用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

707 lines
24 KiB

/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef _SMatrix_DEFINED_
#define _SMatrix_DEFINED_
#include "SRect.h"
#include <interface/SRender-i.h>
#define SToBool(cond) ((cond) != 0)
namespace SOUI{
/** \class SkMatrix
The SkMatrix class holds a 3x3 matrix for transforming coordinates.
SkMatrix does not have a constructor, so it must be explicitly initialized
using either reset() - to construct an identity matrix, or one of the set
functions (e.g. setTranslate, setRotate, etc.).
*/
class SOUI_EXP SMatrix : public IxForm{
public:
SMatrix(){
reset();
}
SMatrix(const float data[9]);
public:
virtual float GetValue(Index idx) const;
virtual const float * GetData() const;
virtual float * GetData();
virtual void SetValue(Index idx,float v);
virtual void SetData(const float fMat[9]);
public:
SMatrix &operator*=(const SMatrix &src);
SMatrix operator*(const SMatrix &src) const;
SMatrix &operator=(const SMatrix &src);
friend bool operator==(const SMatrix& a, const SMatrix& b);
friend bool operator!=(const SMatrix& a, const SMatrix& b) {
return !(a == b);
}
public:
SMatrix & translate(float dx, float dy)
{
postTranslate(dx, dy);
return *this;
}
SMatrix & scale(float sx, float sy)
{
postScale(sx, sy);
return *this;
}
SMatrix & shear(float sh, float sv)
{
postSkew(sh, sv);
return *this;
}
SMatrix & rotate(float deg)
{
postRotate(deg);
return *this;
}
public:
/** Enum of bit fields for the mask return by getType().
Use this to identify the complexity of the matrix.
*/
enum TypeMask {
kIdentity_Mask = 0,
kTranslate_Mask = 0x01, //!< set if the matrix has translation
kScale_Mask = 0x02, //!< set if the matrix has X or Y scale
kAffine_Mask = 0x04, //!< set if the matrix skews or rotates
kPerspective_Mask = 0x08 //!< set if the matrix is in perspective
};
/** Returns a bitfield describing the transformations the matrix may
perform. The bitfield is computed conservatively, so it may include
false positives. For example, when kPerspective_Mask is true, all
other bits may be set to true even in the case of a pure perspective
transform.
*/
TypeMask getType() const {
if (fTypeMask & kUnknown_Mask) {
fTypeMask = this->computeTypeMask();
}
// only return the public masks
return (TypeMask)(fTypeMask & 0xF);
}
/** Returns true if the matrix is identity.
*/
bool isIdentity() const {
return this->getType() == 0;
}
bool isScaleTranslate() const {
return !(this->getType() & ~(kScale_Mask | kTranslate_Mask));
}
/** Returns true if will map a rectangle to another rectangle. This can be
true if the matrix is identity, scale-only, or rotates a multiple of
90 degrees.
*/
bool rectStaysRect() const {
if (fTypeMask & kUnknown_Mask) {
fTypeMask = this->computeTypeMask();
}
return (fTypeMask & kRectStaysRect_Mask) != 0;
}
// alias for rectStaysRect()
bool preservesAxisAlignment() const { return this->rectStaysRect(); }
/**
* Returns true if the matrix contains perspective elements.
*/
bool hasPerspective() const {
return SToBool(this->getPerspectiveTypeMaskOnly() &
kPerspective_Mask);
}
/** Returns true if the matrix contains only translation, rotation/reflection or uniform scale
Returns false if other transformation types are included or is degenerate
*/
bool isSimilarity(float tol = SK_ScalarNearlyZero) const;
/** Returns true if the matrix contains only translation, rotation/reflection or scale
(non-uniform scale is allowed).
Returns false if other transformation types are included or is degenerate
*/
bool preservesRightAngles(float tol = SK_ScalarNearlyZero) const;
/** Affine arrays are in column major order
because that's how PDF and XPS like it.
*/
enum {
kAScaleX,
kASkewY,
kASkewX,
kAScaleY,
kATransX,
kATransY
};
float operator[](int index) const {
SASSERT((unsigned)index < 9);
return fMat[index];
}
float get(int index) const {
SASSERT((unsigned)index < 9);
return fMat[index];
}
float& operator[](int index) {
SASSERT((unsigned)index < 9);
this->setTypeMask(kUnknown_Mask);
return fMat[index];
}
void set(int index, float value) {
SASSERT((unsigned)index < 9);
fMat[index] = value;
this->setTypeMask(kUnknown_Mask);
}
/** Set the matrix to identity
*/
void reset();
// alias for reset()
void setIdentity() { this->reset(); }
/** Set the matrix to translate by (dx, dy).
