用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

8821 lines
299 KiB

/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/** @file sql/handler.cc
@brief
Implements functions in the handler interface that are shared between all
storage engines.
*/
#include "sql/handler.h"
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <atomic>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/foreach.hpp>
#include <boost/token_functions.hpp>
#include <boost/tokenizer.hpp>
#include <cmath>
#include <list>
#include <random> // std::uniform_real_distribution
#include <string>
#include <vector>
#include "keycache.h"
#include "libbinlogevents/include/binlog_event.h"
#include "m_ctype.h"
#include "m_string.h"
#include "my_bit.h" // my_count_bits
#include "my_bitmap.h" // MY_BITMAP
#include "my_check_opt.h"
#include "my_dbug.h"
#include "my_loglevel.h"
#include "my_macros.h"
#include "my_pointer_arithmetic.h"
#include "my_psi_config.h"
#include "my_sqlcommand.h"
#include "my_sys.h" // MEM_DEFINED_IF_ADDRESSABLE()
#include "myisam.h" // TT_FOR_UPGRADE
#include "mysql/components/services/log_builtins.h"
#include "mysql/components/services/log_shared.h"
#include "mysql/plugin.h"
#include "mysql/psi/mysql_file.h"
#include "mysql/psi/mysql_mutex.h"
#include "mysql/psi/mysql_table.h"
#include "mysql/psi/mysql_transaction.h"
#include "mysql/psi/psi_base.h"
#include "mysql/psi/psi_table.h"
#include "mysql/service_mysql_alloc.h"
#include "mysql_com.h"
#include "mysql_version.h" // MYSQL_VERSION_ID
#include "mysqld_error.h"
#include "prealloced_array.h"
#include "sql/auth/auth_common.h" // check_readonly() and SUPER_ACL
#include "sql/binlog.h" // mysql_bin_log
#include "sql/check_stack.h"
#include "sql/clone_handler.h"
#include "sql/current_thd.h"
#include "sql/dd/cache/dictionary_client.h" // dd::cache::Dictionary_client
#include "sql/dd/dd.h" // dd::get_dictionary
#include "sql/dd/dictionary.h" // dd:acquire_shared_table_mdl
#include "sql/dd/types/table.h" // dd::Table
#include "sql/dd_table_share.h" // open_table_def
#include "sql/debug_sync.h" // DEBUG_SYNC
#include "sql/derror.h" // ER_DEFAULT
#include "sql/error_handler.h" // Internal_error_handler
#include "sql/field.h"
#include "sql/item.h"
#include "sql/lock.h" // MYSQL_LOCK
#include "sql/log.h"
#include "sql/log_event.h" // Write_rows_log_event
#include "sql/mdl.h"
#include "sql/mysqld.h" // global_system_variables heap_hton ..
#include "sql/opt_costconstantcache.h" // reload_optimizer_cost_constants
#include "sql/opt_costmodel.h"
#include "sql/opt_hints.h"
#include "sql/protocol.h"
#include "sql/psi_memory_key.h"
#include "sql/query_options.h"
#include "sql/record_buffer.h" // Record_buffer
#include "sql/rpl_filter.h"
#include "sql/rpl_gtid.h"
#include "sql/rpl_handler.h" // RUN_HOOK
#include "sql/rpl_rli.h" // is_atomic_ddl_commit_on_slave
#include "sql/rpl_write_set_handler.h" // add_pke
#include "sql/sdi_utils.h" // import_serialized_meta_data
#include "sql/session_tracker.h"
#include "sql/sql_base.h" // free_io_cache
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_parse.h" // check_stack_overrun
#include "sql/sql_plugin.h" // plugin_foreach
#include "sql/sql_select.h" // actual_key_parts
#include "sql/sql_table.h" // build_table_filename
#include "sql/system_variables.h"
#include "sql/table.h"
#include "sql/tc_log.h"
#include "sql/thr_malloc.h"
#include "sql/transaction.h" // trans_commit_implicit
#include "sql/transaction_info.h"
#include "sql/xa.h"
#include "sql_string.h"
#include "sql_tmp_table.h" // free_tmp_table
#include "template_utils.h"
#include "uniques.h" // Unique_on_insert
#include "varlen_sort.h"
/**
@def MYSQL_TABLE_IO_WAIT
Instrumentation helper for table io_waits.
Note that this helper is intended to be used from
within the handler class only, as it uses members
from @c handler
Performance schema events are instrumented as follows:
- in non batch mode, one event is generated per call
- in batch mode, the number of rows affected is saved
in @c m_psi_numrows, so that @c end_psi_batch_mode()
generates a single event for the batch.
@param OP the table operation to be performed
@param INDEX the table index used if any, or MAX_KEY.
@param RESULT the result of the table operation performed
@param PAYLOAD instrumented code to execute
@sa handler::end_psi_batch_mode.
*/
#ifdef HAVE_PSI_TABLE_INTERFACE
#define MYSQL_TABLE_IO_WAIT(OP, INDEX, RESULT, PAYLOAD) \
{ \
if (m_psi != NULL) { \
switch (m_psi_batch_mode) { \
case PSI_BATCH_MODE_NONE: { \
PSI_table_locker *sub_locker = NULL; \
PSI_table_locker_state reentrant_safe_state; \
sub_locker = PSI_TABLE_CALL(start_table_io_wait)( \
&reentrant_safe_state, m_psi, OP, INDEX, __FILE__, __LINE__); \
PAYLOAD \
if (sub_locker != NULL) PSI_TABLE_CALL(end_table_io_wait) \
(sub_locker, 1); \
break; \
} \
case PSI_BATCH_MODE_STARTING: { \
m_psi_locker = PSI_TABLE_CALL(start_table_io_wait)( \
&m_psi_locker_state, m_psi, OP, INDEX, __FILE__, __LINE__); \
PAYLOAD \
if (!RESULT) m_psi_numrows++; \
m_psi_batch_mode = PSI_BATCH_MODE_STARTED; \
break; \
} \
case PSI_BATCH_MODE_STARTED: \
default: { \
DBUG_ASSERT(m_psi_batch_mode == PSI_BATCH_MODE_STARTED); \
PAYLOAD \
if (!RESULT) m_psi_numrows++; \
break; \
} \
} \
} else { \
PAYLOAD \
} \
}
#else
#define MYSQL_TABLE_IO_WAIT(OP, INDEX, RESULT, PAYLOAD) PAYLOAD
#endif
/**
@def MYSQL_TABLE_LOCK_WAIT
Instrumentation helper for table io_waits.
@param OP the table operation to be performed
@param FLAGS per table operation flags.
@param PAYLOAD the code to instrument.
@sa MYSQL_END_TABLE_WAIT.
*/
#ifdef HAVE_PSI_TABLE_INTERFACE
#define MYSQL_TABLE_LOCK_WAIT(OP, FLAGS, PAYLOAD) \
{ \
if (m_psi != NULL) { \
PSI_table_locker *locker; \
PSI_table_locker_state state; \
locker = PSI_TABLE_CALL(start_table_lock_wait)(&state, m_psi, OP, FLAGS, \
__FILE__, __LINE__); \
PAYLOAD \
if (locker != NULL) PSI_TABLE_CALL(end_table_lock_wait)(locker); \
} else { \
PAYLOAD \
} \
}
#else
#define MYSQL_TABLE_LOCK_WAIT(OP, FLAGS, PAYLOAD) PAYLOAD
#endif
using std::list;
using std::log2;
using std::max;
using std::min;
/**
While we have legacy_db_type, we have this array to
check for dups and to find handlerton from legacy_db_type.
Remove when legacy_db_type is finally gone
*/
static Prealloced_array<st_plugin_int *, PREALLOC_NUM_HA> se_plugin_array(
PSI_NOT_INSTRUMENTED);
/**
Array allowing to check if handlerton is builtin without
acquiring LOCK_plugin.
*/
static Prealloced_array<bool, PREALLOC_NUM_HA> builtin_htons(
PSI_NOT_INSTRUMENTED);
st_plugin_int *hton2plugin(uint slot) { return se_plugin_array[slot]; }
size_t num_hton2plugins() { return se_plugin_array.size(); }
st_plugin_int *insert_hton2plugin(uint slot, st_plugin_int *plugin) {
if (se_plugin_array.assign_at(slot, plugin)) return NULL;
return se_plugin_array[slot];
}
st_plugin_int *remove_hton2plugin(uint slot) {
st_plugin_int *retval = se_plugin_array[slot];
se_plugin_array[slot] = NULL;
return retval;
}
const char *ha_resolve_storage_engine_name(const handlerton *db_type) {
return db_type == NULL ? "UNKNOWN" : hton2plugin(db_type->slot)->name.str;
}
static handlerton *installed_htons[128];
/* number of storage engines (from installed_htons[]) that support 2pc */
ulong total_ha_2pc = 0;
/* size of savepoint storage area (see ha_init) */
ulong savepoint_alloc_size = 0;
static const LEX_CSTRING sys_table_aliases[] = {{STRING_WITH_LEN("INNOBASE")},
{STRING_WITH_LEN("INNODB")},
{STRING_WITH_LEN("NDB")},
{STRING_WITH_LEN("NDBCLUSTER")},
{STRING_WITH_LEN("HEAP")},
{STRING_WITH_LEN("MEMORY")},
{STRING_WITH_LEN("MERGE")},
{STRING_WITH_LEN("MRG_MYISAM")},
{NullS, 0}};
const char *ha_row_type[] = {"",
"FIXED",
"DYNAMIC",
"COMPRESSED",
"REDUNDANT",
"COMPACT",
/* Reserved to be "PAGE" in future versions */ "?",
"?",
"?",
"?"};
const char *tx_isolation_names[] = {"READ-UNCOMMITTED", "READ-COMMITTED",
"REPEATABLE-READ", "SERIALIZABLE", NullS};
TYPELIB tx_isolation_typelib = {array_elements(tx_isolation_names) - 1, "",
tx_isolation_names, NULL};
// System tables that belong to the 'mysql' system database.
// These are the "dictionary external system tables" (see WL#6391).
st_handler_tablename mysqld_system_tables[] = {
{MYSQL_SCHEMA_NAME.str, "db"},
{MYSQL_SCHEMA_NAME.str, "user"},
{MYSQL_SCHEMA_NAME.str, "host"},
{MYSQL_SCHEMA_NAME.str, "func"},
{MYSQL_SCHEMA_NAME.str, "plugin"},
{MYSQL_SCHEMA_NAME.str, "servers"},
{MYSQL_SCHEMA_NAME.str, "procs_priv"},
{MYSQL_SCHEMA_NAME.str, "tables_priv"},
{MYSQL_SCHEMA_NAME.str, "proxies_priv"},
{MYSQL_SCHEMA_NAME.str, "columns_priv"},
{MYSQL_SCHEMA_NAME.str, "time_zone"},
{MYSQL_SCHEMA_NAME.str, "time_zone_name"},
{MYSQL_SCHEMA_NAME.str, "time_zone_leap_second"},
{MYSQL_SCHEMA_NAME.str, "time_zone_transition"},
{MYSQL_SCHEMA_NAME.str, "time_zone_transition_type"},
{MYSQL_SCHEMA_NAME.str, "help_category"},
{MYSQL_SCHEMA_NAME.str, "help_keyword"},
{MYSQL_SCHEMA_NAME.str, "help_relation"},
{MYSQL_SCHEMA_NAME.str, "help_topic"},
{(const char *)NULL, (const char *)NULL} /* This must be at the end */
};
// Called for each SE to check if given db.table_name is a system table.
static bool check_engine_system_table_handlerton(THD *unused, plugin_ref plugin,
void *arg);
static int ha_discover(THD *thd, const char *db, const char *name,
uchar **frmblob, size_t *frmlen);
/**
Structure used by SE during check for system table.
This structure is passed to each SE handlerton and the status (OUT param)
is collected.
*/
struct st_sys_tbl_chk_params {
const char *db; // IN param
const char *table_name; // IN param
bool is_sql_layer_system_table; // IN param
legacy_db_type db_type; // IN param
enum enum_sys_tbl_chk_status {
// db.table_name is not a supported system table.
NOT_KNOWN_SYSTEM_TABLE,
/*
db.table_name is a system table,
but may not be supported by SE.
*/
KNOWN_SYSTEM_TABLE,
/*
db.table_name is a system table,
and is supported by SE.
*/
SUPPORTED_SYSTEM_TABLE
} status; // OUT param
};
static plugin_ref ha_default_plugin(THD *thd) {
if (thd->variables.table_plugin) return thd->variables.table_plugin;
return my_plugin_lock(thd, &global_system_variables.table_plugin);
}
/** @brief
Return the default storage engine handlerton used for non-temp tables
for thread
SYNOPSIS
ha_default_handlerton(thd)
thd current thread
RETURN
pointer to handlerton
*/
handlerton *ha_default_handlerton(THD *thd) {
plugin_ref plugin = ha_default_plugin(thd);
DBUG_ASSERT(plugin);
handlerton *hton = plugin_data<handlerton *>(plugin);
DBUG_ASSERT(hton);
return hton;
}
static plugin_ref ha_default_temp_plugin(THD *thd) {
if (thd->variables.temp_table_plugin) return thd->variables.temp_table_plugin;
return my_plugin_lock(thd, &global_system_variables.temp_table_plugin);
}
/** @brief
Return the default storage engine handlerton used for explicitly
created temp tables for a thread
SYNOPSIS
ha_default_temp_handlerton(thd)
thd current thread
RETURN
pointer to handlerton
*/
handlerton *ha_default_temp_handlerton(THD *thd) {
plugin_ref plugin = ha_default_temp_plugin(thd);
DBUG_ASSERT(plugin);
handlerton *hton = plugin_data<handlerton *>(plugin);
DBUG_ASSERT(hton);
return hton;
}
/**
Resolve handlerton plugin by name, without checking for "DEFAULT" or
HTON_NOT_USER_SELECTABLE.
@param thd Thread context.
@param name Plugin name.
@return plugin or NULL if not found.
*/
plugin_ref ha_resolve_by_name_raw(THD *thd, const LEX_CSTRING &name) {
return plugin_lock_by_name(thd, name, MYSQL_STORAGE_ENGINE_PLUGIN);
}
/** @brief
Return the storage engine handlerton for the supplied name
SYNOPSIS
ha_resolve_by_name(thd, name)
thd current thread
name name of storage engine
RETURN
pointer to storage engine plugin handle
*/
plugin_ref ha_resolve_by_name(THD *thd, const LEX_CSTRING *name,
bool is_temp_table) {
const LEX_CSTRING *table_alias;
plugin_ref plugin;
redo:
/* my_strnncoll is a macro and gcc doesn't do early expansion of macro */
if (thd && !my_charset_latin1.coll->strnncoll(
&my_charset_latin1, (const uchar *)name->str, name->length,
(const uchar *)STRING_WITH_LEN("DEFAULT"), 0))
return is_temp_table ? ha_default_plugin(thd) : ha_default_temp_plugin(thd);
LEX_CSTRING cstring_name = {name->str, name->length};
if ((plugin = ha_resolve_by_name_raw(thd, cstring_name))) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton && !(hton->flags & HTON_NOT_USER_SELECTABLE)) return plugin;
/*
unlocking plugin immediately after locking is relatively low cost.
*/
plugin_unlock(thd, plugin);
}
/*
We check for the historical aliases.
*/
for (table_alias = sys_table_aliases; table_alias->str; table_alias += 2) {
if (!my_strnncoll(&my_charset_latin1, (const uchar *)name->str,
name->length, (const uchar *)table_alias->str,
table_alias->length)) {
name = table_alias + 1;
goto redo;
}
}
return NULL;
}
std::string normalized_se_str = "";
/*
Parse comma separated list of disabled storage engine names
and create a normalized string by appending storage names that
have aliases. This normalized string is used to disallow
table/tablespace creation under the storage engines specified.
*/
void ha_set_normalized_disabled_se_str(const std::string &disabled_se) {
boost::char_separator<char> sep(",");
boost::tokenizer<boost::char_separator<char>> tokens(disabled_se, sep);
normalized_se_str.append(",");
BOOST_FOREACH (std::string se_name, tokens) {
const LEX_CSTRING *table_alias;
boost::algorithm::to_upper(se_name);
for (table_alias = sys_table_aliases; table_alias->str; table_alias += 2) {
if (!native_strcasecmp(se_name.c_str(), table_alias->str) ||
!native_strcasecmp(se_name.c_str(), (table_alias + 1)->str)) {
normalized_se_str.append(std::string(table_alias->str) + "," +
std::string((table_alias + 1)->str) + ",");
break;
}
}
if (table_alias->str == NULL) normalized_se_str.append(se_name + ",");
}
}
// Check if storage engine is disabled for table/tablespace creation.
bool ha_is_storage_engine_disabled(handlerton *se_handle) {
if (normalized_se_str.size()) {
std::string se_name(",");
se_name.append(ha_resolve_storage_engine_name(se_handle));
se_name.append(",");
boost::algorithm::to_upper(se_name);
if (strstr(normalized_se_str.c_str(), se_name.c_str())) return true;
}
return false;
}
plugin_ref ha_lock_engine(THD *thd, const handlerton *hton) {
if (hton) {
st_plugin_int **plugin = &se_plugin_array[hton->slot];
#ifdef DBUG_OFF
/*
Take a shortcut for builtin engines -- return pointer to plugin
without acquiring LOCK_plugin mutex. This is safe safe since such
plugins are not deleted until shutdown and we don't do reference
counting in non-debug builds for them.
Since we have reference to handlerton on our hands, this method
can't be called concurrently to non-builtin handlerton initialization/
deinitialization. So it is safe to access builtin_htons[] without
additional locking.
*/
if (builtin_htons[hton->slot]) return *plugin;
return my_plugin_lock(thd, plugin);
#else
/*
We can't take shortcut in debug builds.
At least assert that builtin_htons[slot] is set correctly.
*/
DBUG_ASSERT(builtin_htons[hton->slot] == (plugin[0]->plugin_dl == NULL));
return my_plugin_lock(thd, &plugin);
#endif
}
return NULL;
}
handlerton *ha_resolve_by_legacy_type(THD *thd, enum legacy_db_type db_type) {
plugin_ref plugin;
switch (db_type) {
case DB_TYPE_DEFAULT:
return ha_default_handlerton(thd);
default:
if (db_type > DB_TYPE_UNKNOWN && db_type < DB_TYPE_DEFAULT &&
(plugin = ha_lock_engine(thd, installed_htons[db_type])))
return plugin_data<handlerton *>(plugin);
/* fall through */
case DB_TYPE_UNKNOWN:
return NULL;
}
}
/**
Use other database handler if databasehandler is not compiled in.
*/
handlerton *ha_checktype(THD *thd, enum legacy_db_type database_type,
bool no_substitute, bool report_error) {
handlerton *hton = ha_resolve_by_legacy_type(thd, database_type);
if (ha_storage_engine_is_enabled(hton)) return hton;
if (no_substitute) {
if (report_error) {
const char *engine_name = ha_resolve_storage_engine_name(hton);
my_error(ER_FEATURE_DISABLED, MYF(0), engine_name, engine_name);
}
return NULL;
}
(void)RUN_HOOK(transaction, after_rollback, (thd, false));
switch (database_type) {
case DB_TYPE_MRG_ISAM:
return ha_resolve_by_legacy_type(thd, DB_TYPE_MRG_MYISAM);
default:
break;
}
return ha_default_handlerton(thd);
} /* ha_checktype */
/**
Create handler object for the table in the storage engine.
@param share TABLE_SHARE for the table, can be NULL if caller
didn't perform full-blown open of table definition.
@param partitioned Indicates whether table is partitioned.
@param alloc Memory root to be used for allocating handler object.
@param db_type Table's storage engine.
@note This function will try to use default storage engine if one which
was specified through db_type parameter is not available.
*/
handler *get_new_handler(TABLE_SHARE *share, bool partitioned, MEM_ROOT *alloc,
handlerton *db_type) {
handler *file;
DBUG_TRACE;
DBUG_PRINT("enter", ("alloc: %p", alloc));
if (db_type && db_type->state == SHOW_OPTION_YES && db_type->create) {
if ((file = db_type->create(db_type, share, partitioned, alloc)))
file->init();
return file;
}
/*
Try the default table type
Here the call to current_thd() is ok as we call this function a lot of
times but we enter this branch very seldom.
*/
return get_new_handler(share, partitioned, alloc,
ha_default_handlerton(current_thd));
}
static const char **handler_errmsgs;
static const char *get_handler_errmsg(int nr) {
return handler_errmsgs[nr - HA_ERR_FIRST];
}
/**
Register handler error messages for use with my_error().
