struct rt_serial_device *)param;
struct device_uart *uart = serial->parent.user_data;
val = readl(uart->hw_base + 0x08) & 0x0F;
/* read interrupt status and clear it */
if (val & 0x4) /* rx ind */
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
if (0) /* tx done */
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_TX_DONE);
}
}
#endif