*/
void setTranslate(float dx, float dy);
void setTranslate(const SVector2D& v) { this->setTranslate(v.fX, v.fY); }
/** Set the matrix to scale by sx and sy, with a pivot point at (px, py).
The pivot point is the coordinate that should remain unchanged by the
specified transformation.
*/
void setScale(float sx, float sy, float px, float py);
/** Set the matrix to scale by sx and sy.
*/
void setScale(float sx, float sy);
/** Set the matrix to scale by 1/divx and 1/divy. Returns false and doesn't
touch the matrix if either divx or divy is zero.
*/
bool setIDiv(int divx, int divy);
/** Set the matrix to rotate by the specified number of degrees, with a
pivot point at (px, py). The pivot point is the coordinate that should
remain unchanged by the specified transformation.
*/
void setRotate(float degrees, float px, float py);
/** Set the matrix to rotate about (0,0) by the specified number of degrees.
*/
void setRotate(float degrees);
/** Set the matrix to rotate by the specified sine and cosine values, with
a pivot point at (px, py). The pivot point is the coordinate that
should remain unchanged by the specified transformation.
*/
void setSinCos(float sinValue, float cosValue,
float px, float py);
/** Set the matrix to rotate by the specified sine and cosine values.
*/
void setSinCos(float sinValue, float cosValue);
/** Set the matrix to skew by sx and sy, with a pivot point at (px, py).
The pivot point is the coordinate that should remain unchanged by the
specified transformation.
*/
void setSkew(float kx, float ky, float px, float py);
/** Set the matrix to skew by sx and sy.
*/
void setSkew(float kx, float ky);
/** Set the matrix to the concatenation of the two specified matrices.
Either of the two matrices may also be the target matrix.
*this = a * b;
*/
void setConcat(const SMatrix& a, const SMatrix& b);
/** Preconcats the matrix with the specified translation.
M' = M * T(dx, dy)
*/
void preTranslate(float dx, float dy);
void preTranslate(int dx, int dy);
/** Preconcats the matrix with the specified scale.
M' = M * S(sx, sy, px, py)
*/
void preScale(float sx, float sy, float px, float py);
/** Preconcats the matrix with the specified scale.
M' = M * S(sx, sy)
*/
void preScale(float sx, float sy);
/** Preconcats the matrix with the specified rotation.
M' = M * R(degrees, px, py)
*/
void preRotate(float degrees, float px, float py);
/** Preconcats the matrix with the specified rotation.
M' = M * R(degrees)
*/
void preRotate(float degrees);
/** Preconcats the matrix with the specified skew.
M' = M * K(kx, ky, px, py)
*/
void preSkew(float kx, float ky, float px, float py);
/** Preconcats the matrix with the specified skew.
M' = M * K(kx, ky)
*/
void preSkew(float kx, float ky);
/** Preconcats the matrix with the specified matrix.
M' = M * other
*/
void preConcat(const SMatrix& other);
/** Postconcats the matrix with the specified translation.
M' = T(dx, dy) * M
*/
void postTranslate(float dx, float dy);
/** Postconcats the matrix with the specified scale.
M' = S(sx, sy, px, py) * M
*/
void postTranslate(int dx, int dy);
void postScale(float sx, float sy, float px, float py);
/** Postconcats the matrix with the specified scale.
M' = S(sx, sy) * M
*/
void postScale(float sx, float sy);
/** Postconcats the matrix by dividing it by the specified integers.
M' = S(1/divx, 1/divy, 0, 0) * M
*/
bool postIDiv(int divx, int divy);
/** Postconcats the matrix with the specified rotation.
M' = R(degrees, px, py) * M
*/
void postRotate(float degrees, float px, float py);
/** Postconcats the matrix with the specified rotation.
M' = R(degrees) * M
*/
void postRotate(float degrees);
/** Postconcats the matrix with the specified skew.
M' = K(kx, ky, px, py) * M
*/
void postSkew(float kx, float ky, float px, float py);
/** Postconcats the matrix with the specified skew.
M' = K(kx, ky) * M
*/
void postSkew(float kx, float ky);
/** Postconcats the matrix with the specified matrix.