@retval
0 OK
@retval
!=0 Error
*/
int ha_init_errors(void) {
#define SETMSG(nr, msg) handler_errmsgs[(nr)-HA_ERR_FIRST] = (msg)
/* Allocate a pointer array for the error message strings. */
/* Zerofill it to avoid uninitialized gaps. */
if (!(handler_errmsgs = (const char **)my_malloc(
key_memory_handler_errmsgs, HA_ERR_ERRORS * sizeof(char *),
MYF(MY_WME | MY_ZEROFILL))))
return 1;
/* Set the dedicated error messages. */
SETMSG(HA_ERR_KEY_NOT_FOUND, ER_DEFAULT(ER_KEY_NOT_FOUND));
SETMSG(HA_ERR_FOUND_DUPP_KEY, ER_DEFAULT(ER_DUP_KEY));
SETMSG(HA_ERR_RECORD_CHANGED, "Update wich is recoverable");
SETMSG(HA_ERR_WRONG_INDEX, "Wrong index given to function");
SETMSG(HA_ERR_CRASHED, ER_DEFAULT(ER_NOT_KEYFILE));
SETMSG(HA_ERR_WRONG_IN_RECORD, ER_DEFAULT(ER_CRASHED_ON_USAGE));
SETMSG(HA_ERR_OUT_OF_MEM, "Table handler out of memory");
SETMSG(HA_ERR_NOT_A_TABLE, "Incorrect file format '%.64s'");
SETMSG(HA_ERR_WRONG_COMMAND, "Command not supported");
SETMSG(HA_ERR_OLD_FILE, ER_DEFAULT(ER_OLD_KEYFILE));
SETMSG(HA_ERR_NO_ACTIVE_RECORD, "No record read in update");
SETMSG(HA_ERR_RECORD_DELETED, "Intern record deleted");
SETMSG(HA_ERR_RECORD_FILE_FULL, ER_DEFAULT(ER_RECORD_FILE_FULL));
SETMSG(HA_ERR_INDEX_FILE_FULL, "No more room in index file '%.64s'");
SETMSG(HA_ERR_END_OF_FILE, "End in next/prev/first/last");
SETMSG(HA_ERR_UNSUPPORTED, ER_DEFAULT(ER_ILLEGAL_HA));
SETMSG(HA_ERR_TOO_BIG_ROW, "Too big row");
SETMSG(HA_WRONG_CREATE_OPTION, "Wrong create option");
SETMSG(HA_ERR_FOUND_DUPP_UNIQUE, ER_DEFAULT(ER_DUP_UNIQUE));
SETMSG(HA_ERR_UNKNOWN_CHARSET, "Can't open charset");
SETMSG(HA_ERR_WRONG_MRG_TABLE_DEF, ER_DEFAULT(ER_WRONG_MRG_TABLE));
SETMSG(HA_ERR_CRASHED_ON_REPAIR, ER_DEFAULT(ER_CRASHED_ON_REPAIR));
SETMSG(HA_ERR_CRASHED_ON_USAGE, ER_DEFAULT(ER_CRASHED_ON_USAGE));
SETMSG(HA_ERR_LOCK_WAIT_TIMEOUT, ER_DEFAULT(ER_LOCK_WAIT_TIMEOUT));
SETMSG(HA_ERR_LOCK_TABLE_FULL, ER_DEFAULT(ER_LOCK_TABLE_FULL));
SETMSG(HA_ERR_READ_ONLY_TRANSACTION, ER_DEFAULT(ER_READ_ONLY_TRANSACTION));
SETMSG(HA_ERR_LOCK_DEADLOCK, ER_DEFAULT(ER_LOCK_DEADLOCK));
SETMSG(HA_ERR_CANNOT_ADD_FOREIGN, ER_DEFAULT(ER_CANNOT_ADD_FOREIGN));
SETMSG(HA_ERR_NO_REFERENCED_ROW, ER_DEFAULT(ER_NO_REFERENCED_ROW_2));
SETMSG(HA_ERR_ROW_IS_REFERENCED, ER_DEFAULT(ER_ROW_IS_REFERENCED_2));
SETMSG(HA_ERR_NO_SAVEPOINT, "No savepoint with that name");
SETMSG(HA_ERR_NON_UNIQUE_BLOCK_SIZE, "Non unique key block size");
SETMSG(HA_ERR_NO_SUCH_TABLE, "No such table: '%.64s'");
SETMSG(HA_ERR_TABLE_EXIST, ER_DEFAULT(ER_TABLE_EXISTS_ERROR));
SETMSG(HA_ERR_NO_CONNECTION, "Could not connect to storage engine");
SETMSG(HA_ERR_TABLE_DEF_CHANGED, ER_DEFAULT(ER_TABLE_DEF_CHANGED));
SETMSG(HA_ERR_FOREIGN_DUPLICATE_KEY,
"FK constraint would lead to duplicate key");
SETMSG(HA_ERR_TABLE_NEEDS_UPGRADE, ER_DEFAULT(ER_TABLE_NEEDS_UPGRADE));
SETMSG(HA_ERR_TABLE_READONLY, ER_DEFAULT(ER_OPEN_AS_READONLY));
SETMSG(HA_ERR_AUTOINC_READ_FAILED, ER_DEFAULT(ER_AUTOINC_READ_FAILED));
SETMSG(HA_ERR_AUTOINC_ERANGE, ER_DEFAULT(ER_WARN_DATA_OUT_OF_RANGE));
SETMSG(HA_ERR_TOO_MANY_CONCURRENT_TRXS,
ER_DEFAULT(ER_TOO_MANY_CONCURRENT_TRXS));
SETMSG(HA_ERR_INDEX_COL_TOO_LONG, ER_DEFAULT(ER_INDEX_COLUMN_TOO_LONG));
SETMSG(HA_ERR_INDEX_CORRUPT, ER_DEFAULT(ER_INDEX_CORRUPT));
SETMSG(HA_FTS_INVALID_DOCID, "Invalid InnoDB FTS Doc ID");
SETMSG(HA_ERR_TABLE_IN_FK_CHECK, ER_DEFAULT(ER_TABLE_IN_FK_CHECK));
SETMSG(HA_ERR_TABLESPACE_EXISTS, "Tablespace already exists");
SETMSG(HA_ERR_TABLESPACE_MISSING, ER_DEFAULT(ER_TABLESPACE_MISSING));
SETMSG(HA_ERR_FTS_EXCEED_RESULT_CACHE_LIMIT,
"FTS query exceeds result cache limit");
SETMSG(HA_ERR_TEMP_FILE_WRITE_FAILURE,
ER_DEFAULT(ER_TEMP_FILE_WRITE_FAILURE));
SETMSG(HA_ERR_INNODB_FORCED_RECOVERY, ER_DEFAULT(ER_INNODB_FORCED_RECOVERY));
SETMSG(HA_ERR_FTS_TOO_MANY_WORDS_IN_PHRASE,
"Too many words in a FTS phrase or proximity search");
SETMSG(HA_ERR_TABLE_CORRUPT, ER_DEFAULT(ER_TABLE_CORRUPT));
SETMSG(HA_ERR_TABLESPACE_MISSING, ER_DEFAULT(ER_TABLESPACE_MISSING));
SETMSG(HA_ERR_TABLESPACE_IS_NOT_EMPTY,
ER_DEFAULT(ER_TABLESPACE_IS_NOT_EMPTY));
SETMSG(HA_ERR_WRONG_FILE_NAME, ER_DEFAULT(ER_WRONG_FILE_NAME));
SETMSG(HA_ERR_NOT_ALLOWED_COMMAND, ER_DEFAULT(ER_NOT_ALLOWED_COMMAND));
SETMSG(HA_ERR_COMPUTE_FAILED, "Compute virtual column value failed");
SETMSG(HA_ERR_DISK_FULL_NOWAIT, ER_DEFAULT(ER_DISK_FULL_NOWAIT));
SETMSG(HA_ERR_NO_SESSION_TEMP, ER_DEFAULT(ER_NO_SESSION_TEMP));
SETMSG(HA_ERR_WRONG_TABLE_NAME, ER_DEFAULT(ER_WRONG_TABLE_NAME));
SETMSG(HA_ERR_TOO_LONG_PATH, ER_DEFAULT(ER_TABLE_NAME_CAUSES_TOO_LONG_PATH));
/* Register the error messages for use with my_error(). */
return my_error_register(get_handler_errmsg, HA_ERR_FIRST, HA_ERR_LAST);
}
int ha_finalize_handlerton(st_plugin_int *plugin) {
handlerton *hton = (handlerton *)plugin->data;
DBUG_TRACE;
/* hton can be NULL here, if ha_initialize_handlerton() failed. */
if (!hton) goto end;
switch (hton->state) {
case SHOW_OPTION_NO:
case SHOW_OPTION_DISABLED:
break;
case SHOW_OPTION_YES:
if (installed_htons[hton->db_type] == hton)
installed_htons[hton->db_type] = NULL;
break;
};
if (hton->panic) hton->panic(hton, HA_PANIC_CLOSE);
if (plugin->plugin->deinit) {
/*
Today we have no defined/special behavior for uninstalling
engine plugins.
*/
DBUG_PRINT("info", ("Deinitializing plugin: '%s'", plugin->name.str));
if (plugin->plugin->deinit(NULL)) {
DBUG_PRINT("warning", ("Plugin '%s' deinit function returned error.",
plugin->name.str));
}
}
/*
In case a plugin is uninstalled and re-installed later, it should
reuse an array slot. Otherwise the number of uninstall/install
cycles would be limited.
*/
if (hton->slot != HA_SLOT_UNDEF) {
/* Make sure we are not unpluging another plugin */
DBUG_ASSERT(se_plugin_array[hton->slot] == plugin);
DBUG_ASSERT(hton->slot < se_plugin_array.size());
se_plugin_array[hton->slot] = NULL;
builtin_htons[hton->slot] = false; /* Extra correctness. */
}
my_free(hton);
plugin->data = nullptr;
end:
return 0;
}
int ha_initialize_handlerton(st_plugin_int *plugin) {
handlerton *hton;
DBUG_TRACE;
DBUG_PRINT("plugin", ("initialize plugin: '%s'", plugin->name.str));
hton = (handlerton *)my_malloc(key_memory_handlerton, sizeof(handlerton),
MYF(MY_WME | MY_ZEROFILL));
if (hton == NULL) {
LogErr(ERROR_LEVEL, ER_HANDLERTON_OOM, plugin->name.str);
goto err_no_hton_memory;
}
hton->slot = HA_SLOT_UNDEF;
/* Historical Requirement */
plugin->data = hton; // shortcut for the future
if (plugin->plugin->init && plugin->plugin->init(hton)) {
LogErr(ERROR_LEVEL, ER_PLUGIN_INIT_FAILED, plugin->name.str);
goto err;
}
/*
the switch below and hton->state should be removed when
command-line options for plugins will be implemented
*/
DBUG_PRINT("info", ("hton->state=%d", hton->state));
switch (hton->state) {
case SHOW_OPTION_NO:
break;
case SHOW_OPTION_YES: {
uint tmp;
ulong fslot;
/* now check the db_type for conflict */
if (hton->db_type <= DB_TYPE_UNKNOWN ||
hton->db_type >= DB_TYPE_DEFAULT || installed_htons[hton->db_type]) {
int idx = (int)DB_TYPE_FIRST_DYNAMIC;
while (idx < (int)DB_TYPE_DEFAULT && installed_htons[idx]) idx++;
if (idx == (int)DB_TYPE_DEFAULT) {
LogErr(WARNING_LEVEL, ER_TOO_MANY_STORAGE_ENGINES);
goto err_deinit;
}
if (hton->db_type != DB_TYPE_UNKNOWN)
LogErr(WARNING_LEVEL, ER_SE_TYPECODE_CONFLICT, plugin->plugin->name,
idx);
hton->db_type = (enum legacy_db_type)idx;
}
/*
In case a plugin is uninstalled and re-installed later, it should
reuse an array slot. Otherwise the number of uninstall/install
cycles would be limited. So look for a free slot.
*/
DBUG_PRINT("plugin",
("total_ha: %lu", static_cast<ulong>(se_plugin_array.size())));
for (fslot = 0; fslot < se_plugin_array.size(); fslot++) {
if (!se_plugin_array[fslot]) break;
}
if (fslot < se_plugin_array.size())
hton->slot = fslot;
else {
hton->slot = se_plugin_array.size();
}
if (se_plugin_array.assign_at(hton->slot, plugin) ||
builtin_htons.assign_at(hton->slot, (plugin->plugin_dl == NULL)))
goto err_deinit;
installed_htons[hton->db_type] = hton;
tmp = hton->savepoint_offset;
hton->savepoint_offset = savepoint_alloc_size;
savepoint_alloc_size += tmp;
if (hton->prepare) total_ha_2pc++;
break;
}
/* fall through */
default:
hton->state = SHOW_OPTION_DISABLED;
break;
}
/*
This is entirely for legacy. We will create a new "disk based" hton and a
"memory" hton which will be configurable longterm. We should be able to
remove partition and myisammrg.
*/
switch (hton->db_type) {
case DB_TYPE_HEAP:
heap_hton = hton;
break;
case DB_TYPE_TEMPTABLE:
temptable_hton = hton;
break;
case DB_TYPE_MYISAM:
myisam_hton = hton;
break;
case DB_TYPE_INNODB:
innodb_hton = hton;
break;
default:
break;
};
/*
Re-load the optimizer cost constants since this storage engine can
have non-default cost constants.
*/
reload_optimizer_cost_constants();
return 0;
err_deinit:
/*
Let plugin do its inner deinitialization as plugin->init()
was successfully called before.
*/
if (plugin->plugin->deinit) (void)plugin->plugin->deinit(NULL);
err:
my_free(hton);
err_no_hton_memory:
plugin->data = NULL;
return 1;
}
int ha_init() {
int error = 0;
DBUG_TRACE;
/*
Check if there is a transaction-capable storage engine besides the
binary log.
*/
opt_using_transactions =
se_plugin_array.size() > static_cast<ulong>(opt_bin_log);
savepoint_alloc_size += sizeof(SAVEPOINT);
return error;
}
void ha_end() {
// Unregister handler error messages.
my_error_unregister(HA_ERR_FIRST, HA_ERR_LAST);
my_free(handler_errmsgs);
}
static bool dropdb_handlerton(THD *, plugin_ref plugin, void *path) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->drop_database)
hton->drop_database(hton, (char *)path);
return false;
}
void ha_drop_database(char *path) {
plugin_foreach(NULL, dropdb_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, path);
}
static bool closecon_handlerton(THD *thd, plugin_ref plugin, void *) {
handlerton *hton = plugin_data<handlerton *>(plugin);
/*
there's no need to rollback here as all transactions must
be rolled back already
*/
if (hton->state == SHOW_OPTION_YES && thd_get_ha_data(thd, hton)) {
if (hton->close_connection) hton->close_connection(hton, thd);
/* make sure ha_data is reset and ha_data_lock is released */
thd_set_ha_data(thd, hton, NULL);
}
return false;
}
/**
@note
don't bother to rollback here, it's done already
*/
void ha_close_connection(THD *thd) {
plugin_foreach(thd, closecon_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, 0);
}
static bool kill_handlerton(THD *thd, plugin_ref plugin, void *) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->kill_connection) {
if (thd_get_ha_data(thd, hton)) hton->kill_connection(hton, thd);
}
return false;
}
void ha_kill_connection(THD *thd) {
plugin_foreach(thd, kill_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, 0);
}
/** Invoke handlerton::pre_dd_shutdown() on a plugin.
@param plugin storage engine plugin
@retval false (always) */
static bool pre_dd_shutdown_handlerton(THD *, plugin_ref plugin, void *) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->pre_dd_shutdown)
hton->pre_dd_shutdown(hton);
return false;
}
/** Invoke handlerton::pre_dd_shutdown() on every storage engine plugin. */
void ha_pre_dd_shutdown(void) {
plugin_foreach(NULL, pre_dd_shutdown_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
0);
}
/* ========================================================================
======================= TRANSACTIONS ===================================*/
/**
Transaction handling in the server
==================================
In each client connection, MySQL maintains two transactional
states:
- a statement transaction,
- a standard, also called normal transaction.
Historical note
---------------
"Statement transaction" is a non-standard term that comes
from the times when MySQL supported BerkeleyDB storage engine.
First of all, it should be said that in BerkeleyDB auto-commit
mode auto-commits operations that are atomic to the storage
engine itself, such as a write of a record, and are too
high-granular to be atomic from the application perspective
(MySQL). One SQL statement could involve many BerkeleyDB
auto-committed operations and thus BerkeleyDB auto-commit was of
little use to MySQL.
Secondly, instead of SQL standard savepoints, BerkeleyDB
provided the concept of "nested transactions". In a nutshell,
transactions could be arbitrarily nested, but when the parent
transaction was committed or aborted, all its child (nested)
transactions were handled committed or aborted as well.
Commit of a nested transaction, in turn, made its changes
visible, but not durable: it destroyed the nested transaction,
all its changes would become available to the parent and
currently active nested transactions of this parent.
So the mechanism of nested transactions was employed to
provide "all or nothing" guarantee of SQL statements
required by the standard.
A nested transaction would be created at start of each SQL
statement, and destroyed (committed or aborted) at statement
end. Such nested transaction was internally referred to as
a "statement transaction" and gave birth to the term.
(Historical note ends)
Since then a statement transaction is started for each statement
that accesses transactional tables or uses the binary log. If
the statement succeeds, the statement transaction is committed.
If the statement fails, the transaction is rolled back. Commits
of statement transactions are not durable -- each such
transaction is nested in the normal transaction, and if the
normal transaction is rolled back, the effects of all enclosed
statement transactions are undone as well. Technically,
a statement transaction can be viewed as a savepoint which is
maintained automatically in order to make effects of one
statement atomic.
The normal transaction is started by the user and is ended
usually upon a user request as well. The normal transaction
encloses transactions of all statements issued between
its beginning and its end.
In autocommit mode, the normal transaction is equivalent
to the statement transaction.
Since MySQL supports PSEA (pluggable storage engine
architecture), more than one transactional engine can be
active at a time. Hence transactions, from the server
point of view, are always distributed. In particular,
transactional state is maintained independently for each
engine. In order to commit a transaction the two phase
commit protocol is employed.
Not all statements are executed in context of a transaction.
Administrative and status information statements do not modify
engine data, and thus do not start a statement transaction and
also have no effect on the normal transaction. Examples of such
statements are SHOW STATUS and RESET SLAVE.
Similarly DDL statements are not transactional,
and therefore a transaction is [almost] never started for a DDL
statement. The difference between a DDL statement and a purely
administrative statement though is that a DDL statement always
commits the current transaction before proceeding, if there is
any.
At last, SQL statements that work with non-transactional
engines also have no effect on the transaction state of the
connection. Even though they are written to the binary log,
and the binary log is, overall, transactional, the writes
are done in "write-through" mode, directly to the binlog
file, followed with a OS cache sync, in other words,
bypassing the binlog undo log (translog).
They do not commit the current normal transaction.
A failure of a statement that uses non-transactional tables
would cause a rollback of the statement transaction, but
in case there no non-transactional tables are used,
no statement transaction is started.
Data layout
-----------
The server stores its transaction-related data in
thd->transaction. This structure has two members of type
THD_TRANS. These members correspond to the statement and
normal transactions respectively:
- thd->transaction.stmt contains a list of engines
that are participating in the given statement
- thd->transaction.all contains a list of engines that
have participated in any of the statement transactions started
within the context of the normal transaction.
Each element of the list contains a pointer to the storage
engine, engine-specific transactional data, and engine-specific
transaction flags.
In autocommit mode thd->transaction.all is empty.
Instead, data of thd->transaction.stmt is
used to commit/rollback the normal transaction.
The list of registered engines has a few important properties:
- no engine is registered in the list twice
- engines are present in the list a reverse temporal order --
new participants are always added to the beginning of the list.
Transaction life cycle
----------------------
When a new connection is established, thd->transaction
members are initialized to an empty state.
If a statement uses any tables, all affected engines
are registered in the statement engine list. In
non-autocommit mode, the same engines are registered in
the normal transaction list.
At the end of the statement, the server issues a commit
or a roll back for all engines in the statement list.
At this point transaction flags of an engine, if any, are
propagated from the statement list to the list of the normal
transaction.
When commit/rollback is finished, the statement list is
cleared. It will be filled in again by the next statement,
and emptied again at the next statement's end.
The normal transaction is committed in a similar way
(by going over all engines in thd->transaction.all list)
but at different times:
- upon COMMIT SQL statement is issued by the user
- implicitly, by the server, at the beginning of a DDL statement
or SET AUTOCOMMIT={0|1} statement.
The normal transaction can be rolled back as well:
- if the user has requested so, by issuing ROLLBACK SQL
statement
- if one of the storage engines requested a rollback
by setting thd->transaction_rollback_request. This may
happen in case, e.g., when the transaction in the engine was
chosen a victim of the internal deadlock resolution algorithm
and rolled back internally. When such a situation happens, there
is little the server can do and the only option is to rollback
transactions in all other participating engines. In this case
the rollback is accompanied by an error sent to the user.
As follows from the use cases above, the normal transaction
is never committed when there is an outstanding statement
transaction. In most cases there is no conflict, since
commits of the normal transaction are issued by a stand-alone
administrative or DDL statement, thus no outstanding statement
transaction of the previous statement exists. Besides,
all statements that manipulate with the normal transaction
are prohibited in stored functions and triggers, therefore
no conflicting situation can occur in a sub-statement either.
The remaining rare cases when the server explicitly has
to commit the statement transaction prior to committing the normal
one cover error-handling scenarios (see for example
SQLCOM_LOCK_TABLES).
When committing a statement or a normal transaction, the server
either uses the two-phase commit protocol, or issues a commit
in each engine independently. The two-phase commit protocol
is used only if:
- all participating engines support two-phase commit (provide
handlerton::prepare PSEA API call) and
- transactions in at least two engines modify data (i.e. are
not read-only).
Note that the two phase commit is used for
statement transactions, even though they are not durable anyway.
This is done to ensure logical consistency of data in a multiple-
engine transaction.
For example, imagine that some day MySQL supports unique
constraint checks deferred till the end of statement. In such
case a commit in one of the engines may yield ER_DUP_KEY,
and MySQL should be able to gracefully abort statement
transactions of other participants.
After the normal transaction has been committed,
thd->transaction.all list is cleared.
When a connection is closed, the current normal transaction, if
any, is rolled back.
Roles and responsibilities
--------------------------
The server has no way to know that an engine participates in
the statement and a transaction has been started
in it unless the engine says so. Thus, in order to be
a part of a transaction, the engine must "register" itself.
This is done by invoking trans_register_ha() server call.
Normally the engine registers itself whenever handler::external_lock()
is called. trans_register_ha() can be invoked many times: if
an engine is already registered, the call does nothing.
In case autocommit is not set, the engine must register itself
twice -- both in the statement list and in the normal transaction
list.
In which list to register is a parameter of trans_register_ha().
Note, that although the registration interface in itself is
fairly clear, the current usage practice often leads to undesired
effects. E.g. since a call to trans_register_ha() in most engines
is embedded into implementation of handler::external_lock(), some
DDL statements start a transaction (at least from the server
point of view) even though they are not expected to. E.g.
CREATE TABLE does not start a transaction, since
handler::external_lock() is never called during CREATE TABLE. But
CREATE TABLE ... SELECT does, since handler::external_lock() is
called for the table that is being selected from. This has no
practical effects currently, but must be kept in mind
nevertheless.
Once an engine is registered, the server will do the rest
of the work.
During statement execution, whenever any of data-modifying
PSEA API methods is used, e.g. handler::write_row() or
handler::update_row(), the read-write flag is raised in the
statement transaction for the involved engine.
Currently All PSEA calls are "traced", and the data can not be
changed in a way other than issuing a PSEA call. Important:
unless this invariant is preserved the server will not know that
a transaction in a given engine is read-write and will not
involve the two-phase commit protocol!
At the end of a statement, server call trans_commit_stmt is
invoked. This call in turn invokes handlerton::prepare()
for every involved engine. Prepare is followed by a call
to handlerton::commit_one_phase() If a one-phase commit
will suffice, handlerton::prepare() is not invoked and
the server only calls handlerton::commit_one_phase().
At statement commit, the statement-related read-write
engine flag is propagated to the corresponding flag in the
normal transaction. When the commit is complete, the list
of registered engines is cleared.
Rollback is handled in a similar fashion.
Additional notes on DDL and the normal transaction.
---------------------------------------------------
DDLs and operations with non-transactional engines
do not "register" in thd->transaction lists, and thus do not
modify the transaction state. Besides, each DDL in
MySQL is prefixed with an implicit normal transaction commit
(a call to trans_commit_implicit()), and thus leaves nothing
to modify.
However, as it has been pointed out with CREATE TABLE .. SELECT,
some DDL statements can start a *new* transaction.
Behaviour of the server in this case is currently badly
defined.
DDL statements use a form of "semantic" logging
to maintain atomicity: if CREATE TABLE .. SELECT failed,
the newly created table is deleted.
In addition, some DDL statements issue interim transaction
commits: e.g. ALTER TABLE issues a commit after data is copied
from the original table to the internal temporary table. Other
statements, e.g. CREATE TABLE ... SELECT do not always commit
after itself.
And finally there is a group of DDL statements such as
RENAME/DROP TABLE that doesn't start a new transaction
and doesn't commit.
This diversity makes it hard to say what will happen if
by chance a stored function is invoked during a DDL --
whether any modifications it makes will be committed or not
is not clear. Fortunately, SQL grammar of few DDLs allows
invocation of a stored function.
A consistent behaviour is perhaps to always commit the normal
transaction after all DDLs, just like the statement transaction
is always committed at the end of all statements.
*/
/**
Register a storage engine for a transaction.
Every storage engine MUST call this function when it starts
a transaction or a statement (that is it must be called both for the
"beginning of transaction" and "beginning of statement").
Only storage engines registered for the transaction/statement
will know when to commit/rollback it.
@note
trans_register_ha is idempotent - storage engine may register many
times per transaction.
*/
void trans_register_ha(THD *thd, bool all, handlerton *ht_arg,
const ulonglong *trxid MY_ATTRIBUTE((unused))) {
Ha_trx_info *ha_info;
Transaction_ctx *trn_ctx = thd->get_transaction();
Transaction_ctx::enum_trx_scope trx_scope =
all ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
DBUG_TRACE;
DBUG_PRINT("enter", ("%s", all ? "all" : "stmt"));
if (all) {
/*
Ensure no active backup engine data exists, unless the current
transaction is from replication and in active xa state.
*/
DBUG_ASSERT(
thd->get_ha_data(ht_arg->slot)->ha_ptr_backup == NULL ||
(thd->get_transaction()->xid_state()->has_state(XID_STATE::XA_ACTIVE)));
DBUG_ASSERT(thd->get_ha_data(ht_arg->slot)->ha_ptr_backup == NULL ||
(thd->is_binlog_applier() || thd->slave_thread));
thd->server_status |= SERVER_STATUS_IN_TRANS;
if (thd->tx_read_only)
thd->server_status |= SERVER_STATUS_IN_TRANS_READONLY;
DBUG_PRINT("info", ("setting SERVER_STATUS_IN_TRANS"));
}
ha_info = thd->get_ha_data(ht_arg->slot)->ha_info + (all ? 1 : 0);
if (ha_info->is_started()) {
DBUG_ASSERT(trn_ctx->ha_trx_info(trx_scope));
return; /* already registered, return */
}
trn_ctx->register_ha(trx_scope, ha_info, ht_arg);
trn_ctx->set_ha_trx_info(trx_scope, ha_info);
if (ht_arg->prepare == 0) trn_ctx->set_no_2pc(trx_scope, true);
trn_ctx->xid_state()->set_query_id(thd->query_id);
/*
Register transaction start in performance schema if not done already.
By doing this, we handle cases when the transaction is started implicitly in
autocommit=0 mode, and cases when we are in normal autocommit=1 mode and the
executed statement is a single-statement transaction.
Explicitly started transactions are handled in trans_begin().
Do not register transactions in which binary log is the only participating
transactional storage engine.
*/
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (thd->m_transaction_psi == NULL && ht_arg->db_type != DB_TYPE_BINLOG &&
!thd->is_attachable_transaction_active()) {
const XID *xid = trn_ctx->xid_state()->get_xid();
bool autocommit = !thd->in_multi_stmt_transaction_mode();
thd->m_transaction_psi = MYSQL_START_TRANSACTION(
&thd->m_transaction_state, xid, trxid, thd->tx_isolation,
thd->tx_read_only, autocommit);
DEBUG_SYNC(thd, "after_set_transaction_psi_before_set_transaction_gtid");
gtid_set_performance_schema_values(thd);
}
#endif
}
/** XA Prepare one SE.
@param[in] thd Session THD
@param[in] ht SE handlerton
@return 0 for success, 1 for error - entire transaction is rolled back. */
static int prepare_one_ht(THD *thd, handlerton *ht) {
DBUG_TRACE;
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_prepare_count++;
if (ht->prepare) {
DBUG_EXECUTE_IF("simulate_xa_failure_prepare", {
ha_rollback_trans(thd, true);
return 1;
});
if (ht->prepare(ht, thd, true)) {
ha_rollback_trans(thd, true);
return 1;
}
} else {
push_warning_printf(thd, Sql_condition::SL_WARNING, ER_ILLEGAL_HA,
ER_THD(thd, ER_ILLEGAL_HA),
ha_resolve_storage_engine_name(ht));
}
return 0;
}
/**
@retval
0 ok
@retval
1 error, transaction was rolled back
*/
int ha_prepare(THD *thd) {
int error = 0;
Transaction_ctx *trn_ctx = thd->get_transaction();
DBUG_TRACE;
if (trn_ctx->is_active(Transaction_ctx::SESSION)) {
const Ha_trx_info *ha_info = trn_ctx->ha_trx_info(Transaction_ctx::SESSION);
bool gtid_error = false, need_clear_owned_gtid = false;
if ((gtid_error = commit_owned_gtids(thd, true, &need_clear_owned_gtid))) {
DBUG_ASSERT(need_clear_owned_gtid);
ha_rollback_trans(thd, true);
error = 1;
goto err;
}
/* Allow GTID to be read by SE for XA prepare. */
{
Clone_handler::XA_Operation xa_guard(thd);
/* Prepare binlog SE first, if there. */
while (ha_info != nullptr && error == 0) {
auto ht = ha_info->ht();
if (ht->db_type == DB_TYPE_BINLOG) {
error = prepare_one_ht(thd, ht);
break;
}
ha_info = ha_info->next();
}
/* Prepare all SE other than binlog. */
ha_info = trn_ctx->ha_trx_info(Transaction_ctx::SESSION);
while (ha_info != nullptr && error == 0) {
auto ht = ha_info->ht();
error = prepare_one_ht(thd, ht);
if (error != 0) {
break;
}
ha_info = ha_info->next();
}
}
DBUG_ASSERT(error != 0 || thd->get_transaction()->xid_state()->has_state(
XID_STATE::XA_IDLE));
err:
gtid_state_commit_or_rollback(thd, need_clear_owned_gtid, !gtid_error);
}
return error;
}
/**
Check if we can skip the two-phase commit.
A helper function to evaluate if two-phase commit is mandatory.
As a side effect, propagates the read-only/read-write flags
of the statement transaction to its enclosing normal transaction.
If we have at least two engines with read-write changes we must
run a two-phase commit. Otherwise we can run several independent
commits as the only transactional engine has read-write changes
and others are read-only.
@retval 0 All engines are read-only.
@retval 1 We have the only engine with read-write changes.
@retval >1 More than one engine have read-write changes.
Note: return value might NOT be the exact number of
engines with read-write changes.
*/
static uint ha_check_and_coalesce_trx_read_only(THD *thd, Ha_trx_info *ha_list,
bool all) {
/* The number of storage engines that have actual changes. */
unsigned rw_ha_count = 0;
Ha_trx_info *ha_info;
for (ha_info = ha_list; ha_info; ha_info = ha_info->next()) {
if (ha_info->is_trx_read_write()) ++rw_ha_count;
if (!all) {
Ha_trx_info *ha_info_all =
&thd->get_ha_data(ha_info->ht()->slot)->ha_info[1];
DBUG_ASSERT(ha_info != ha_info_all);
/*
Merge read-only/read-write information about statement
transaction to its enclosing normal transaction. Do this
only if in a real transaction -- that is, if we know
that ha_info_all is registered in thd->transaction.all.
Since otherwise we only clutter the normal transaction flags.
*/
if (ha_info_all->is_started()) /* false if autocommit. */
ha_info_all->coalesce_trx_with(ha_info);
} else if (rw_ha_count > 1) {
/*
It is a normal transaction, so we don't need to merge read/write
information up, and the need for two-phase commit has been
already established. Break the loop prematurely.
*/
break;
}
}
return rw_ha_count;
}
/**
The function computes condition to call gtid persistor wrapper,
and executes it.
It is invoked at committing a statement or transaction, including XA,
and also at XA prepare handling.
@param thd Thread context.
@param all The execution scope, true for the transaction one, false
for the statement one.
@param[out] need_clear_owned_gtid_ptr
A pointer to bool variable to return the computed decision
value.
@return zero as no error indication, non-zero otherwise
*/
int commit_owned_gtids(THD *thd, bool all, bool *need_clear_owned_gtid_ptr) {
DBUG_TRACE;
int error = 0;
if ((!opt_bin_log || (thd->slave_thread && !opt_log_slave_updates)) &&
(all || !thd->in_multi_stmt_transaction_mode()) &&
!thd->is_operating_gtid_table_implicitly &&
!thd->is_operating_substatement_implicitly) {
/*
If the binary log is disabled for this thread (either by
log_bin=0 or sql_log_bin=0 or by log_slave_updates=0 for a
slave thread), then the statement will not be written to
the binary log. In this case, we should save its GTID into
mysql.gtid_executed table and @@GLOBAL.GTID_EXECUTED as it
did when binlog is enabled.
*/
if (thd->owned_gtid.sidno > 0 ||
thd->owned_gtid.sidno == THD::OWNED_SIDNO_ANONYMOUS) {
*need_clear_owned_gtid_ptr = true;
}
/*
If GTID is not persisted by SE, write it to
mysql.gtid_executed table.
*/
if (thd->owned_gtid.sidno > 0 && !thd->se_persists_gtid()) {
error = gtid_state->save(thd);
}
} else {
*need_clear_owned_gtid_ptr = false;
}
return error;
}
/**
The function is a wrapper of commit_owned_gtids(...). It is invoked
at committing a partially failed statement or transaction.
@param thd Thread context.
@retval -1 if error when persisting owned gtid.
@retval 0 if succeed to commit owned gtid.
@retval 1 if do not meet conditions to commit owned gtid.
*/
int commit_owned_gtid_by_partial_command(THD *thd) {
DBUG_TRACE;
bool need_clear_owned_gtid_ptr = false;
int ret = 0;
if (commit_owned_gtids(thd, true, &need_clear_owned_gtid_ptr)) {
/* Error when saving gtid into mysql.gtid_executed table. */
gtid_state->update_on_rollback(thd);
ret = -1;
} else if (need_clear_owned_gtid_ptr) {
gtid_state->update_on_commit(thd);
ret = 0;
} else {
ret = 1;
}
return ret;
}
/**
@param[in] thd Thread handle.
@param[in] all Session transaction if true, statement
otherwise.
@param[in] ignore_global_read_lock Allow commit to complete even if a
global read lock is active. This can be
used to allow changes to internal tables
(e.g. slave status tables).
@retval
0 ok
@retval
1 transaction was rolled back
@retval
2 error during commit, data may be inconsistent
@todo
Since we don't support nested statement transactions in 5.0,
we can't commit or rollback stmt transactions while we are inside
stored functions or triggers. So we simply do nothing now.
TODO: This should be fixed in later ( >= 5.1) releases.
*/
int ha_commit_trans(THD *thd, bool all, bool ignore_global_read_lock) {
int error = 0;
THD_STAGE_INFO(thd, stage_waiting_for_handler_commit);
bool need_clear_owned_gtid = false;
bool run_slave_post_commit = false;
/*
Save transaction owned gtid into table before transaction prepare
if binlog is disabled, or binlog is enabled and log_slave_updates
is disabled with slave SQL thread or slave worker thread.
*/
error = commit_owned_gtids(thd, all, &need_clear_owned_gtid);
/*
'all' means that this is either an explicit commit issued by
user, or an implicit commit issued by a DDL.
*/
Transaction_ctx *trn_ctx = thd->get_transaction();
Transaction_ctx::enum_trx_scope trx_scope =
all ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
/*
"real" is a nick name for a transaction for which a commit will
make persistent changes. E.g. a 'stmt' transaction inside a 'all'
transation is not 'real': even though it's possible to commit it,
the changes are not durable as they might be rolled back if the
enclosing 'all' transaction is rolled back.
*/
bool is_real_trans = all || !trn_ctx->is_active(Transaction_ctx::SESSION);
Ha_trx_info *ha_info = trn_ctx->ha_trx_info(trx_scope);
XID_STATE *xid_state = trn_ctx->xid_state();
DBUG_TRACE;
DBUG_PRINT("info", ("all=%d thd->in_sub_stmt=%d ha_info=%p is_real_trans=%d",
all, thd->in_sub_stmt, ha_info, is_real_trans));
/*
We must not commit the normal transaction if a statement
transaction is pending. Otherwise statement transaction
flags will not get propagated to its normal transaction's
counterpart.
*/
DBUG_ASSERT(!trn_ctx->is_active(Transaction_ctx::STMT) || !all);
/*
When atomic DDL is executed on the slave, we would like to
to update slave applier state as part of DDL's transaction.
Call Relay_log_info::pre_commit() hook to do this before DDL
gets committed in the following block.
*/
if (is_real_trans && is_atomic_ddl_commit_on_slave(thd)) {
/*
Failed atomic DDL statements should've been marked as executed/committed
during statement rollback.
When applying a DDL statement on a slave and the statement is filtered
out by a table filter, we report an error "ER_SLAVE_IGNORED_TABLE" to
warn slave applier thread. We need to save the DDL statement's gtid
into mysql.gtid_executed system table if the binary log is disabled
on the slave and gtids are enabled. It is not necessary to assert that
there is no error when committing the DDL statement's gtid into table.
*/
DBUG_ASSERT(!thd->is_error() ||
(thd->is_operating_gtid_table_implicitly &&
thd->get_stmt_da()->mysql_errno() == ER_SLAVE_IGNORED_TABLE));
run_slave_post_commit = true;
error = error || thd->rli_slave->pre_commit();
DBUG_EXECUTE_IF("rli_pre_commit_error", {
error = true;
my_error(ER_UNKNOWN_ERROR, MYF(0));
});
DBUG_EXECUTE_IF("slave_crash_before_commit", {
/* This pre-commit crash aims solely at atomic DDL */
DBUG_SUICIDE();
});
}
if (thd->in_sub_stmt) {
DBUG_ASSERT(0);
/*
Since we don't support nested statement transactions in 5.0,
we can't commit or rollback stmt transactions while we are inside
stored functions or triggers. So we simply do nothing now.
TODO: This should be fixed in later ( >= 5.1) releases.
*/
if (!all) return 0;
/*
We assume that all statements which commit or rollback main transaction
are prohibited inside of stored functions or triggers. So they should
bail out with error even before ha_commit_trans() call. To be 100% safe
let us throw error in non-debug builds.
*/
my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0));
return 2;
}
MDL_request mdl_request;
bool release_mdl = false;
if (ha_info && !error) {
uint rw_ha_count = 0;
bool rw_trans;
DBUG_EXECUTE_IF("crash_commit_before", DBUG_SUICIDE(););
/*
skip 2PC if the transaction is empty and it is not marked as started (which
can happen when the slave's binlog is disabled)
*/
if (ha_info->is_started())
rw_ha_count = ha_check_and_coalesce_trx_read_only(thd, ha_info, all);
trn_ctx->set_rw_ha_count(trx_scope, rw_ha_count);
/* rw_trans is true when we in a transaction changing data */
rw_trans = is_real_trans && (rw_ha_count > 0);
DBUG_EXECUTE_IF("dbug.enabled_commit", {
const char act[] = "now signal Reached wait_for signal.commit_continue";
DBUG_ASSERT(!debug_sync_set_action(thd, STRING_WITH_LEN(act)));
};);
DEBUG_SYNC(thd, "ha_commit_trans_before_acquire_commit_lock");
if (rw_trans && !ignore_global_read_lock) {
/*
Acquire a metadata lock which will ensure that COMMIT is blocked
by an active FLUSH TABLES WITH READ LOCK (and vice versa:
COMMIT in progress blocks FTWRL).
We allow the owner of FTWRL to COMMIT; we assume that it knows
what it does.