M' = other * M
*/
void postConcat(const SMatrix& other);
enum ScaleToFit {
/**
* Scale in X and Y independently, so that src matches dst exactly.
* This may change the aspect ratio of the src.
*/
kFill_ScaleToFit,
/**
* Compute a scale that will maintain the original src aspect ratio,
* but will also ensure that src fits entirely inside dst. At least one
* axis (X or Y) will fit exactly. kStart aligns the result to the
* left and top edges of dst.
*/
kStart_ScaleToFit,
/**
* Compute a scale that will maintain the original src aspect ratio,
* but will also ensure that src fits entirely inside dst. At least one
* axis (X or Y) will fit exactly. The result is centered inside dst.
*/
kCenter_ScaleToFit,
/**
* Compute a scale that will maintain the original src aspect ratio,
* but will also ensure that src fits entirely inside dst. At least one
* axis (X or Y) will fit exactly. kEnd aligns the result to the
* right and bottom edges of dst.
*/
kEnd_ScaleToFit
};
/** Set the matrix to the scale and translate values that map the source
rectangle to the destination rectangle, returning true if the the result
can be represented.
@param src the source rectangle to map from.
@param dst the destination rectangle to map to.
@param stf the ScaleToFit option
@return true if the matrix can be represented by the rectangle mapping.
*/
bool setRectToRect(const SRect& src, const SRect& dst, ScaleToFit stf);
/** Set the matrix such that the specified src points would map to the
specified dst points. count must be within [0..4].
@param src The array of src points
@param dst The array of dst points
@param count The number of points to use for the transformation
@return true if the matrix was set to the specified transformation
*/
bool setPolyToPoly(const SPoint src[], const SPoint dst[], int count);
/** If this matrix can be inverted, return true and if inverse is not null,
set inverse to be the inverse of this matrix. If this matrix cannot be
inverted, ignore inverse and return false
*/
bool invert(SMatrix* inverse) const {
// Allow the trivial case to be inlined.
if (this->isIdentity()) {
if (inverse) {
inverse->reset();
}
return true;
}
return this->invertNonIdentity(inverse);
}
/** Fills the passed array with affine identity values
in column major order.
@param affine The array to fill with affine identity values.
Must not be NULL.
*/
static void SetAffineIdentity(float affine[6]);
/** Fills the passed array with the affine values in column major order.
If the matrix is a perspective transform, returns false
and does not change the passed array.
@param affine The array to fill with affine values. Ignored if NULL.
*/
bool asAffine(float affine[6]) const;
/** Apply this matrix to the array of points specified by src, and write
the transformed points into the array of points specified by dst.
dst[] = M * src[]
@param dst Where the transformed coordinates are written. It must
contain at least count entries
@param src The original coordinates that are to be transformed. It
must contain at least count entries
@param count The number of points in src to read, and then transform
into dst.
*/
void mapPoints(SPoint dst[], const SPoint src[], int count) const;
/** Apply this matrix to the array of points, overwriting it with the
transformed values.
dst[] = M * pts[]
@param pts The points to be transformed. It must contain at least
count entries
@param count The number of points in pts.
*/
void mapPoints(SPoint pts[], int count) const {
this->mapPoints(pts, pts, count);
}
/** Like mapPoints but with custom byte stride between the points. Stride
* should be a multiple of sizeof(float).
*/
void mapPointsWithStride(SPoint pts[], size_t stride, int count) const {
SASSERT(stride >= sizeof(SPoint));
SASSERT(0 == stride % sizeof(float));
for (int i = 0; i < count; ++i) {
this->mapPoints(pts, pts, 1);
pts = (SPoint*)((intptr_t)pts + stride);
}
}
/** Like mapPoints but with custom byte stride between the points.
*/
void mapPointsWithStride(SPoint dst[], SPoint src[],
size_t stride, int count) const {
SASSERT(stride >= sizeof(SPoint));
SASSERT(0 == stride % sizeof(float));
for (int i = 0; i < count; ++i) {
this->mapPoints(dst, src, 1);
src = (SPoint*)((intptr_t)src + stride);
dst = (SPoint*)((intptr_t)dst + stride);
}
}
/** Apply this matrix to the array of homogeneous points, specified by src,
where a homogeneous point is defined by 3 contiguous scalar values,
and write the transformed points into the array of scalars specified by dst.
dst[] = M * src[]
@param dst Where the transformed coordinates are written. It must
contain at least 3 * count entries
@param src The original coordinates that are to be transformed. It
must contain at least 3 * count entries
@param count The number of triples (homogeneous points) in src to read,
and then transform into dst.