*/
MDL_REQUEST_INIT(&mdl_request, MDL_key::COMMIT, "", "",
MDL_INTENTION_EXCLUSIVE, MDL_EXPLICIT);
DBUG_PRINT("debug", ("Acquire MDL commit lock"));
if (thd->mdl_context.acquire_lock(&mdl_request,
thd->variables.lock_wait_timeout)) {
ha_rollback_trans(thd, all);
return 1;
}
release_mdl = true;
DEBUG_SYNC(thd, "ha_commit_trans_after_acquire_commit_lock");
}
if (rw_trans && stmt_has_updated_trans_table(ha_info) &&
check_readonly(thd, true)) {
ha_rollback_trans(thd, all);
error = 1;
goto end;
}
if (!trn_ctx->no_2pc(trx_scope) && (trn_ctx->rw_ha_count(trx_scope) > 1))
error = tc_log->prepare(thd, all);
}
/*
The state of XA transaction is changed to Prepared, intermediately.
It's going to change to the regular NOTR at the end.
The fact of the Prepared state is of interest to binary logger.
*/
if (!error && all && xid_state->has_state(XID_STATE::XA_IDLE)) {
DBUG_ASSERT(
thd->lex->sql_command == SQLCOM_XA_COMMIT &&
static_cast<Sql_cmd_xa_commit *>(thd->lex->m_sql_cmd)->get_xa_opt() ==
XA_ONE_PHASE);
xid_state->set_state(XID_STATE::XA_PREPARED);
}
if (error || (error = tc_log->commit(thd, all))) {
ha_rollback_trans(thd, all);
error = 1;
goto end;
}
/*
Mark multi-statement (any autocommit mode) or single-statement
(autocommit=1) transaction as rolled back
*/
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (is_real_trans && thd->m_transaction_psi != NULL) {
MYSQL_COMMIT_TRANSACTION(thd->m_transaction_psi);
thd->m_transaction_psi = NULL;
}
#endif
DBUG_EXECUTE_IF("crash_commit_after",
if (!thd->is_operating_gtid_table_implicitly)
DBUG_SUICIDE(););
end:
if (release_mdl && mdl_request.ticket) {
/*
We do not always immediately release transactional locks
after ha_commit_trans() (see uses of ha_enable_transaction()),
thus we release the commit blocker lock as soon as it's
not needed.
*/
DBUG_PRINT("debug", ("Releasing MDL commit lock"));
thd->mdl_context.release_lock(mdl_request.ticket);
}
/* Free resources and perform other cleanup even for 'empty' transactions. */
if (is_real_trans) {
trn_ctx->cleanup();
thd->tx_priority = 0;
}
if (need_clear_owned_gtid) {
thd->server_status &= ~SERVER_STATUS_IN_TRANS;
/*
Release the owned GTID when binlog is disabled, or binlog is
enabled and log_slave_updates is disabled with slave SQL thread
or slave worker thread.
*/
if (error)
gtid_state->update_on_rollback(thd);
else
gtid_state->update_on_commit(thd);
}
if (run_slave_post_commit) {
DBUG_EXECUTE_IF("slave_crash_after_commit", DBUG_SUICIDE(););
thd->rli_slave->post_commit(error != 0);
/*
SERVER_STATUS_IN_TRANS may've been gained by pre_commit alone
when the main DDL transaction is filtered out of execution.
In such case the status has to be reset now.
TODO: move/refactor this handling onto trans_commit/commit_implicit()
the caller level.
*/
thd->server_status &= ~SERVER_STATUS_IN_TRANS;
} else {
DBUG_EXECUTE_IF("slave_crash_after_commit", {
if (thd->slave_thread && thd->rli_slave &&
thd->rli_slave->current_event &&
thd->rli_slave->current_event->get_type_code() ==
binary_log::XID_EVENT &&
!thd->is_operating_substatement_implicitly &&
!thd->is_operating_gtid_table_implicitly)
DBUG_SUICIDE();
});
}
return error;
}
/**
Commit the sessions outstanding transaction.
@pre thd->transaction.flags.commit_low == true
@post thd->transaction.flags.commit_low == false
@note This function does not care about global read lock; the caller
should.
@param[in] thd Thread handle.
@param[in] all Is set in case of explicit commit
(COMMIT statement), or implicit commit
issued by DDL. Is not set when called
at the end of statement, even if
autocommit=1.
@param[in] run_after_commit
True by default, otherwise, does not execute
the after_commit hook in the function.
*/
int ha_commit_low(THD *thd, bool all, bool run_after_commit) {
int error = 0;
Transaction_ctx *trn_ctx = thd->get_transaction();
Transaction_ctx::enum_trx_scope trx_scope =
all ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
Ha_trx_info *ha_info = trn_ctx->ha_trx_info(trx_scope), *ha_info_next;
DBUG_TRACE;
if (ha_info) {
bool restore_backup_ha_data = false;
/*
At execution of XA COMMIT ONE PHASE binlog or slave applier
reattaches the engine ha_data to THD, previously saved at XA START.
*/
if (all && thd->rpl_unflag_detached_engine_ha_data()) {
DBUG_PRINT("info", ("query='%s'", thd->query().str));
DBUG_ASSERT(thd->lex->sql_command == SQLCOM_XA_COMMIT);
DBUG_ASSERT(
static_cast<Sql_cmd_xa_commit *>(thd->lex->m_sql_cmd)->get_xa_opt() ==
XA_ONE_PHASE);
restore_backup_ha_data = true;
}
for (; ha_info; ha_info = ha_info_next) {
int err;
handlerton *ht = ha_info->ht();
if ((err = ht->commit(ht, thd, all))) {
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_ERROR_DURING_COMMIT, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_commit_count++;
ha_info_next = ha_info->next();
if (restore_backup_ha_data) reattach_engine_ha_data_to_thd(thd, ht);
ha_info->reset(); /* keep it conveniently zero-filled */
}
trn_ctx->reset_scope(trx_scope);
}
/* Free resources and perform other cleanup even for 'empty' transactions. */
if (all) trn_ctx->cleanup();
/*
When the transaction has been committed, we clear the commit_low
flag. This allow other parts of the system to check if commit_low
was called.
*/
trn_ctx->m_flags.commit_low = false;
if (run_after_commit && thd->get_transaction()->m_flags.run_hooks) {
/*
If commit succeeded, we call the after_commit hook.
TODO: Investigate if this can be refactored so that there is
only one invocation of this hook in the code (in
MYSQL_LOG_BIN::finish_commit).
*/
if (!error) (void)RUN_HOOK(transaction, after_commit, (thd, all));
trn_ctx->m_flags.run_hooks = false;
}
return error;
}
int ha_rollback_low(THD *thd, bool all) {
Transaction_ctx *trn_ctx = thd->get_transaction();
int error = 0;
Transaction_ctx::enum_trx_scope trx_scope =
all ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
Ha_trx_info *ha_info = trn_ctx->ha_trx_info(trx_scope), *ha_info_next;
(void)RUN_HOOK(transaction, before_rollback, (thd, all));
if (ha_info) {
bool restore_backup_ha_data = false;
/*
Similarly to the commit case, the binlog or slave applier
reattaches the engine ha_data to THD.
*/
if (all && thd->rpl_unflag_detached_engine_ha_data()) {
DBUG_ASSERT(trn_ctx->xid_state()->get_state() != XID_STATE::XA_NOTR ||
thd->killed == THD::KILL_CONNECTION);
restore_backup_ha_data = true;
}
for (; ha_info; ha_info = ha_info_next) {
int err;
handlerton *ht = ha_info->ht();
if ((err = ht->rollback(ht, thd, all))) { // cannot happen
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_rollback_count++;
ha_info_next = ha_info->next();
if (restore_backup_ha_data) reattach_engine_ha_data_to_thd(thd, ht);
ha_info->reset(); /* keep it conveniently zero-filled */
}
trn_ctx->reset_scope(trx_scope);
}
/*
Thanks to possibility of MDL deadlock rollback request can come even if
transaction hasn't been started in any transactional storage engine.
It is possible to have a call of ha_rollback_low() while handling
failure from ha_prepare() and an error in Daignostics_area still
wasn't set. Therefore it is required to check that an error in
Diagnostics_area is set before calling the method XID_STATE::set_error().
If it wasn't done it would lead to failure of the assertion
DBUG_ASSERT(m_status == DA_ERROR)
in the method Diagnostics_area::mysql_errno().
In case ha_prepare is failed and an error wasn't set in Diagnostics_area
the error ER_XA_RBROLLBACK is set in the Diagnostics_area from
the method Sql_cmd_xa_prepare::trans_xa_prepare() when non-zero result code
returned by ha_prepare() is handled.
*/
if (all && thd->transaction_rollback_request && thd->is_error())
trn_ctx->xid_state()->set_error(thd);
(void)RUN_HOOK(transaction, after_rollback, (thd, all));
return error;
}
int ha_rollback_trans(THD *thd, bool all) {
int error = 0;
Transaction_ctx *trn_ctx = thd->get_transaction();
bool is_xa_rollback = trn_ctx->xid_state()->has_state(XID_STATE::XA_PREPARED);
/*
"real" is a nick name for a transaction for which a commit will
make persistent changes. E.g. a 'stmt' transaction inside a 'all'
transaction is not 'real': even though it's possible to commit it,
the changes are not durable as they might be rolled back if the
enclosing 'all' transaction is rolled back.
We establish the value of 'is_real_trans' by checking
if it's an explicit COMMIT or BEGIN statement, or implicit
commit issued by DDL (in these cases all == true),
or if we're running in autocommit mode (it's only in the autocommit mode
ha_commit_one_phase() is called with an empty
transaction.all.ha_list, see why in trans_register_ha()).
*/
bool is_real_trans = all || !trn_ctx->is_active(Transaction_ctx::SESSION);
DBUG_TRACE;
/*
We must not rollback the normal transaction if a statement
transaction is pending.
*/
DBUG_ASSERT(!trn_ctx->is_active(Transaction_ctx::STMT) || !all);
if (thd->in_sub_stmt) {
DBUG_ASSERT(0);
/*
If we are inside stored function or trigger we should not commit or
rollback current statement transaction. See comment in ha_commit_trans()
call for more information.
*/
if (!all) return 0;
my_error(ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG, MYF(0));
return 1;
}
if (tc_log) error = tc_log->rollback(thd, all);
/*
Mark multi-statement (any autocommit mode) or single-statement
(autocommit=1) transaction as rolled back
*/
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (all || !thd->in_active_multi_stmt_transaction()) {
MYSQL_ROLLBACK_TRANSACTION(thd->m_transaction_psi);
thd->m_transaction_psi = NULL;
}
#endif
/* Always cleanup. Even if nht==0. There may be savepoints. */
if (is_real_trans) {
trn_ctx->cleanup();
thd->tx_priority = 0;
}
if (all) thd->transaction_rollback_request = false;
/*
Only call gtid_rollback(THD*), which will purge thd->owned_gtid, if
complete transaction is being rollback or autocommit=1.
Notice, XA rollback has just invoked update_on_commit() through
tc_log->*rollback* stack.
*/
if (is_real_trans && !is_xa_rollback) gtid_state->update_on_rollback(thd);
/*
If the transaction cannot be rolled back safely, warn; don't warn if this
is a slave thread (because when a slave thread executes a ROLLBACK, it has
been read from the binary log, so it's 100% sure and normal to produce
error ER_WARNING_NOT_COMPLETE_ROLLBACK. If we sent the warning to the
slave SQL thread, it would not stop the thread but just be printed in
the error log; but we don't want users to wonder why they have this
message in the error log, so we don't send it.
*/
if (is_real_trans &&
trn_ctx->cannot_safely_rollback(Transaction_ctx::SESSION) &&
!thd->slave_thread && thd->killed != THD::KILL_CONNECTION)
trn_ctx->push_unsafe_rollback_warnings(thd);
return error;
}
/**
Commit the attachable transaction in storage engines.
@note This is slimmed down version of ha_commit_trans()/ha_commit_low()
which commits attachable transaction but skips code which is
unnecessary and unsafe for them (like dealing with GTIDs).
Since attachable transactions are read-only their commit only
needs to release resources and cleanup state in SE.
@param thd Current thread
@retval 0 - Success
@retval non-0 - Failure
*/
int ha_commit_attachable(THD *thd) {
int error = 0;
Transaction_ctx *trn_ctx = thd->get_transaction();
Ha_trx_info *ha_info = trn_ctx->ha_trx_info(Transaction_ctx::STMT);
Ha_trx_info *ha_info_next;
/* This function only handles attachable transactions. */
DBUG_ASSERT(thd->is_attachable_ro_transaction_active());
/*
Since the attachable transaction is AUTOCOMMIT we only need
to care about statement transaction.
*/
DBUG_ASSERT(!trn_ctx->is_active(Transaction_ctx::SESSION));
if (ha_info) {
for (; ha_info; ha_info = ha_info_next) {
/* Attachable transaction is not supposed to modify anything. */
DBUG_ASSERT(!ha_info->is_trx_read_write());
handlerton *ht = ha_info->ht();
if (ht->commit(ht, thd, false)) {
/*
In theory this should not happen since attachable transactions
are read only and therefore commit is supposed to only release
resources/cleanup state. Even if this happens we will simply
continue committing attachable transaction in other SEs.
*/
DBUG_ASSERT(false);
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_commit_count++;
ha_info_next = ha_info->next();
ha_info->reset(); /* keep it conveniently zero-filled */
}
trn_ctx->reset_scope(Transaction_ctx::STMT);
}
/*
Mark transaction as commited in PSI.
*/
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (thd->m_transaction_psi != NULL) {
MYSQL_COMMIT_TRANSACTION(thd->m_transaction_psi);
thd->m_transaction_psi = NULL;
}
#endif
/* Free resources and perform other cleanup even for 'empty' transactions. */
trn_ctx->cleanup();
return (error);
}
/**
Check if all storage engines used in transaction agree that after
rollback to savepoint it is safe to release MDL locks acquired after
savepoint creation.
@param thd The client thread that executes the transaction.
@return true - It is safe to release MDL locks.
false - If it is not.
*/
bool ha_rollback_to_savepoint_can_release_mdl(THD *thd) {
Ha_trx_info *ha_info;
Transaction_ctx *trn_ctx = thd->get_transaction();
Transaction_ctx::enum_trx_scope trx_scope =
thd->in_sub_stmt ? Transaction_ctx::STMT : Transaction_ctx::SESSION;
DBUG_TRACE;
/**
Checking whether it is safe to release metadata locks after rollback to
savepoint in all the storage engines that are part of the transaction.
*/
for (ha_info = trn_ctx->ha_trx_info(trx_scope); ha_info;
ha_info = ha_info->next()) {
handlerton *ht = ha_info->ht();
DBUG_ASSERT(ht);
if (ht->savepoint_rollback_can_release_mdl == 0 ||
ht->savepoint_rollback_can_release_mdl(ht, thd) == false)
return false;
}
return true;
}
int ha_rollback_to_savepoint(THD *thd, SAVEPOINT *sv) {
int error = 0;
Transaction_ctx *trn_ctx = thd->get_transaction();
Transaction_ctx::enum_trx_scope trx_scope =
!thd->in_sub_stmt ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
Ha_trx_info *ha_info, *ha_info_next;
DBUG_TRACE;
trn_ctx->set_rw_ha_count(trx_scope, 0);
trn_ctx->set_no_2pc(trx_scope, 0);
/*
rolling back to savepoint in all storage engines that were part of the
transaction when the savepoint was set
*/
for (ha_info = sv->ha_list; ha_info; ha_info = ha_info->next()) {
int err;
handlerton *ht = ha_info->ht();
DBUG_ASSERT(ht);
DBUG_ASSERT(ht->savepoint_set != 0);
if ((err = ht->savepoint_rollback(
ht, thd,
(uchar *)(sv + 1) + ht->savepoint_offset))) { // cannot happen
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_savepoint_rollback_count++;
if (ht->prepare == 0) trn_ctx->set_no_2pc(trx_scope, true);
}
/*
rolling back the transaction in all storage engines that were not part of
the transaction when the savepoint was set
*/
for (ha_info = trn_ctx->ha_trx_info(trx_scope); ha_info != sv->ha_list;
ha_info = ha_info_next) {
int err;
handlerton *ht = ha_info->ht();
if ((err = ht->rollback(ht, thd, !thd->in_sub_stmt))) { // cannot happen
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_ERROR_DURING_ROLLBACK, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_rollback_count++;
ha_info_next = ha_info->next();
ha_info->reset(); /* keep it conveniently zero-filled */
}
trn_ctx->set_ha_trx_info(trx_scope, sv->ha_list);
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (thd->m_transaction_psi != NULL)
MYSQL_INC_TRANSACTION_ROLLBACK_TO_SAVEPOINT(thd->m_transaction_psi, 1);
#endif
return error;
}
int ha_prepare_low(THD *thd, bool all) {
int error = 0;
Transaction_ctx::enum_trx_scope trx_scope =
all ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
Ha_trx_info *ha_info = thd->get_transaction()->ha_trx_info(trx_scope);
DBUG_TRACE;
if (ha_info) {
for (; ha_info && !error; ha_info = ha_info->next()) {
int err = 0;
handlerton *ht = ha_info->ht();
/*
Do not call two-phase commit if this particular
transaction is read-only. This allows for simpler
implementation in engines that are always read-only.
*/
if (!ha_info->is_trx_read_write()) continue;
if ((err = ht->prepare(ht, thd, all))) {
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_ERROR_DURING_COMMIT, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_prepare_count++;
}
DBUG_EXECUTE_IF("crash_commit_after_prepare", DBUG_SUICIDE(););
}
return error;
}
/**
@note
according to the sql standard (ISO/IEC 9075-2:2003)
section "4.33.4 SQL-statements and transaction states",
SAVEPOINT is *not* transaction-initiating SQL-statement
*/
int ha_savepoint(THD *thd, SAVEPOINT *sv) {
int error = 0;
Transaction_ctx::enum_trx_scope trx_scope =
!thd->in_sub_stmt ? Transaction_ctx::SESSION : Transaction_ctx::STMT;
Ha_trx_info *ha_info = thd->get_transaction()->ha_trx_info(trx_scope);
Ha_trx_info *begin_ha_info = ha_info;
DBUG_TRACE;
for (; ha_info; ha_info = ha_info->next()) {
int err;
handlerton *ht = ha_info->ht();
DBUG_ASSERT(ht);
if (!ht->savepoint_set) {
my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), "SAVEPOINT");
error = 1;
break;
}
if ((err = ht->savepoint_set(
ht, thd,
(uchar *)(sv + 1) + ht->savepoint_offset))) { // cannot happen
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_GET_ERRNO, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_savepoint_count++;
}
/*
Remember the list of registered storage engines. All new
engines are prepended to the beginning of the list.
*/
sv->ha_list = begin_ha_info;
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (!error && thd->m_transaction_psi != NULL)
MYSQL_INC_TRANSACTION_SAVEPOINTS(thd->m_transaction_psi, 1);
#endif
return error;
}
int ha_release_savepoint(THD *thd, SAVEPOINT *sv) {
int error = 0;
Ha_trx_info *ha_info = sv->ha_list;
DBUG_TRACE;
for (; ha_info; ha_info = ha_info->next()) {
int err;
handlerton *ht = ha_info->ht();
/* Savepoint life time is enclosed into transaction life time. */
DBUG_ASSERT(ht);
if (!ht->savepoint_release) continue;
if ((err = ht->savepoint_release(
ht, thd,
(uchar *)(sv + 1) + ht->savepoint_offset))) { // cannot happen
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_GET_ERRNO, MYF(0), err,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, err));
error = 1;
}
}
DBUG_EXECUTE_IF("fail_ha_release_savepoint", {
my_error(ER_UNKNOWN_ERROR, MYF(0));
error = 1;
});
#ifdef HAVE_PSI_TRANSACTION_INTERFACE
if (thd->m_transaction_psi != NULL)
MYSQL_INC_TRANSACTION_RELEASE_SAVEPOINT(thd->m_transaction_psi, 1);
#endif
return error;
}
static bool snapshot_handlerton(THD *thd, plugin_ref plugin, void *arg) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->start_consistent_snapshot) {
hton->start_consistent_snapshot(hton, thd);
*((bool *)arg) = false;
}
return false;
}
int ha_start_consistent_snapshot(THD *thd) {
bool warn = true;
plugin_foreach(thd, snapshot_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, &warn);
/*
Same idea as when one wants to CREATE TABLE in one engine which does not
exist:
*/
if (warn)
push_warning(thd, Sql_condition::SL_WARNING, ER_UNKNOWN_ERROR,
"This MySQL server does not support any "
"consistent-read capable storage engine");
return 0;
}
static bool flush_handlerton(THD *, plugin_ref plugin, void *arg) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->flush_logs &&
hton->flush_logs(hton, *(static_cast<bool *>(arg))))
return true;
return false;
}
bool ha_flush_logs(bool binlog_group_flush) {
if (plugin_foreach(NULL, flush_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
static_cast<void *>(&binlog_group_flush))) {
return true;
}
return false;
}
/**
@brief make canonical filename
@param[in] file table handler
@param[in] path original path
@param[out] tmp_path buffer for canonized path
@details Lower case db name and table name path parts for
non file based tables when lower_case_table_names
is 2 (store as is, compare in lower case).
Filesystem path prefix (mysql_data_home or tmpdir)
is left intact.
@note tmp_path may be left intact if no conversion was
performed.
@retval canonized path
@todo This may be done more efficiently when table path
gets built. Convert this function to something like
ASSERT_CANONICAL_FILENAME.
*/
const char *get_canonical_filename(handler *file, const char *path,
char *tmp_path) {
uint i;
if (lower_case_table_names != 2 || (file->ha_table_flags() & HA_FILE_BASED))
return path;
for (i = 0; i <= mysql_tmpdir_list.max; i++) {
if (is_prefix(path, mysql_tmpdir_list.list[i])) return path;
}
/* Ensure that table handler get path in lower case */
if (tmp_path != path) my_stpcpy(tmp_path, path);
/*
we only should turn into lowercase database/table part
so start the process after homedirectory
*/
my_casedn_str(files_charset_info, tmp_path + mysql_data_home_len);
return tmp_path;
}
class Ha_delete_table_error_handler : public Internal_error_handler {
public:
virtual bool handle_condition(THD *, uint, const char *,
Sql_condition::enum_severity_level *level,
const char *) {
/* Downgrade errors to warnings. */
if (*level == Sql_condition::SL_ERROR) *level = Sql_condition::SL_WARNING;
return false;
}
};
/**
Delete table from the storage engine.
@param thd Thread context.
@param table_type Handlerton for table's SE.
@param path Path to table (without extension).
@param db Table database.
@param alias Table name.
@param table_def dd::Table object describing the table.
@param generate_warning Indicates whether errors during deletion
should be reported as warnings.
@return 0 - in case of success, non-0 in case of failure, ENOENT
if the file doesn't exists.
*/
int ha_delete_table(THD *thd, handlerton *table_type, const char *path,
const char *db, const char *alias,
const dd::Table *table_def, bool generate_warning) {
handler *file;
char tmp_path[FN_REFLEN];
int error;
TABLE dummy_table;
TABLE_SHARE dummy_share;
DBUG_TRACE;
dummy_table.s = &dummy_share;
/* DB_TYPE_UNKNOWN is used in ALTER TABLE when renaming only .frm files */
if (table_type == NULL ||
!(file = get_new_handler(
(TABLE_SHARE *)0, table_def->partition_type() != dd::Table::PT_NONE,
thd->mem_root, table_type))) {
return ENOENT;
}
path = get_canonical_filename(file, path, tmp_path);
if ((error = file->ha_delete_table(path, table_def)) && generate_warning) {
/*
Because file->print_error() use my_error() to generate the error message
we use an internal error handler to intercept it and store the text
in a temporary buffer. Later the message will be presented to user
as a warning.
*/
Ha_delete_table_error_handler ha_delete_table_error_handler;
/* Fill up strucutures that print_error may need */
dummy_share.path.str = const_cast<char *>(path);
dummy_share.path.length = strlen(path);
dummy_share.db.str = db;
dummy_share.db.length = strlen(db);
dummy_share.table_name.str = alias;
dummy_share.table_name.length = strlen(alias);
dummy_table.alias = alias;
file->change_table_ptr(&dummy_table, &dummy_share);
/*
XXX: should we convert *all* errors to warnings here?
What if the error is fatal?
*/
thd->push_internal_handler(&ha_delete_table_error_handler);
file->print_error(error, 0);
thd->pop_internal_handler();
}
destroy(file);
#ifdef HAVE_PSI_TABLE_INTERFACE
if (likely(error == 0)) {
/* Table share not available, so check path for temp_table prefix. */
bool temp_table = (strstr(path, tmp_file_prefix) != NULL);
PSI_TABLE_CALL(drop_table_share)
(temp_table, db, strlen(db), alias, strlen(alias));
}
#endif
return error;
}
// Prepare HA_CREATE_INFO to be used by ALTER as well as upgrade code.
void HA_CREATE_INFO::init_create_options_from_share(const TABLE_SHARE *share,
uint used_fields) {
if (!(used_fields & HA_CREATE_USED_MIN_ROWS)) min_rows = share->min_rows;
if (!(used_fields & HA_CREATE_USED_MAX_ROWS)) max_rows = share->max_rows;
if (!(used_fields & HA_CREATE_USED_AVG_ROW_LENGTH))
avg_row_length = share->avg_row_length;
if (!(used_fields & HA_CREATE_USED_DEFAULT_CHARSET))
default_table_charset = share->table_charset;
if (!(used_fields & HA_CREATE_USED_KEY_BLOCK_SIZE))
key_block_size = share->key_block_size;
if (!(used_fields & HA_CREATE_USED_STATS_SAMPLE_PAGES))
stats_sample_pages = share->stats_sample_pages;
if (!(used_fields & HA_CREATE_USED_STATS_AUTO_RECALC))
stats_auto_recalc = share->stats_auto_recalc;
if (!(used_fields & HA_CREATE_USED_TABLESPACE))
tablespace = share->tablespace;
if (storage_media == HA_SM_DEFAULT)
storage_media = share->default_storage_media;
/* Creation of federated table with LIKE clause needs connection string */
if (!(used_fields & HA_CREATE_USED_CONNECTION))
connect_string = share->connect_string;
if (!(used_fields & HA_CREATE_USED_COMMENT)) {
// Assert to check that used_fields flag and comment are in sync.
DBUG_ASSERT(!comment.str);
comment = share->comment;
}
if (!(used_fields & HA_CREATE_USED_COMPRESS)) {
// Assert to check that used_fields flag and compress are in sync
DBUG_ASSERT(!compress.str);
compress = share->compress;
}
if (!(used_fields & (HA_CREATE_USED_ENCRYPT))) {
// Assert to check that used_fields flag and encrypt_type are in sync
DBUG_ASSERT(!encrypt_type.str);
encrypt_type = share->encrypt_type;
}
if (!(used_fields & HA_CREATE_USED_SECONDARY_ENGINE)) {
DBUG_ASSERT(secondary_engine.str == nullptr);
secondary_engine = share->secondary_engine;
}
}
/****************************************************************************
** General handler functions
****************************************************************************/
handler *handler::clone(const char *name, MEM_ROOT *mem_root) {
DBUG_TRACE;
handler *new_handler =
get_new_handler(table->s, (table->s->m_part_info != NULL), mem_root, ht);
if (!new_handler) return NULL;
if (new_handler->set_ha_share_ref(ha_share)) goto err;
/*
Allocate handler->ref here because otherwise ha_open will allocate it
on this->table->mem_root and we will not be able to reclaim that memory
when the clone handler object is destroyed.
*/
if (!(new_handler->ref =
(uchar *)mem_root->Alloc(ALIGN_SIZE(ref_length) * 2)))
goto err;
/*
TODO: Implement a more efficient way to have more than one index open for
the same table instance. The ha_open call is not cachable for clone.
*/
if (new_handler->ha_open(table, name, table->db_stat,
HA_OPEN_IGNORE_IF_LOCKED, NULL))
goto err;
return new_handler;
err:
destroy(new_handler);
return NULL;
}
void handler::ha_statistic_increment(
ulonglong System_status_var::*offset) const {
if (table && table->in_use) (table->in_use->status_var.*offset)++;
}
THD *handler::ha_thd(void) const {
DBUG_ASSERT(!table || !table->in_use || table->in_use == current_thd);
return (table && table->in_use) ? table->in_use : current_thd;
}
void handler::unbind_psi() {
#ifdef HAVE_PSI_TABLE_INTERFACE
DBUG_ASSERT(m_lock_type == F_UNLCK);
DBUG_ASSERT(inited == NONE);
/*
Notify the instrumentation that this table is not owned
by this thread any more.
*/
PSI_TABLE_CALL(unbind_table)(m_psi);
#endif
}
void handler::rebind_psi() {
#ifdef HAVE_PSI_TABLE_INTERFACE
DBUG_ASSERT(m_lock_type == F_UNLCK);
DBUG_ASSERT(inited == NONE);
/*
Notify the instrumentation that this table is now owned
by this thread.
*/
PSI_table_share *share_psi = ha_table_share_psi(table_share);
m_psi = PSI_TABLE_CALL(rebind_table)(share_psi, this, m_psi);
#endif
}
void handler::start_psi_batch_mode() {
#ifdef HAVE_PSI_TABLE_INTERFACE
DBUG_ASSERT(m_psi_batch_mode == PSI_BATCH_MODE_NONE);
DBUG_ASSERT(m_psi_locker == NULL);
m_psi_batch_mode = PSI_BATCH_MODE_STARTING;
m_psi_numrows = 0;
#endif
}
void handler::end_psi_batch_mode() {
#ifdef HAVE_PSI_TABLE_INTERFACE
DBUG_ASSERT(m_psi_batch_mode != PSI_BATCH_MODE_NONE);
if (m_psi_locker != NULL) {
DBUG_ASSERT(m_psi_batch_mode == PSI_BATCH_MODE_STARTED);
PSI_TABLE_CALL(end_table_io_wait)(m_psi_locker, m_psi_numrows);
m_psi_locker = NULL;
}
m_psi_batch_mode = PSI_BATCH_MODE_NONE;
#endif
}
PSI_table_share *handler::ha_table_share_psi(const TABLE_SHARE *share) const {
return share->m_psi;
}
/*
Open database handler object.
Used for opening tables. The name will be the name of the file.
A table is opened when it needs to be opened. For instance
when a request comes in for a select on the table (tables are not
open and closed for each request, they are cached).
The server opens all tables by calling ha_open() which then calls
the handler specific open().
Try O_RDONLY if cannot open as O_RDWR. Don't wait for locks if not
HA_OPEN_WAIT_IF_LOCKED is set
@param [out] table_arg Table structure.
@param name Full path of table name.
@param mode Open mode flags.
@param test_if_locked ?
@param table_def dd::Table object describing table
being open. Can be NULL for temporary
tables created by optimizer.
@retval >0 Error.
@retval 0 Success.
*/
int handler::ha_open(TABLE *table_arg, const char *name, int mode,
int test_if_locked, const dd::Table *table_def) {
int error;
DBUG_TRACE;
DBUG_PRINT("enter",
("name: %s db_type: %d db_stat: %d mode: %d lock_test: %d",
name, ht->db_type, table_arg->db_stat, mode, test_if_locked));
table = table_arg;
DBUG_ASSERT(table->s == table_share);
DBUG_ASSERT(m_lock_type == F_UNLCK);
DBUG_PRINT("info", ("old m_lock_type: %d F_UNLCK %d", m_lock_type, F_UNLCK));
MEM_ROOT *mem_root = (test_if_locked & HA_OPEN_TMP_TABLE)
? &table->s->mem_root
: &table->mem_root;
DBUG_ASSERT(alloc_root_inited(mem_root));
if ((error = open(name, mode, test_if_locked, table_def))) {
if ((error == EACCES || error == EROFS) && mode == O_RDWR &&
(table->db_stat & HA_TRY_READ_ONLY)) {
table->db_stat |= HA_READ_ONLY;
error = open(name, O_RDONLY, test_if_locked, table_def);
}
}
if (error) {
set_my_errno(error); /* Safeguard */
DBUG_PRINT("error", ("error: %d errno: %d", error, errno));
} else {
DBUG_ASSERT(m_psi == NULL);
DBUG_ASSERT(table_share != NULL);
#ifdef HAVE_PSI_TABLE_INTERFACE
PSI_table_share *share_psi = ha_table_share_psi(table_share);
m_psi = PSI_TABLE_CALL(open_table)(share_psi, this);
#endif
if (table->s->db_options_in_use & HA_OPTION_READ_ONLY_DATA)
table->db_stat |= HA_READ_ONLY;
(void)extra(HA_EXTRA_NO_READCHECK); // Not needed in SQL
/* ref is already allocated for us if we're called from handler::clone() */
if (!ref && !(ref = (uchar *)mem_root->Alloc(ALIGN_SIZE(ref_length) * 2))) {
ha_close();
error = HA_ERR_OUT_OF_MEM;
} else
dup_ref = ref + ALIGN_SIZE(ref_length);
// Give the table a defined starting cursor, even if it never actually seeks
// or writes. This is important for things like weedout on const tables
// (which is a nonsensical combination, but can happen).
memset(ref, 0, ref_length);
cached_table_flags = table_flags();
}
return error;
}
/**
Close handler.
Called from sql_base.cc, sql_select.cc, and table.cc.
In sql_select.cc it is only used to close up temporary tables or during
the process where a temporary table is converted over to being a
myisam table.
For sql_base.cc look at close_data_tables().
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_close(void) {
DBUG_TRACE;
#ifdef HAVE_PSI_TABLE_INTERFACE
PSI_TABLE_CALL(close_table)(table_share, m_psi);
m_psi = NULL; /* instrumentation handle, invalid after close_table() */
DBUG_ASSERT(m_psi_batch_mode == PSI_BATCH_MODE_NONE);
DBUG_ASSERT(m_psi_locker == NULL);
#endif
// TODO: set table= NULL to mark the handler as closed?
DBUG_ASSERT(m_psi == NULL);
DBUG_ASSERT(m_lock_type == F_UNLCK);
DBUG_ASSERT(inited == NONE);
if (m_unique) {
// It's allocated on memroot and will be freed along with it
m_unique->cleanup();
m_unique = nullptr;
}
return close();
}
/**
Initialize use of index.
@param idx Index to use
@param sorted Use sorted order
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_index_init(uint idx, bool sorted) {
DBUG_EXECUTE_IF("ha_index_init_fail", return HA_ERR_TABLE_DEF_CHANGED;);
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == NONE);
if (!(result = index_init(idx, sorted))) inited = INDEX;
end_range = NULL;
return result;
}
/**
End use of index.
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_index_end() {
DBUG_TRACE;
/* SQL HANDLER function can call this without having it locked. */
DBUG_ASSERT(table->open_by_handler ||
table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
inited = NONE;
end_range = NULL;
m_record_buffer = nullptr;
if (m_unique) m_unique->reset(false);
return index_end();
}
/**
Initialize table for random read or scan.
@param scan if true: Initialize for random scans through rnd_next()
if false: Initialize for random reads through rnd_pos()
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_rnd_init(bool scan) {
DBUG_EXECUTE_IF("ha_rnd_init_fail", return HA_ERR_TABLE_DEF_CHANGED;);
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == NONE || (inited == RND && scan));
inited = (result = rnd_init(scan)) ? NONE : RND;
end_range = NULL;
return result;
}
/**
End use of random access.
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_rnd_end() {
DBUG_TRACE;
/* SQL HANDLER function can call this without having it locked. */
DBUG_ASSERT(table->open_by_handler ||
table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == RND);
inited = NONE;
end_range = NULL;
m_record_buffer = nullptr;
return rnd_end();
}
/**
Read next row via random scan.
@param buf Buffer to read the row into
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_rnd_next(uchar *buf) {
int result;
DBUG_EXECUTE_IF("ha_rnd_next_deadlock", return HA_ERR_LOCK_DEADLOCK;);
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == RND);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, MAX_KEY, result,
{ result = rnd_next(buf); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Read row via random scan from position.
@param[out] buf Buffer to read the row into
@param pos Position from position() call
@return Operation status
@retval 0 Success
@retval != 0 Error (error code returned)
*/
int handler::ha_rnd_pos(uchar *buf, uchar *pos) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
/* TODO: Find out how to solve ha_rnd_pos when finding duplicate update. */
/* DBUG_ASSERT(inited == RND); */
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, MAX_KEY, result,
{ result = rnd_pos(buf, pos); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::ha_ft_read(uchar *buf) {
int result;
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
result = ft_read(buf);
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::ha_sample_init(double sampling_percentage, int sampling_seed,
enum_sampling_method) {
DBUG_TRACE;
DBUG_ASSERT(sampling_percentage >= 0.0);
DBUG_ASSERT(sampling_percentage <= 100.0);
DBUG_ASSERT(inited == NONE);
// Initialise the random number generator.
m_random_number_engine.seed(sampling_seed);
m_sampling_percentage = sampling_percentage;
int result = sample_init();
inited = (result != 0) ? NONE : SAMPLING;
return result;
}
int handler::ha_sample_end() {
DBUG_TRACE;
DBUG_ASSERT(inited == SAMPLING);
inited = NONE;
int result = sample_end();
return result;
}
int handler::ha_sample_next(uchar *buf) {
DBUG_TRACE;
DBUG_ASSERT(inited == SAMPLING);
if (m_sampling_percentage == 0.0) return HA_ERR_END_OF_FILE;
m_update_generated_read_fields = table->has_gcol();
int result;
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, MAX_KEY, result,
{ result = sample_next(buf); })
if (result == 0 && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::sample_init() { return rnd_init(true); }
int handler::sample_end() { return rnd_end(); }
int handler::sample_next(uchar *buf) {
// Temporary set inited to RND, since we are calling rnd_next().
int res = rnd_next(buf);
std::uniform_real_distribution<double> rnd(0.0, 1.0);
while (!res && rnd(m_random_number_engine) > (m_sampling_percentage / 100.0))
res = rnd_next(buf);
return res;
}
int handler::records(ha_rows *num_rows) {
if (MY_TEST((ha_table_flags() & HA_COUNT_ROWS_INSTANT))) {
*num_rows = stats.records;
return 0;
}
int error = 0;
ha_rows rows = 0;
start_psi_batch_mode();
if (!(error = ha_rnd_init(true))) {
while (!table->in_use->killed) {
DBUG_EXECUTE_IF("bug28079850", table->in_use->killed = THD::KILL_QUERY;);
if ((error = ha_rnd_next(table->record[0]))) {
if (error == HA_ERR_RECORD_DELETED)
continue;
else
break;
}
++rows;
}
}
*num_rows = rows;
end_psi_batch_mode();
int ha_rnd_end_error = 0;
if (error != HA_ERR_END_OF_FILE) *num_rows = HA_POS_ERROR;
// Call ha_rnd_end() only if only if handler has been initialized.
if (inited && (ha_rnd_end_error = ha_rnd_end())) *num_rows = HA_POS_ERROR;
return (error != HA_ERR_END_OF_FILE) ? error : ha_rnd_end_error;
}
int handler::records_from_index(ha_rows *num_rows, uint index) {
if (MY_TEST((ha_table_flags() & HA_COUNT_ROWS_INSTANT))) {
*num_rows = stats.records;
return 0;
}
int error = 0;
ha_rows rows = 0;
uchar *buf = table->record[0];
start_psi_batch_mode();
if (!(error = ha_index_init(index, false))) {
if (!(error = ha_index_first(buf))) {
rows = 1;
while (!table->in_use->killed) {
DBUG_EXECUTE_IF("bug28079850",
table->in_use->killed = THD::KILL_QUERY;);
if ((error = ha_index_next(buf))) {
if (error == HA_ERR_RECORD_DELETED)
continue;
else
break;
}
++rows;
}
}
}
*num_rows = rows;
end_psi_batch_mode();
int ha_index_end_error = 0;
if (error != HA_ERR_END_OF_FILE) *num_rows = HA_POS_ERROR;
// Call ha_index_end() only if handler has been initialized.
if (inited && (ha_index_end_error = ha_index_end())) *num_rows = HA_POS_ERROR;
return (error != HA_ERR_END_OF_FILE) ? error : ha_index_end_error;
}
int handler::handle_records_error(int error, ha_rows *num_rows) {
// If query was killed set the error since not all storage engines do it.
if (table->in_use->killed) {
*num_rows = HA_POS_ERROR;
if (error == 0) error = HA_ERR_QUERY_INTERRUPTED;
}
if (error != 0) DBUG_ASSERT(*num_rows == HA_POS_ERROR);
if (*num_rows == HA_POS_ERROR) DBUG_ASSERT(error != 0);
if (error != 0) {
/*
ha_innobase::records may have rolled back internally.
In this case, thd_mark_transaction_to_rollback() will have been called.
For the errors below, we need to abort right away.
*/
switch (error) {
case HA_ERR_LOCK_DEADLOCK:
case HA_ERR_LOCK_TABLE_FULL:
case HA_ERR_LOCK_WAIT_TIMEOUT:
case HA_ERR_QUERY_INTERRUPTED:
print_error(error, MYF(0));
return error;
default:
return error;
}
}
return 0;
}
/**
Read [part of] row via [part of] index.