*/
void mapHomogeneousPoints(float dst[], const float src[], int count) const;
void mapXY(float x, float y, SPoint* result) const {
SASSERT(result);
this->getMapXYProc()(*this, x, y, result);
}
/** Apply this matrix to the array of vectors specified by src, and write
the transformed vectors into the array of vectors specified by dst.
This is similar to mapPoints, but ignores any translation in the matrix.
@param dst Where the transformed coordinates are written. It must
contain at least count entries
@param src The original coordinates that are to be transformed. It
must contain at least count entries
@param count The number of vectors in src to read, and then transform
into dst.
*/
void mapVectors(SVector2D dst[], const SVector2D src[], int count) const;
/** Apply this matrix to the array of vectors specified by src, and write
the transformed vectors into the array of vectors specified by dst.
This is similar to mapPoints, but ignores any translation in the matrix.
@param vecs The vectors to be transformed. It must contain at least
count entries
@param count The number of vectors in vecs.
*/
void mapVectors(SVector2D vecs[], int count) const {
this->mapVectors(vecs, vecs, count);
}
/** Apply this matrix to the src rectangle, and write the transformed
rectangle into dst. This is accomplished by transforming the 4 corners
of src, and then setting dst to the bounds of those points.
@param dst Where the transformed rectangle is written.
@param src The original rectangle to be transformed.
@return the result of calling rectStaysRect()
*/
bool mapRect(SRect* dst, const SRect& src) const;
/** Apply this matrix to the rectangle, and write the transformed rectangle
back into it. This is accomplished by transforming the 4 corners of
rect, and then setting it to the bounds of those points
@param rect The rectangle to transform.
@return the result of calling rectStaysRect()
*/
bool mapRect(SRect* rect) const {
return this->mapRect(rect, *rect);
}
/** Apply this matrix to the src rectangle, and write the four transformed
points into dst. The points written to dst will be the original top-left, top-right,
bottom-right, and bottom-left points transformed by the matrix.
@param dst Where the transformed quad is written.
@param rect The original rectangle to be transformed.
*/
void mapRectToQuad(SPoint dst[4], const SRect& rect) const {
// This could potentially be faster if we only transformed each x and y of the rect once.
rect.toQuad(dst);
this->mapPoints(dst, 4);
}
/** Return the mean radius of a circle after it has been mapped by
this matrix. NOTE: in perspective this value assumes the circle
has its center at the origin.
*/
float mapRadius(float radius) const;
typedef void (*MapXYProc)(const SMatrix& mat, float x, float y,
SPoint* result);
static MapXYProc GetMapXYProc(TypeMask mask) {
SASSERT((mask & ~kAllMasks) == 0);
return gMapXYProcs[mask & kAllMasks];
}
MapXYProc getMapXYProc() const {
return GetMapXYProc(this->getType());
}
typedef void (*MapPtsProc)(const SMatrix& mat, SPoint dst[],
const SPoint src[], int count);
static MapPtsProc GetMapPtsProc(TypeMask mask) {
SASSERT((mask & ~kAllMasks) == 0);
return gMapPtsProcs[mask & kAllMasks];
}
MapPtsProc getMapPtsProc() const {
return GetMapPtsProc(this->getType());
}
/** Efficient comparison of two matrices. It distinguishes between zero and
* negative zero. It will return false when the sign of zero values is the
* only difference between the two matrices. It considers NaN values to be
* equal to themselves. So a matrix full of NaNs is "cheap equal" to
* another matrix full of NaNs iff the NaN values are bitwise identical
* while according to strict the strict == test a matrix with a NaN value
* is equal to nothing, including itself.
*/
bool cheapEqualTo(const SMatrix& m) const {
return 0 == memcmp(fMat, m.fMat, sizeof(fMat));
}
enum {
// writeTo/readFromMemory will never return a value larger than this
kMaxFlattenSize = 9 * sizeof(float) + sizeof(uint32_t)
};
/**
* Calculates the minimum scaling factor of the matrix as computed from the SVD of the upper
* left 2x2. If the matrix has perspective -1 is returned.
*
* @return minumum scale factor
*/
float getMinScale() const;
/**
* Calculates the maximum scaling factor of the matrix as computed from the SVD of the upper
* left 2x2. If the matrix has perspective -1 is returned.