@param[out] buf buffer where store the data
@param key Key to search for
@param keypart_map Which part of key to use
@param find_flag Direction/condition on key usage
@returns Operation status
@retval 0 Success (found a record, and function has
set table status to "has row")
@retval HA_ERR_END_OF_FILE Row not found (function has set table status
to "no row"). End of index passed.
@retval HA_ERR_KEY_NOT_FOUND Row not found (function has set table status
to "no row"). Index cursor positioned.
@retval != 0 Error
@note Positions an index cursor to the index specified in the handle.
Fetches the row if available. If the key value is null,
begin at the first key of the index.
ha_index_read_map can be restarted without calling index_end on the previous
index scan and without calling ha_index_init. In this case the
ha_index_read_map is on the same index as the previous ha_index_scan.
This is particularly used in conjunction with multi read ranges.
*/
int handler::ha_index_read_map(uchar *buf, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result, {
result = index_read_map(buf, key, keypart_map, find_flag);
})
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::ha_index_read_last_map(uchar *buf, const uchar *key,
key_part_map keypart_map) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_read_last_map(buf, key, keypart_map); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Initializes an index and read it.
@see handler::ha_index_read_map.
*/
int handler::ha_index_read_idx_map(uchar *buf, uint index, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(end_range == NULL);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, index, result, {
result = index_read_idx_map(buf, index, key, keypart_map, find_flag);
})
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Reads the next row via index.
@param[out] buf Row data
@return Operation status.
@retval 0 Success
@retval HA_ERR_END_OF_FILE Row not found
@retval != 0 Error
*/
int handler::ha_index_next(uchar *buf) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_next(buf); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Reads the previous row via index.
@param[out] buf Row data
@return Operation status.
@retval 0 Success
@retval HA_ERR_END_OF_FILE Row not found
@retval != 0 Error
*/
int handler::ha_index_prev(uchar *buf) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_prev(buf); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Reads the first row via index.
@param[out] buf Row data
@return Operation status.
@retval 0 Success
@retval HA_ERR_END_OF_FILE Row not found
@retval != 0 Error
*/
int handler::ha_index_first(uchar *buf) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_first(buf); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Reads the last row via index.
@param[out] buf Row data
@return Operation status.
@retval 0 Success
@retval HA_ERR_END_OF_FILE Row not found
@retval != 0 Error
*/
int handler::ha_index_last(uchar *buf) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_last(buf); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Reads the next same row via index.
@param[out] buf Row data
@param key Key to search for
@param keylen Length of key
@return Operation status.
@retval 0 Success
@retval HA_ERR_END_OF_FILE Row not found
@retval != 0 Error
*/
int handler::ha_index_next_same(uchar *buf, const uchar *key, uint keylen) {
int result;
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_ASSERT(inited == INDEX);
DBUG_ASSERT(!pushed_idx_cond || buf == table->record[0]);
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_FETCH_ROW, active_index, result,
{ result = index_next_same(buf, key, keylen); })
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Read first row (only) from a table.
This is never called for tables whose storage engine do not contain exact
statistics on number of records, e.g. InnoDB.
@note Since there is only one implementation for this function, it is
non-virtual and does not call a protected inner function, like
most other handler functions.
@note Implementation only calls other handler functions, so there is no need
to update generated columns nor set table status.
*/
int handler::ha_read_first_row(uchar *buf, uint primary_key) {
int error;
DBUG_TRACE;
ha_statistic_increment(&System_status_var::ha_read_first_count);
/*
If there is very few deleted rows in the table, find the first row by
scanning the table.
TODO remove the test for HA_READ_ORDER
*/
if (stats.deleted < 10 || primary_key >= MAX_KEY ||
!(index_flags(primary_key, 0, 0) & HA_READ_ORDER)) {
if (!(error = ha_rnd_init(1))) {
while ((error = ha_rnd_next(buf)) == HA_ERR_RECORD_DELETED)
/* skip deleted row */;
const int end_error = ha_rnd_end();
if (!error) error = end_error;
}
} else {
/* Find the first row through the primary key */
if (!(error = ha_index_init(primary_key, 0))) {
error = ha_index_first(buf);
const int end_error = ha_index_end();
if (!error) error = end_error;
}
}
return error;
}
int handler::ha_index_read_pushed(uchar *buf, const uchar *key,
key_part_map keypart_map) {
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
int result = index_read_pushed(buf, key, keypart_map);
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::ha_index_next_pushed(uchar *buf) {
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
int result = index_next_pushed(buf);
if (!result && m_update_generated_read_fields) {
result = update_generated_read_fields(buf, table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Generate the next auto-increment number based on increment and offset.
computes the lowest number
- strictly greater than "nr"
- of the form: auto_increment_offset + N * auto_increment_increment
If overflow happened then return MAX_ULONGLONG value as an
indication of overflow.
In most cases increment= offset= 1, in which case we get:
@verbatim 1,2,3,4,5,... @endverbatim
If increment=10 and offset=5 and previous number is 1, we get:
@verbatim 1,5,15,25,35,... @endverbatim
*/
inline ulonglong compute_next_insert_id(ulonglong nr,
struct System_variables *variables) {
const ulonglong save_nr = nr;
if (variables->auto_increment_increment == 1)
nr = nr + 1; // optimization of the formula below
else {
nr = (((nr + variables->auto_increment_increment -
variables->auto_increment_offset)) /
(ulonglong)variables->auto_increment_increment);
nr = (nr * (ulonglong)variables->auto_increment_increment +
variables->auto_increment_offset);
}
if (unlikely(nr <= save_nr)) return ULLONG_MAX;
return nr;
}
void handler::adjust_next_insert_id_after_explicit_value(ulonglong nr) {
/*
If we have set THD::next_insert_id previously and plan to insert an
explicitely-specified value larger than this, we need to increase
THD::next_insert_id to be greater than the explicit value.
*/
if ((next_insert_id > 0) && (nr >= next_insert_id))
set_next_insert_id(compute_next_insert_id(nr, &table->in_use->variables));
}
/** @brief
Computes the largest number X:
- smaller than or equal to "nr"
- of the form: auto_increment_offset + N * auto_increment_increment
where N>=0.
SYNOPSIS
prev_insert_id
nr Number to "round down"
variables variables struct containing auto_increment_increment and
auto_increment_offset
RETURN
The number X if it exists, "nr" otherwise.
*/
inline ulonglong prev_insert_id(ulonglong nr,
struct System_variables *variables) {
if (unlikely(nr < variables->auto_increment_offset)) {
/*
There's nothing good we can do here. That is a pathological case, where
the offset is larger than the column's max possible value, i.e. not even
the first sequence value may be inserted. User will receive warning.
*/
DBUG_PRINT("info", ("auto_increment: nr: %lu cannot honour "
"auto_increment_offset: %lu",
(ulong)nr, variables->auto_increment_offset));
return nr;
}
if (variables->auto_increment_increment == 1)
return nr; // optimization of the formula below
nr = (((nr - variables->auto_increment_offset)) /
(ulonglong)variables->auto_increment_increment);
return (nr * (ulonglong)variables->auto_increment_increment +
variables->auto_increment_offset);
}
/**
Update the auto_increment field if necessary.
Updates columns with type NEXT_NUMBER if:
- If column value is set to NULL (in which case
autoinc_field_has_explicit_non_null_value is 0)
- If column is set to 0 and (sql_mode & MODE_NO_AUTO_VALUE_ON_ZERO) is not
set. In the future we will only set NEXT_NUMBER fields if one sets them
to NULL (or they are not included in the insert list).
In those cases, we check if the currently reserved interval still has
values we have not used. If yes, we pick the smallest one and use it.
Otherwise:
- If a list of intervals has been provided to the statement via SET
INSERT_ID or via an Intvar_log_event (in a replication slave), we pick the
first unused interval from this list, consider it as reserved.
- Otherwise we set the column for the first row to the value
next_insert_id(get_auto_increment(column))) which is usually
max-used-column-value+1.
We call get_auto_increment() for the first row in a multi-row
statement. get_auto_increment() will tell us the interval of values it
reserved for us.
- In both cases, for the following rows we use those reserved values without
calling the handler again (we just progress in the interval, computing
each new value from the previous one). Until we have exhausted them, then
we either take the next provided interval or call get_auto_increment()
again to reserve a new interval.
- In both cases, the reserved intervals are remembered in
thd->auto_inc_intervals_in_cur_stmt_for_binlog if statement-based
binlogging; the last reserved interval is remembered in
auto_inc_interval_for_cur_row. The number of reserved intervals is
remembered in auto_inc_intervals_count. It differs from the number of
elements in thd->auto_inc_intervals_in_cur_stmt_for_binlog() because the
latter list is cumulative over all statements forming one binlog event
(when stored functions and triggers are used), and collapses two
contiguous intervals in one (see its append() method).
The idea is that generated auto_increment values are predictable and
independent of the column values in the table. This is needed to be
able to replicate into a table that already has rows with a higher
auto-increment value than the one that is inserted.
After we have already generated an auto-increment number and the user
inserts a column with a higher value than the last used one, we will
start counting from the inserted value.
This function's "outputs" are: the table's auto_increment field is filled
with a value, thd->next_insert_id is filled with the value to use for the
next row, if a value was autogenerated for the current row it is stored in
thd->insert_id_for_cur_row, if get_auto_increment() was called
thd->auto_inc_interval_for_cur_row is modified, if that interval is not
present in thd->auto_inc_intervals_in_cur_stmt_for_binlog it is added to
this list.
@todo
Replace all references to "next number" or NEXT_NUMBER to
"auto_increment", everywhere (see below: there is
table->autoinc_field_has_explicit_non_null_value, and there also exists
table->next_number_field, it's not consistent).
@retval
0 ok
@retval
HA_ERR_AUTOINC_READ_FAILED get_auto_increment() was called and
returned ~(ulonglong) 0
@retval
HA_ERR_AUTOINC_ERANGE storing value in field caused strict mode
failure.
*/
#define AUTO_INC_DEFAULT_NB_ROWS 1 // Some prefer 1024 here
#define AUTO_INC_DEFAULT_NB_MAX_BITS 16
#define AUTO_INC_DEFAULT_NB_MAX ((1 << AUTO_INC_DEFAULT_NB_MAX_BITS) - 1)
int handler::update_auto_increment() {
ulonglong nr, nb_reserved_values = 0;
bool append = false;
THD *thd = table->in_use;
struct System_variables *variables = &thd->variables;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_TRACE;
/*
next_insert_id is a "cursor" into the reserved interval, it may go greater
than the interval, but not smaller.
*/
DBUG_ASSERT(next_insert_id >= auto_inc_interval_for_cur_row.minimum());
if ((nr = table->next_number_field->val_int()) != 0 ||
(table->autoinc_field_has_explicit_non_null_value &&
thd->variables.sql_mode & MODE_NO_AUTO_VALUE_ON_ZERO)) {
/*
First test if the query was aborted due to strict mode constraints.
*/
if (thd->is_error() &&
thd->get_stmt_da()->mysql_errno() == ER_TRUNCATED_WRONG_VALUE)
return HA_ERR_AUTOINC_ERANGE;
/*
Update next_insert_id if we had already generated a value in this
statement (case of INSERT VALUES(null),(3763),(null):
the last NULL needs to insert 3764, not the value of the first NULL plus
1).
Also we should take into account the the sign of the value.
Since auto_increment value can't have negative value we should update
next_insert_id only in case when we INSERTing explicit positive value.
It means that for a table that has SIGNED INTEGER column when we execute
the following statement
INSERT INTO t1 VALUES( NULL), (-1), (NULL)
we shouldn't call adjust_next_insert_id_after_explicit_value()
and the result row will be (1, -1, 2) (for new opened connection
to the server). On the other hand, for the statement
INSERT INTO t1 VALUES( NULL), (333), (NULL)
we should call adjust_next_insert_id_after_explicit_value()
and result row will be (1, 333, 334).
*/
if (((Field_num *)table->next_number_field)->unsigned_flag ||
((longlong)nr) > 0)
adjust_next_insert_id_after_explicit_value(nr);
insert_id_for_cur_row = 0; // didn't generate anything
return 0;
}
if (next_insert_id > table->next_number_field->get_max_int_value())
return HA_ERR_AUTOINC_READ_FAILED;
if ((nr = next_insert_id) >= auto_inc_interval_for_cur_row.maximum()) {
/* next_insert_id is beyond what is reserved, so we reserve more. */
const Discrete_interval *forced = thd->auto_inc_intervals_forced.get_next();
if (forced != NULL) {
nr = forced->minimum();
/*
In a multi insert statement when the number of affected rows is known
then reserve those many number of auto increment values. So that
interval will be starting value to starting value + number of affected
rows * increment of auto increment.
*/
nb_reserved_values = (estimation_rows_to_insert > 0)
? estimation_rows_to_insert
: forced->values();
} else {
/*
handler::estimation_rows_to_insert was set by
handler::ha_start_bulk_insert(); if 0 it means "unknown".
*/
ulonglong nb_desired_values;
/*
If an estimation was given to the engine:
- use it.
- if we already reserved numbers, it means the estimation was
not accurate, then we'll reserve 2*AUTO_INC_DEFAULT_NB_ROWS the 2nd
time, twice that the 3rd time etc.
If no estimation was given, use those increasing defaults from the
start, starting from AUTO_INC_DEFAULT_NB_ROWS.
Don't go beyond a max to not reserve "way too much" (because
reservation means potentially losing unused values).
Note that in prelocked mode no estimation is given.
*/
if ((auto_inc_intervals_count == 0) && (estimation_rows_to_insert > 0))
nb_desired_values = estimation_rows_to_insert;
else if ((auto_inc_intervals_count == 0) &&
(thd->lex->bulk_insert_row_cnt > 0)) {
/*
For multi-row inserts, if the bulk inserts cannot be started, the
handler::estimation_rows_to_insert will not be set. But we still
want to reserve the autoinc values.
*/
nb_desired_values = thd->lex->bulk_insert_row_cnt;
} else /* go with the increasing defaults */
{
/* avoid overflow in formula, with this if() */
if (auto_inc_intervals_count <= AUTO_INC_DEFAULT_NB_MAX_BITS) {
nb_desired_values =
AUTO_INC_DEFAULT_NB_ROWS * (1 << auto_inc_intervals_count);
set_if_smaller(nb_desired_values, AUTO_INC_DEFAULT_NB_MAX);
} else
nb_desired_values = AUTO_INC_DEFAULT_NB_MAX;
}
/* This call ignores all its parameters but nr, currently */
get_auto_increment(variables->auto_increment_offset,
variables->auto_increment_increment, nb_desired_values,
&nr, &nb_reserved_values);
if (nr == ULLONG_MAX) return HA_ERR_AUTOINC_READ_FAILED; // Mark failure
/*
That rounding below should not be needed when all engines actually
respect offset and increment in get_auto_increment(). But they don't
so we still do it. Wonder if for the not-first-in-index we should do
it. Hope that this rounding didn't push us out of the interval; even
if it did we cannot do anything about it (calling the engine again
will not help as we inserted no row).
*/
nr = compute_next_insert_id(nr - 1, variables);
}
if (table->s->next_number_keypart == 0) {
/* We must defer the appending until "nr" has been possibly truncated */
append = true;
} else {
/*
For such auto_increment there is no notion of interval, just a
singleton. The interval is not even stored in
thd->auto_inc_interval_for_cur_row, so we are sure to call the engine
for next row.
*/
DBUG_PRINT("info", ("auto_increment: special not-first-in-index"));
}
}
if (unlikely(nr == ULLONG_MAX)) return HA_ERR_AUTOINC_ERANGE;
DBUG_PRINT("info", ("auto_increment: %lu", (ulong)nr));
if (unlikely(table->next_number_field->store((longlong)nr, true))) {
/*
first test if the query was aborted due to strict mode constraints
*/
if (thd->is_error() &&
thd->get_stmt_da()->mysql_errno() == ER_WARN_DATA_OUT_OF_RANGE)
return HA_ERR_AUTOINC_ERANGE;
/*
field refused this value (overflow) and truncated it, use the result of
the truncation (which is going to be inserted); however we try to
decrease it to honour auto_increment_* variables.
That will shift the left bound of the reserved interval, we don't
bother shifting the right bound (anyway any other value from this
interval will cause a duplicate key).
*/
nr = prev_insert_id(table->next_number_field->val_int(), variables);
if (unlikely(table->next_number_field->store((longlong)nr, true)))
nr = table->next_number_field->val_int();
}
if (append) {
auto_inc_interval_for_cur_row.replace(nr, nb_reserved_values,
variables->auto_increment_increment);
auto_inc_intervals_count++;
/* Row-based replication does not need to store intervals in binlog */
if (mysql_bin_log.is_open() && !thd->is_current_stmt_binlog_format_row())
thd->auto_inc_intervals_in_cur_stmt_for_binlog.append(
auto_inc_interval_for_cur_row.minimum(),
auto_inc_interval_for_cur_row.values(),
variables->auto_increment_increment);
}
/*
Record this autogenerated value. If the caller then
succeeds to insert this value, it will call
record_first_successful_insert_id_in_cur_stmt()
which will set first_successful_insert_id_in_cur_stmt if it's not
already set.
*/
insert_id_for_cur_row = nr;
/*
Set next insert id to point to next auto-increment value to be able to
handle multi-row statements.
*/
set_next_insert_id(compute_next_insert_id(nr, variables));
return 0;
}
/** @brief
MySQL signal that it changed the column bitmap
USAGE
This is for handlers that needs to setup their own column bitmaps.
Normally the handler should set up their own column bitmaps in
index_init() or rnd_init() and in any column_bitmaps_signal() call after
this.
The handler is allowd to do changes to the bitmap after a index_init or
rnd_init() call is made as after this, MySQL will not use the bitmap
for any program logic checking.
*/
void handler::column_bitmaps_signal() {
DBUG_TRACE;
DBUG_PRINT("info", ("read_set: %p write_set: %p", table->read_set,
table->write_set));
}
/**
Reserves an interval of auto_increment values from the handler.
@param offset offset (modulus increment)
@param increment increment between calls
@param nb_desired_values how many values we want
@param[out] first_value the first value reserved by the handler
@param[out] nb_reserved_values how many values the handler reserved
offset and increment means that we want values to be of the form
offset + N * increment, where N>=0 is integer.
If the function sets *first_value to ULLONG_MAX it means an error.
If the function sets *nb_reserved_values to ULLONG_MAX it means it has
reserved to "positive infinite".
*/
void handler::get_auto_increment(
ulonglong offset MY_ATTRIBUTE((unused)),
ulonglong increment MY_ATTRIBUTE((unused)),
ulonglong nb_desired_values MY_ATTRIBUTE((unused)), ulonglong *first_value,
ulonglong *nb_reserved_values) {
ulonglong nr;
int error;
DBUG_TRACE;
(void)extra(HA_EXTRA_KEYREAD);
table->mark_columns_used_by_index_no_reset(table->s->next_number_index,
table->read_set);
column_bitmaps_signal();
if (ha_index_init(table->s->next_number_index, 1)) {
/* This should never happen, assert in debug, and fail in release build */
DBUG_ASSERT(0);
*first_value = ULLONG_MAX;
return;
}
if (table->s->next_number_keypart == 0) { // Autoincrement at key-start
error = ha_index_last(table->record[1]);
/*
MySQL implicitely assumes such method does locking (as MySQL decides to
use nr+increment without checking again with the handler, in
handler::update_auto_increment()), so reserves to infinite.
*/
*nb_reserved_values = ULLONG_MAX;
} else {
uchar key[MAX_KEY_LENGTH];
key_copy(key, table->record[0],
table->key_info + table->s->next_number_index,
table->s->next_number_key_offset);
error =
ha_index_read_map(table->record[1], key,
make_prev_keypart_map(table->s->next_number_keypart),
HA_READ_PREFIX_LAST);
/*
MySQL needs to call us for next row: assume we are inserting ("a",null)
here, we return 3, and next this statement will want to insert
("b",null): there is no reason why ("b",3+1) would be the good row to
insert: maybe it already exists, maybe 3+1 is too large...
*/
*nb_reserved_values = 1;
}
if (error) {
if (error == HA_ERR_END_OF_FILE || error == HA_ERR_KEY_NOT_FOUND) {
/* No entry found, start with 1. */
nr = 1;
} else {
DBUG_ASSERT(0);
nr = ULLONG_MAX;
}
} else
nr = ((ulonglong)table->next_number_field->val_int_offset(
table->s->rec_buff_length) +
1);
ha_index_end();
(void)extra(HA_EXTRA_NO_KEYREAD);
*first_value = nr;
}
void handler::ha_release_auto_increment() {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE ||
m_lock_type != F_UNLCK ||
(!next_insert_id && !insert_id_for_cur_row));
DEBUG_SYNC(ha_thd(), "release_auto_increment");
release_auto_increment();
insert_id_for_cur_row = 0;
auto_inc_interval_for_cur_row.replace(0, 0, 0);
auto_inc_intervals_count = 0;
if (next_insert_id > 0) {
next_insert_id = 0;
/*
this statement used forced auto_increment values if there were some,
wipe them away for other statements.
*/
table->in_use->auto_inc_intervals_forced.empty();
}
}
const char *table_case_name(const HA_CREATE_INFO *info, const char *name) {
return ((lower_case_table_names == 2 && info->alias) ? info->alias : name);
}
/**
Construct and emit duplicate key error message using information
from table's record buffer.
@param table TABLE object which record buffer should be used as
source for column values.
@param key Key description.
@param msg Error message template to which key value should be
added.
@param errflag Flags for my_error() call.
*/
void print_keydup_error(TABLE *table, KEY *key, const char *msg, myf errflag) {
/* Write the duplicated key in the error message */
char key_buff[MAX_KEY_LENGTH];
String str(key_buff, sizeof(key_buff), system_charset_info);
if (key == NULL) {
/* Key is unknown */
str.copy("", 0, system_charset_info);
my_printf_error(ER_DUP_ENTRY, msg, errflag, str.c_ptr(), "*UNKNOWN*");
} else {
/* Table is opened and defined at this point */
key_unpack(&str, table, key);
size_t max_length = MYSQL_ERRMSG_SIZE - strlen(msg);
if (str.length() >= max_length) {
str.length(max_length - 4);
str.append(STRING_WITH_LEN("..."));
}
my_printf_error(ER_DUP_ENTRY, msg, errflag, str.c_ptr_safe(), key->name);
}
}
/**
Construct and emit duplicate key error message using information
from table's record buffer.
@sa print_keydup_error(table, key, msg, errflag).
*/
void print_keydup_error(TABLE *table, KEY *key, myf errflag) {
print_keydup_error(table, key,
ER_THD(current_thd, ER_DUP_ENTRY_WITH_KEY_NAME), errflag);
}
/**
This method is used to analyse the error to see whether the error
is ignorable or not. Further comments in header file.
*/
bool handler::is_ignorable_error(int error) {
DBUG_TRACE;
// Catch errors that are ignorable
switch (error) {
// Error code 0 is not an error.
case 0:
// Dup key errors may be explicitly ignored.
case HA_ERR_FOUND_DUPP_KEY:
case HA_ERR_FOUND_DUPP_UNIQUE:
// Foreign key constraint violations are ignorable.
case HA_ERR_ROW_IS_REFERENCED:
case HA_ERR_NO_REFERENCED_ROW:
return true;
}
// Default is that an error is not ignorable.
return false;
}
/**
This method is used to analyse the error to see whether the error
is fatal or not. Further comments in header file.
*/
bool handler::is_fatal_error(int error) {
DBUG_TRACE;
// No ignorable errors are fatal
if (is_ignorable_error(error)) return false;
// Catch errors that are not fatal
switch (error) {
/*
Deadlock and lock timeout cause transaction/statement rollback so that
THD::is_fatal_sub_stmt_error will be set. This means that they will not
be possible to handle by stored program handlers inside stored functions
and triggers even if non-fatal.
*/
case HA_ERR_LOCK_WAIT_TIMEOUT:
case HA_ERR_LOCK_DEADLOCK:
return false;
case HA_ERR_NULL_IN_SPATIAL:
return false;
}
// Default is that an error is fatal
return true;
}
/**
Print error that we got from handler function.
@note
In case of delete table it's only safe to use the following parts of
the 'table' structure:
- table->s->path
- table->alias
*/
void handler::print_error(int error, myf errflag) {
THD *thd = current_thd;
Foreign_key_error_handler foreign_key_error_handler(thd, this);
DBUG_TRACE;
DBUG_PRINT("enter", ("error: %d", error));
int textno = ER_GET_ERRNO;
switch (error) {
case EACCES:
textno = ER_OPEN_AS_READONLY;
break;
case EAGAIN:
textno = ER_FILE_USED;
break;
case ENOENT: {
char errbuf[MYSYS_STRERROR_SIZE];
textno = ER_FILE_NOT_FOUND;
my_error(textno, errflag, table_share->table_name.str, error,
my_strerror(errbuf, sizeof(errbuf), error));
} break;
case HA_ERR_KEY_NOT_FOUND:
case HA_ERR_NO_ACTIVE_RECORD:
case HA_ERR_RECORD_DELETED:
case HA_ERR_END_OF_FILE:
textno = ER_KEY_NOT_FOUND;
break;
case HA_ERR_WRONG_MRG_TABLE_DEF:
textno = ER_WRONG_MRG_TABLE;
break;
case HA_ERR_FOUND_DUPP_KEY: {
uint key_nr = table ? get_dup_key(error) : -1;
if ((int)key_nr >= 0) {
print_keydup_error(table,
key_nr == MAX_KEY ? NULL : &table->key_info[key_nr],
errflag);
return;
}
textno = ER_DUP_KEY;
break;
}
case HA_ERR_FOREIGN_DUPLICATE_KEY: {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE ||
m_lock_type != F_UNLCK);
char rec_buf[MAX_KEY_LENGTH];
String rec(rec_buf, sizeof(rec_buf), system_charset_info);
/* Table is opened and defined at this point */
/*
Just print the subset of fields that are part of the first index,
printing the whole row from there is not easy.
*/
key_unpack(&rec, table, &table->key_info[0]);
char child_table_name[NAME_LEN + 1];
char child_key_name[NAME_LEN + 1];
if (get_foreign_dup_key(child_table_name, sizeof(child_table_name),
child_key_name, sizeof(child_key_name))) {
my_error(ER_FOREIGN_DUPLICATE_KEY_WITH_CHILD_INFO, errflag,
table_share->table_name.str, rec.c_ptr_safe(),
child_table_name, child_key_name);
} else {
my_error(ER_FOREIGN_DUPLICATE_KEY_WITHOUT_CHILD_INFO, errflag,
table_share->table_name.str, rec.c_ptr_safe());
}
return;
}
case HA_ERR_NULL_IN_SPATIAL:
my_error(ER_CANT_CREATE_GEOMETRY_OBJECT, errflag);
return;
case HA_ERR_FOUND_DUPP_UNIQUE:
textno = ER_DUP_UNIQUE;
break;
case HA_ERR_RECORD_CHANGED:
textno = ER_CHECKREAD;
break;
case HA_ERR_CRASHED:
textno = ER_NOT_KEYFILE;
break;
case HA_ERR_WRONG_IN_RECORD:
textno = ER_CRASHED_ON_USAGE;
break;
case HA_ERR_CRASHED_ON_USAGE:
textno = ER_CRASHED_ON_USAGE;
break;
case HA_ERR_NOT_A_TABLE:
textno = error;
break;
case HA_ERR_CRASHED_ON_REPAIR:
textno = ER_CRASHED_ON_REPAIR;
break;
case HA_ERR_OUT_OF_MEM:
textno = ER_OUT_OF_RESOURCES;
break;
case HA_ERR_SE_OUT_OF_MEMORY:
my_error(ER_ENGINE_OUT_OF_MEMORY, errflag, table->file->table_type());
return;
case HA_ERR_WRONG_COMMAND:
textno = ER_ILLEGAL_HA;
break;
case HA_ERR_OLD_FILE:
textno = ER_OLD_KEYFILE;
break;
case HA_ERR_UNSUPPORTED:
textno = ER_UNSUPPORTED_EXTENSION;
break;
case HA_ERR_RECORD_FILE_FULL:
case HA_ERR_INDEX_FILE_FULL: {
textno = ER_RECORD_FILE_FULL;
/* Write the error message to error log */
LogErr(ERROR_LEVEL, ER_SERVER_RECORD_FILE_FULL,
table_share->table_name.str);
break;
}
case HA_ERR_DISK_FULL_NOWAIT: {
textno = ER_DISK_FULL_NOWAIT;
/* Write the error message to error log */
LogErr(ERROR_LEVEL, ER_SERVER_DISK_FULL_NOWAIT,
table_share->table_name.str);
break;
}
case HA_ERR_LOCK_WAIT_TIMEOUT:
textno = ER_LOCK_WAIT_TIMEOUT;
break;
case HA_ERR_LOCK_TABLE_FULL:
textno = ER_LOCK_TABLE_FULL;
break;
case HA_ERR_LOCK_DEADLOCK:
textno = ER_LOCK_DEADLOCK;
break;
case HA_ERR_READ_ONLY_TRANSACTION:
textno = ER_READ_ONLY_TRANSACTION;
break;
case HA_ERR_CANNOT_ADD_FOREIGN:
textno = ER_CANNOT_ADD_FOREIGN;
break;
case HA_ERR_ROW_IS_REFERENCED: {
String str;
/*
Manipulate the error message while handling the error
condition based on the access check.
*/
thd->push_internal_handler(&foreign_key_error_handler);
get_error_message(error, &str);
my_error(ER_ROW_IS_REFERENCED_2, errflag, str.c_ptr_safe());
thd->pop_internal_handler();
return;
}
case HA_ERR_NO_REFERENCED_ROW: {
String str;
/*
Manipulate the error message while handling the error
condition based on the access check.
*/
thd->push_internal_handler(&foreign_key_error_handler);
get_error_message(error, &str);
my_error(ER_NO_REFERENCED_ROW_2, errflag, str.c_ptr_safe());
thd->pop_internal_handler();
return;
}
case HA_ERR_TABLE_DEF_CHANGED:
textno = ER_TABLE_DEF_CHANGED;
break;
case HA_ERR_NO_SUCH_TABLE:
my_error(ER_NO_SUCH_TABLE, errflag, table_share->db.str,
table_share->table_name.str);
return;
case HA_ERR_RBR_LOGGING_FAILED:
textno = ER_BINLOG_ROW_LOGGING_FAILED;
break;
case HA_ERR_DROP_INDEX_FK: {
const char *ptr = "???";
uint key_nr = table ? get_dup_key(error) : -1;
if ((int)key_nr >= 0 && key_nr != MAX_KEY)
ptr = table->key_info[key_nr].name;
my_error(ER_DROP_INDEX_FK, errflag, ptr);
return;
}
case HA_ERR_TABLE_NEEDS_UPGRADE:
textno = ER_TABLE_NEEDS_UPGRADE;
break;
case HA_ERR_NO_PARTITION_FOUND:
textno = ER_WRONG_PARTITION_NAME;
break;
case HA_ERR_TABLE_READONLY:
textno = ER_OPEN_AS_READONLY;
break;
case HA_ERR_AUTOINC_READ_FAILED:
textno = ER_AUTOINC_READ_FAILED;
break;
case HA_ERR_AUTOINC_ERANGE:
textno = ER_WARN_DATA_OUT_OF_RANGE;
break;
case HA_ERR_TOO_MANY_CONCURRENT_TRXS:
textno = ER_TOO_MANY_CONCURRENT_TRXS;
break;
case HA_ERR_INDEX_COL_TOO_LONG:
textno = ER_INDEX_COLUMN_TOO_LONG;
break;
case HA_ERR_NOT_IN_LOCK_PARTITIONS:
textno = ER_ROW_DOES_NOT_MATCH_GIVEN_PARTITION_SET;
break;
case HA_ERR_INDEX_CORRUPT:
textno = ER_INDEX_CORRUPT;
break;
case HA_ERR_UNDO_REC_TOO_BIG:
textno = ER_UNDO_RECORD_TOO_BIG;
break;
case HA_ERR_TABLE_IN_FK_CHECK:
textno = ER_TABLE_IN_FK_CHECK;
break;
case HA_WRONG_CREATE_OPTION:
textno = ER_ILLEGAL_HA;
break;
case HA_MISSING_CREATE_OPTION: {
const char *engine = table_type();
my_error(ER_MISSING_HA_CREATE_OPTION, errflag, engine);
return;
}
case HA_ERR_TOO_MANY_FIELDS:
textno = ER_TOO_MANY_FIELDS;
break;
case HA_ERR_INNODB_READ_ONLY:
textno = ER_INNODB_READ_ONLY;
break;
case HA_ERR_TEMP_FILE_WRITE_FAILURE:
textno = ER_TEMP_FILE_WRITE_FAILURE;
break;
case HA_ERR_INNODB_FORCED_RECOVERY:
textno = ER_INNODB_FORCED_RECOVERY;
break;
case HA_ERR_TABLE_CORRUPT:
my_error(ER_TABLE_CORRUPT, errflag, table_share->db.str,
table_share->table_name.str);
return;
case HA_ERR_QUERY_INTERRUPTED:
textno = ER_QUERY_INTERRUPTED;
break;
case HA_ERR_TABLESPACE_MISSING: {
char errbuf[MYSYS_STRERROR_SIZE];
snprintf(errbuf, MYSYS_STRERROR_SIZE, "`%s`.`%s`", table_share->db.str,
table_share->table_name.str);
my_error(ER_TABLESPACE_MISSING, errflag, errbuf, error);
return;
}
case HA_ERR_TABLESPACE_IS_NOT_EMPTY:
my_error(ER_TABLESPACE_IS_NOT_EMPTY, errflag, table_share->db.str,
table_share->table_name.str);
return;
case HA_ERR_WRONG_FILE_NAME:
my_error(ER_WRONG_FILE_NAME, errflag, table_share->table_name.str);
return;
case HA_ERR_NOT_ALLOWED_COMMAND:
textno = ER_NOT_ALLOWED_COMMAND;
break;
case HA_ERR_NO_SESSION_TEMP:
textno = ER_NO_SESSION_TEMP;
break;
case HA_ERR_WRONG_TABLE_NAME:
textno = ER_WRONG_TABLE_NAME;
break;
case HA_ERR_TOO_LONG_PATH:
textno = ER_TABLE_NAME_CAUSES_TOO_LONG_PATH;
break;
default: {
/* The error was "unknown" to this function.
Ask handler if it has got a message for this error */
String str;
bool temporary = get_error_message(error, &str);
if (!str.is_empty()) {
const char *engine = table_type();
if (temporary)
my_error(ER_GET_TEMPORARY_ERRMSG, errflag, error, str.ptr(), engine);
else
my_error(ER_GET_ERRMSG, errflag, error, str.ptr(), engine);
} else {
char errbuf[MYSQL_ERRMSG_SIZE];
my_error(ER_GET_ERRNO, errflag, error,
my_strerror(errbuf, MYSQL_ERRMSG_SIZE, error));
}
return;
}
}
if (textno != ER_FILE_NOT_FOUND)
my_error(textno, errflag, table_share->table_name.str, error);
}
/**
Return an error message specific to this handler.
@param error error code previously returned by handler
@param buf pointer to String where to add error message
@return
Returns true if this is a temporary error
*/
bool handler::get_error_message(int error MY_ATTRIBUTE((unused)),
String *buf MY_ATTRIBUTE((unused))) {
return false;
}
/**
Check for incompatible collation changes.
@retval
HA_ADMIN_NEEDS_UPGRADE Table may have data requiring upgrade.
@retval
0 No upgrade required.
*/
int handler::check_collation_compatibility() {
ulong mysql_version = table->s->mysql_version;
if (mysql_version < 50124) {
KEY *key = table->key_info;
KEY *key_end = key + table->s->keys;
for (; key < key_end; key++) {
KEY_PART_INFO *key_part = key->key_part;
KEY_PART_INFO *key_part_end = key_part + key->user_defined_key_parts;
for (; key_part < key_part_end; key_part++) {
if (!key_part->fieldnr) continue;
Field *field = table->field[key_part->fieldnr - 1];
uint cs_number = field->charset()->number;
if ((mysql_version < 50048 &&
(cs_number == 11 || /* ascii_general_ci - bug #29499, bug #27562 */
cs_number == 41 || /* latin7_general_ci - bug #29461 */
cs_number == 42 || /* latin7_general_cs - bug #29461 */
cs_number == 20 || /* latin7_estonian_cs - bug #29461 */
cs_number == 21 || /* latin2_hungarian_ci - bug #29461 */
cs_number == 22 || /* koi8u_general_ci - bug #29461 */
cs_number == 23 || /* cp1251_ukrainian_ci - bug #29461 */
cs_number == 26)) || /* cp1250_general_ci - bug #29461 */
(mysql_version < 50124 &&
(cs_number == 33 || /* utf8_general_ci - bug #27877 */
cs_number == 35))) /* ucs2_general_ci - bug #27877 */
return HA_ADMIN_NEEDS_UPGRADE;
}
}
}
return 0;
}
int handler::ha_check_for_upgrade(HA_CHECK_OPT *check_opt) {
int error;
KEY *keyinfo, *keyend;
KEY_PART_INFO *keypart, *keypartend;
if (!table->s->mysql_version) {
/* check for blob-in-key error */
keyinfo = table->key_info;
keyend = table->key_info + table->s->keys;
for (; keyinfo < keyend; keyinfo++) {
keypart = keyinfo->key_part;
keypartend = keypart + keyinfo->user_defined_key_parts;
for (; keypart < keypartend; keypart++) {
if (!keypart->fieldnr) continue;
Field *field = table->field[keypart->fieldnr - 1];
if (field->type() == MYSQL_TYPE_BLOB) {
if (check_opt->sql_flags & TT_FOR_UPGRADE)
check_opt->flags = T_MEDIUM;
return HA_ADMIN_NEEDS_CHECK;
}
}
}
}
if ((error = check_collation_compatibility())) return error;
return check_for_upgrade(check_opt);
}
// Function identifies any old data type present in table.
int check_table_for_old_types(const TABLE *table, bool check_temporal_upgrade) {
Field **field;
for (field = table->field; (*field); field++) {
if (table->s->mysql_version == 0) // prior to MySQL 5.0
{
/* check for bad DECIMAL field */
if ((*field)->type() == MYSQL_TYPE_NEWDECIMAL) {
return HA_ADMIN_NEEDS_ALTER;
}
if ((*field)->type() == MYSQL_TYPE_VAR_STRING) {
return HA_ADMIN_NEEDS_ALTER;
}
}
/*
Check for old DECIMAL field.
Above check does not take into account for pre 5.0 decimal types which can
be present in the data directory if user did in-place upgrade from
mysql-4.1 to mysql-5.0.
*/
if ((*field)->type() == MYSQL_TYPE_DECIMAL) {
return HA_ADMIN_NEEDS_DUMP_UPGRADE;
}
if ((*field)->type() == MYSQL_TYPE_YEAR && (*field)->field_length == 2)
return HA_ADMIN_NEEDS_ALTER; // obsolete YEAR(2) type
if (check_temporal_upgrade) {
if (((*field)->real_type() == MYSQL_TYPE_TIME) ||
((*field)->real_type() == MYSQL_TYPE_DATETIME) ||
((*field)->real_type() == MYSQL_TYPE_TIMESTAMP))
return HA_ADMIN_NEEDS_ALTER;
}
}
return 0;
}
/**
@return
key if error because of duplicated keys
*/
uint handler::get_dup_key(int error) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
DBUG_TRACE;
table->file->errkey = (uint)-1;
if (error == HA_ERR_FOUND_DUPP_KEY || error == HA_ERR_FOUND_DUPP_UNIQUE ||
error == HA_ERR_NULL_IN_SPATIAL || error == HA_ERR_DROP_INDEX_FK)
table->file->info(HA_STATUS_ERRKEY | HA_STATUS_NO_LOCK);
return table->file->errkey;
}
bool handler::get_foreign_dup_key(char *, uint, char *, uint) {
DBUG_ASSERT(false);
return (false);
}
/**
Delete all files with extension from handlerton::file_extensions.
@param name Base name of table
@note
We assume that the handler may return more extensions than
was actually used for the file.
@retval
0 If we successfully deleted at least one file from base_ext and
didn't get any other errors than ENOENT
@retval
!0 Error
*/
int handler::delete_table(const char *name, const dd::Table *) {
int saved_error = 0;
int error = 0;
int enoent_or_zero = ENOENT; // Error if no file was deleted
char buff[FN_REFLEN];
const char **start_ext;
DBUG_ASSERT(m_lock_type == F_UNLCK);
if (!(start_ext = ht->file_extensions)) return 0;
for (const char **ext = start_ext; *ext; ext++) {
fn_format(buff, name, "", *ext, MY_UNPACK_FILENAME | MY_APPEND_EXT);
if (mysql_file_delete_with_symlink(key_file_misc, buff, MYF(0))) {
if (my_errno() != ENOENT) {
/*
If error on the first existing file, return the error.