*
* @return maximum scale factor
*/
float getMaxScale() const;
/**
* Gets both the min and max scale factors. The min scale factor is scaleFactors[0] and the max
* is scaleFactors[1]. If the matrix has perspective false will be returned and scaleFactors
* will be unchanged.
*/
bool getMinMaxScales(float scaleFactors[2]) const;
/**
* Return a reference to a const identity matrix
*/
static const SMatrix& I();
/**
* Return a reference to a const matrix that is "invalid", one that could
* never be used.
*/
static const SMatrix& InvalidMatrix();
/**
* Return the concatenation of two matrices, a * b.
*/
static SMatrix Concat(const SMatrix& a, const SMatrix& b) {
SMatrix result;
result.setConcat(a, b);
return result;
}
/**
* Testing routine; the matrix's type cache should never need to be
* manually invalidated during normal use.
*/
void dirtyMatrixTypeCache() {
this->setTypeMask(kUnknown_Mask);
}
private:
enum {
/** Set if the matrix will map a rectangle to another rectangle. This
can be true if the matrix is scale-only, or rotates a multiple of
90 degrees.
This bit will be set on identity matrices
*/
kRectStaysRect_Mask = 0x10,
/** Set if the perspective bit is valid even though the rest of
the matrix is Unknown.
*/
kOnlyPerspectiveValid_Mask = 0x40,
kUnknown_Mask = 0x80,
kORableMasks = kTranslate_Mask |
kScale_Mask |
kAffine_Mask |
kPerspective_Mask,
kAllMasks = kTranslate_Mask |
kScale_Mask |
kAffine_Mask |
kPerspective_Mask |
kRectStaysRect_Mask
};
float fMat[9];
mutable uint32_t fTypeMask;
uint8_t computeTypeMask() const;
uint8_t computePerspectiveTypeMask() const;
void setTypeMask(int mask);
void orTypeMask(int mask);
void clearTypeMask(int mask) {
// only allow a valid mask
SASSERT((mask & kAllMasks) == mask);
fTypeMask = fTypeMask & ~mask;
}
TypeMask getPerspectiveTypeMaskOnly() const {
if ((fTypeMask & kUnknown_Mask) &&
!(fTypeMask & kOnlyPerspectiveValid_Mask)) {
fTypeMask = this->computePerspectiveTypeMask();
}
return (TypeMask)(fTypeMask & 0xF);
}
/** Returns true if we already know that the matrix is identity;
false otherwise.
*/
bool isTriviallyIdentity() const {
if (fTypeMask & kUnknown_Mask) {
return false;
}
return ((fTypeMask & 0xF) == 0);
}
bool invertNonIdentity(SMatrix* inverse) const;
static bool Poly2Proc(const SPoint[], SMatrix*, const SPoint& scale);
static bool Poly3Proc(const SPoint[], SMatrix*, const SPoint& scale);
static bool Poly4Proc(const SPoint[], SMatrix*, const SPoint& scale);
static void Identity_xy(const SMatrix&, float, float, SPoint*);
static void Trans_xy(const SMatrix&, float, float, SPoint*);
static void Scale_xy(const SMatrix&, float, float, SPoint*);
static void ScaleTrans_xy(const SMatrix&, float, float, SPoint*);
static void Rot_xy(const SMatrix&, float, float, SPoint*);
static void RotTrans_xy(const SMatrix&, float, float, SPoint*);
static void Persp_xy(const SMatrix&, float, float, SPoint*);
static const MapXYProc gMapXYProcs[];
static void Identity_pts(const SMatrix&, SPoint[], const SPoint[], int);
static void Trans_pts(const SMatrix&, SPoint dst[], const SPoint[], int);
static void Scale_pts(const SMatrix&, SPoint dst[], const SPoint[], int);
static void ScaleTrans_pts(const SMatrix&, SPoint dst[], const SPoint[],
int count);
static void Rot_pts(const SMatrix&, SPoint dst[], const SPoint[], int);
static void RotTrans_pts(const SMatrix&, SPoint dst[], const SPoint[],
int count);
static void Persp_pts(const SMatrix&, SPoint dst[], const SPoint[], int);
static const MapPtsProc gMapPtsProcs[];
friend class SkPerspIter;
public:
static float SFloatSinCos(float radians, float* cosValue);
};
}//end of namespace SOUI
#endif