Otherwise delete as much as possible.
*/
if (enoent_or_zero) return my_errno();
saved_error = my_errno();
}
} else
enoent_or_zero = 0; // No error for ENOENT
error = enoent_or_zero;
}
return saved_error ? saved_error : error;
}
int handler::rename_table(const char *from, const char *to,
const dd::Table *from_table_def
MY_ATTRIBUTE((unused)),
dd::Table *to_table_def MY_ATTRIBUTE((unused))) {
int error = 0;
const char **ext, **start_ext;
if (!(start_ext = ht->file_extensions)) return 0;
for (ext = start_ext; *ext; ext++) {
if (rename_file_ext(from, to, *ext)) {
error = my_errno();
if (error != ENOENT) break;
error = 0;
}
}
if (error) {
/* Try to revert the rename. Ignore errors. */
for (; ext >= start_ext; ext--) rename_file_ext(to, from, *ext);
}
return error;
}
void handler::drop_table(const char *name) {
close();
delete_table(name, NULL);
}
/**
Performs checks upon the table.
@param thd thread doing CHECK TABLE operation
@param check_opt options from the parser
@retval
HA_ADMIN_OK Successful upgrade
@retval
HA_ADMIN_NEEDS_UPGRADE Table has structures requiring upgrade
@retval
HA_ADMIN_NEEDS_ALTER Table has structures requiring ALTER TABLE
@retval
HA_ADMIN_NOT_IMPLEMENTED
*/
int handler::ha_check(THD *thd, HA_CHECK_OPT *check_opt) {
int error;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
if ((table->s->mysql_version >= MYSQL_VERSION_ID) &&
(check_opt->sql_flags & TT_FOR_UPGRADE))
return 0;
if (table->s->mysql_version < MYSQL_VERSION_ID) {
// Check for old temporal format if avoid_temporal_upgrade is disabled.
mysql_mutex_lock(&LOCK_global_system_variables);
const bool check_temporal_upgrade = !avoid_temporal_upgrade;
mysql_mutex_unlock(&LOCK_global_system_variables);
if ((error = check_table_for_old_types(table, check_temporal_upgrade)))
return error;
error = ha_check_for_upgrade(check_opt);
if (error && (error != HA_ADMIN_NEEDS_CHECK)) return error;
if (!error && (check_opt->sql_flags & TT_FOR_UPGRADE)) return 0;
}
return check(thd, check_opt);
}
/**
A helper function to mark a transaction read-write,
if it is started.
*/
void handler::mark_trx_read_write() {
Ha_trx_info *ha_info = &ha_thd()->get_ha_data(ht->slot)->ha_info[0];
/*
When a storage engine method is called, the transaction must
have been started, unless it's a DDL call, for which the
storage engine starts the transaction internally, and commits
it internally, without registering in the ha_list.
Unfortunately here we can't know for sure if the engine
has registered the transaction or not, so we must check.
*/
if (ha_info->is_started()) {
DBUG_ASSERT(has_transactions());
/*
table_share can be NULL in ha_delete_table(). See implementation
of standalone function ha_delete_table() in sql_base.cc.
*/
if (table_share == NULL || table_share->tmp_table == NO_TMP_TABLE) {
/* TempTable and Heap tables don't use/support transactions. */
ha_info->set_trx_read_write();
}
}
}
/**
Repair table: public interface.
@sa handler::repair()
*/
int handler::ha_repair(THD *thd, HA_CHECK_OPT *check_opt) {
int result;
mark_trx_read_write();
result = repair(thd, check_opt);
DBUG_ASSERT(result == HA_ADMIN_NOT_IMPLEMENTED ||
ha_table_flags() & HA_CAN_REPAIR);
// TODO: Check if table version in DD needs to be updated.
// Previously we checked/updated FRM version here.
return result;
}
/**
Start bulk insert.
Allow the handler to optimize for multiple row insert.
@note rows == 0 means we will probably insert many rows.
@param rows Estimated rows to insert
*/
void handler::ha_start_bulk_insert(ha_rows rows) {
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
estimation_rows_to_insert = rows;
start_bulk_insert(rows);
}
/**
End bulk insert.
@return Operation status
@retval 0 Success
@retval != 0 Failure (error code returned)
*/
int handler::ha_end_bulk_insert() {
DBUG_TRACE;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
estimation_rows_to_insert = 0;
return end_bulk_insert();
}
/**
Bulk update row: public interface.
@sa handler::bulk_update_row()
*/
int handler::ha_bulk_update_row(const uchar *old_data, uchar *new_data,
uint *dup_key_found) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
mark_trx_read_write();
return bulk_update_row(old_data, new_data, dup_key_found);
}
/**
Delete all rows: public interface.
@sa handler::delete_all_rows()
*/
int handler::ha_delete_all_rows() {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
mark_trx_read_write();
return delete_all_rows();
}
/**
Truncate table: public interface.
@sa handler::truncate()
*/
int handler::ha_truncate(dd::Table *table_def) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
mark_trx_read_write();
return truncate(table_def);
}
/**
Optimize table: public interface.
@sa handler::optimize()
*/
int handler::ha_optimize(THD *thd, HA_CHECK_OPT *check_opt) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
mark_trx_read_write();
return optimize(thd, check_opt);
}
/**
Analyze table: public interface.
@sa handler::analyze()
*/
int handler::ha_analyze(THD *thd, HA_CHECK_OPT *check_opt) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
mark_trx_read_write();
return analyze(thd, check_opt);
}
/**
Check and repair table: public interface.
@sa handler::check_and_repair()
*/
bool handler::ha_check_and_repair(THD *thd) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_UNLCK);
mark_trx_read_write();
return check_and_repair(thd);
}
/**
Disable indexes: public interface.
@sa handler::disable_indexes()
*/
int handler::ha_disable_indexes(uint mode) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
mark_trx_read_write();
return disable_indexes(mode);
}
/**
Enable indexes: public interface.
@sa handler::enable_indexes()
*/
int handler::ha_enable_indexes(uint mode) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
mark_trx_read_write();
return enable_indexes(mode);
}
/**
Discard or import tablespace: public interface.
@sa handler::discard_or_import_tablespace()
*/
int handler::ha_discard_or_import_tablespace(bool discard,
dd::Table *table_def) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
mark_trx_read_write();
return discard_or_import_tablespace(discard, table_def);
}
bool handler::ha_prepare_inplace_alter_table(TABLE *altered_table,
Alter_inplace_info *ha_alter_info,
const dd::Table *old_table_def,
dd::Table *new_table_def) {
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type != F_UNLCK);
mark_trx_read_write();
return prepare_inplace_alter_table(altered_table, ha_alter_info,
old_table_def, new_table_def);
}
bool handler::ha_commit_inplace_alter_table(TABLE *altered_table,
Alter_inplace_info *ha_alter_info,
bool commit,
const dd::Table *old_table_def,
dd::Table *new_table_def) {
/*
At this point we should have an exclusive metadata lock on the table.
The exception is if we're about to roll back changes (commit= false).
In this case, we might be rolling back after a failed lock upgrade,
so we could be holding the same lock level as for inplace_alter_table().
*/
DBUG_ASSERT(ha_thd()->mdl_context.owns_equal_or_stronger_lock(
MDL_key::TABLE, table->s->db.str, table->s->table_name.str,
MDL_EXCLUSIVE) ||
!commit);
return commit_inplace_alter_table(altered_table, ha_alter_info, commit,
old_table_def, new_table_def);
}
/*
Default implementation to support in-place/instant alter table
for operations which do not affect table data.
*/
enum_alter_inplace_result handler::check_if_supported_inplace_alter(
TABLE *altered_table MY_ATTRIBUTE((unused)),
Alter_inplace_info *ha_alter_info) {
DBUG_TRACE;
HA_CREATE_INFO *create_info = ha_alter_info->create_info;
Alter_inplace_info::HA_ALTER_FLAGS inplace_offline_operations =
Alter_inplace_info::ALTER_COLUMN_EQUAL_PACK_LENGTH |
Alter_inplace_info::ALTER_COLUMN_NAME |
Alter_inplace_info::ALTER_COLUMN_DEFAULT |
Alter_inplace_info::CHANGE_CREATE_OPTION |
Alter_inplace_info::ALTER_RENAME | Alter_inplace_info::RENAME_INDEX |
Alter_inplace_info::ALTER_INDEX_COMMENT |
Alter_inplace_info::CHANGE_INDEX_OPTION |
Alter_inplace_info::ALTER_COLUMN_INDEX_LENGTH;
/* Is there at least one operation that requires copy algorithm? */
if (ha_alter_info->handler_flags & ~inplace_offline_operations)
return HA_ALTER_INPLACE_NOT_SUPPORTED;
/*
ALTER TABLE tbl_name CONVERT TO CHARACTER SET .. and
ALTER TABLE table_name DEFAULT CHARSET = .. most likely
change column charsets and so not supported in-place through
old API.
Changing of PACK_KEYS, MAX_ROWS and ROW_FORMAT options were
not supported as in-place operations in old API either.
*/
if (create_info->used_fields &
(HA_CREATE_USED_CHARSET | HA_CREATE_USED_DEFAULT_CHARSET |
HA_CREATE_USED_PACK_KEYS | HA_CREATE_USED_MAX_ROWS) ||
(table->s->row_type != create_info->row_type))
return HA_ALTER_INPLACE_NOT_SUPPORTED;
uint table_changes = (ha_alter_info->handler_flags &
Alter_inplace_info::ALTER_COLUMN_EQUAL_PACK_LENGTH)
? IS_EQUAL_PACK_LENGTH
: IS_EQUAL_YES;
if (table->file->check_if_incompatible_data(create_info, table_changes) ==
COMPATIBLE_DATA_YES)
return HA_ALTER_INPLACE_INSTANT;
return HA_ALTER_INPLACE_NOT_SUPPORTED;
}
void Alter_inplace_info::report_unsupported_error(const char *not_supported,
const char *try_instead) {
if (unsupported_reason == NULL)
my_error(ER_ALTER_OPERATION_NOT_SUPPORTED, MYF(0), not_supported,
try_instead);
else
my_error(ER_ALTER_OPERATION_NOT_SUPPORTED_REASON, MYF(0), not_supported,
unsupported_reason, try_instead);
}
/**
Rename table: public interface.
@sa handler::rename_table()
*/
int handler::ha_rename_table(const char *from, const char *to,
const dd::Table *from_table_def,
dd::Table *to_table_def) {
DBUG_ASSERT(m_lock_type == F_UNLCK);
mark_trx_read_write();
return rename_table(from, to, from_table_def, to_table_def);
}
/**
Delete table: public interface.
@sa handler::delete_table()
*/
int handler::ha_delete_table(const char *name, const dd::Table *table_def) {
DBUG_ASSERT(m_lock_type == F_UNLCK);
mark_trx_read_write();
return delete_table(name, table_def);
}
/**
Drop table in the engine: public interface.
@sa handler::drop_table()
*/
void handler::ha_drop_table(const char *name) {
DBUG_ASSERT(m_lock_type == F_UNLCK);
mark_trx_read_write();
return drop_table(name);
}
/**
Create a table in the engine: public interface.
@sa handler::create()
*/
int handler::ha_create(const char *name, TABLE *form, HA_CREATE_INFO *info,
dd::Table *table_def) {
DBUG_ASSERT(m_lock_type == F_UNLCK);
mark_trx_read_write();
return create(name, form, info, table_def);
}
/**
* Prepares the secondary engine for table load.
*
* @param table The table to load into the secondary engine. Its read_set tells
* which columns to load.
*
* @sa handler::prepare_load_table()
*/
int handler::ha_prepare_load_table(const TABLE &table) {
return prepare_load_table(table);
}
/**
* Loads a table into its defined secondary storage engine: public interface.
*
* @param table The table to load into the secondary engine. Its read_set tells
* which columns to load.
*
* @sa handler::load_table()
*/
int handler::ha_load_table(const TABLE &table) { return load_table(table); }
/**
* Unloads a table from its defined secondary storage engine: public interface.
*
* @sa handler::unload_table()
*/
int handler::ha_unload_table(const char *db_name, const char *table_name,
bool error_if_not_loaded) {
return unload_table(db_name, table_name, error_if_not_loaded);
}
/**
Get the hard coded SE private data from the handler for a DD table.
@sa handler::get_se_private_data()
*/
bool handler::ha_get_se_private_data(dd::Table *dd_table, bool reset) {
return get_se_private_data(dd_table, reset);
}
/**
Tell the storage engine that it is allowed to "disable transaction" in the
handler. It is a hint that ACID is not required - it is used in NDB for
ALTER TABLE, for example, when data are copied to temporary table.
A storage engine may treat this hint any way it likes. NDB for example
starts to commit every now and then automatically.
This hint can be safely ignored.
*/
int ha_enable_transaction(THD *thd, bool on) {
int error = 0;
DBUG_TRACE;
DBUG_PRINT("enter", ("on: %d", (int)on));
if ((thd->get_transaction()->m_flags.enabled = on)) {
/*
Now all storage engines should have transaction handling enabled.
But some may have it enabled all the time - "disabling" transactions
is an optimization hint that storage engine is free to ignore.
So, let's commit an open transaction (if any) now.
*/
if (!(error = ha_commit_trans(thd, 0))) error = trans_commit_implicit(thd);
}
return error;
}
int handler::index_next_same(uchar *buf, const uchar *key, uint keylen) {
int error;
DBUG_TRACE;
if (!(error = index_next(buf))) {
ptrdiff_t ptrdiff = buf - table->record[0];
uchar *save_record_0 = NULL;
KEY *key_info = NULL;
KEY_PART_INFO *key_part = NULL;
KEY_PART_INFO *key_part_end = NULL;
/*
key_cmp_if_same() compares table->record[0] against 'key'.
In parts it uses table->record[0] directly, in parts it uses
field objects with their local pointers into table->record[0].
If 'buf' is distinct from table->record[0], we need to move
all record references. This is table->record[0] itself and
the field pointers of the fields used in this key.
*/
if (ptrdiff) {
save_record_0 = table->record[0];
table->record[0] = buf;
key_info = table->key_info + active_index;
key_part = key_info->key_part;
key_part_end = key_part + key_info->user_defined_key_parts;
for (; key_part < key_part_end; key_part++) {
DBUG_ASSERT(key_part->field);
key_part->field->move_field_offset(ptrdiff);
}
}
if (key_cmp_if_same(table, key, active_index, keylen))
error = HA_ERR_END_OF_FILE;
/* Move back if necessary. */
if (ptrdiff) {
table->record[0] = save_record_0;
for (key_part = key_info->key_part; key_part < key_part_end; key_part++)
key_part->field->move_field_offset(-ptrdiff);
}
}
return error;
}
/****************************************************************************
** Some general functions that isn't in the handler class
****************************************************************************/
/**
Initiates table-file and calls appropriate database-creator.
@param thd Thread context.
@param path Path to table file (without extension).
@param db Database name.
@param table_name Table name.
@param create_info HA_CREATE_INFO describing table.
@param update_create_info Indicates that create_info needs to be
updated from table share.
@param is_temp_table Indicates that this is temporary table (for
cases when this info is not available from
HA_CREATE_INFO).
@param table_def Data-dictionary object describing table to
be used for table creation. Can be adjusted
by storage engine if it supports atomic DDL.
For non-temporary tables these changes will
be saved to the data-dictionary by this call.
@retval
0 ok
@retval
1 error
*/
int ha_create_table(THD *thd, const char *path, const char *db,
const char *table_name, HA_CREATE_INFO *create_info,
bool update_create_info, bool is_temp_table,
dd::Table *table_def) {
int error = 1;
TABLE table;
char name_buff[FN_REFLEN];
const char *name;
TABLE_SHARE share;
#ifdef HAVE_PSI_TABLE_INTERFACE
bool temp_table = is_temp_table ||
(create_info->options & HA_LEX_CREATE_TMP_TABLE) ||
(strstr(path, tmp_file_prefix) != NULL);
#endif
DBUG_TRACE;
init_tmp_table_share(thd, &share, db, 0, table_name, path, nullptr);
if (open_table_def(thd, &share, *table_def)) goto err;
#ifdef HAVE_PSI_TABLE_INTERFACE
share.m_psi = PSI_TABLE_CALL(get_table_share)(temp_table, &share);
#endif
// When db_stat is 0, we can pass nullptr as dd::Table since it won't be used.
destroy(&table);
if (open_table_from_share(thd, &share, "", 0, (uint)READ_ALL, 0, &table, true,
nullptr)) {
#ifdef HAVE_PSI_TABLE_INTERFACE
PSI_TABLE_CALL(drop_table_share)
(temp_table, db, strlen(db), table_name, strlen(table_name));
#endif
goto err;
}
if (update_create_info) update_create_info_from_table(create_info, &table);
name = get_canonical_filename(table.file, share.path.str, name_buff);
error = table.file->ha_create(name, &table, create_info, table_def);
if (error) {
table.file->print_error(error, MYF(0));
#ifdef HAVE_PSI_TABLE_INTERFACE
PSI_TABLE_CALL(drop_table_share)
(temp_table, db, strlen(db), table_name, strlen(table_name));
#endif
} else {
/*
We do post-create update only for engines supporting atomic DDL
as only such engines are allowed to update dd::Table objects in
handler::ha_create().
The dd::Table objects for temporary tables are not stored in DD
so do not need DD update.
The dd::Table objects representing the DD tables themselves cannot
be stored until the DD tables have been created in the SE.
*/
if (!((create_info->options & HA_LEX_CREATE_TMP_TABLE) || is_temp_table ||
dd::get_dictionary()->is_dd_table_name(db, table_name)) &&
(table.file->ht->flags & HTON_SUPPORTS_ATOMIC_DDL)) {
if (thd->dd_client()->update<dd::Table>(table_def)) error = 1;
}
}
(void)closefrm(&table, 0);
err:
free_table_share(&share);
return error != 0;
}
/**
Try to discover table from engine.
@note
If found, import the serialized dictionary information.
@retval
-1 Table did not exists
@retval
0 Table created ok
@retval
> 0 Error, table existed but could not be created
*/
int ha_create_table_from_engine(THD *thd, const char *db, const char *name) {
int error;
uchar *sdi_blob;
size_t sdi_len;
DBUG_TRACE;
DBUG_PRINT("enter", ("name '%s'.'%s'", db, name));
if ((error = ha_discover(thd, db, name, &sdi_blob, &sdi_len))) {
/* Table could not be discovered and thus not created */
return error;
}
/*
Table was successfully discovered from SE, check if SDI need
to be installed or if that has already been done by SE.
No SDI blob returned from SE indicates it has installed
the table definition for this table into DD itself.
Otherwise, import the SDI based on the sdi_blob and sdi_len,
which are set.
*/
if (sdi_blob) {
error = import_serialized_meta_data(sdi_blob, sdi_len, true);
my_free(sdi_blob);
if (error) return 2;
}
dd::cache::Dictionary_client::Auto_releaser releaser(thd->dd_client());
const dd::Table *table_def = nullptr;
if (thd->dd_client()->acquire(db, name, &table_def)) return 3;
if (table_def == nullptr) {
my_error(ER_NO_SUCH_TABLE, MYF(0), db, name);
return 3;
}
char path[FN_REFLEN + 1];
build_table_filename(path, sizeof(path) - 1, db, name, "", 0);
TABLE_SHARE share;
init_tmp_table_share(thd, &share, db, 0, name, path, nullptr);
if (open_table_def(thd, &share, *table_def)) return 3;
TABLE table;
// When db_stat is 0, we can pass nullptr as dd::Table since it won't be used.
if (open_table_from_share(thd, &share, "", 0, 0, 0, &table, false, nullptr)) {
free_table_share(&share);
return 3;
}
HA_CREATE_INFO create_info;
update_create_info_from_table(&create_info, &table);
create_info.table_options |= HA_OPTION_CREATE_FROM_ENGINE;
get_canonical_filename(table.file, path, path);
std::unique_ptr<dd::Table> table_def_clone(table_def->clone());
error =
table.file->ha_create(path, &table, &create_info, table_def_clone.get());
/*
Note that the table_def_clone is not stored into the DD,
necessary changes to the table_def should already have
been done in ha_discover/import_serialized_meta_data.
*/
(void)closefrm(&table, 1);
return error != 0;
}
/**
Try to find a table in a storage engine.
@param thd Thread handle
@param db Normalized table schema name
@param name Normalized table name.
@param[out] exists Only valid if the function succeeded.
@retval true An error is found
@retval false Success, check *exists
*/
bool ha_check_if_table_exists(THD *thd, const char *db, const char *name,
bool *exists) {
uchar *frmblob = NULL;
size_t frmlen;
DBUG_TRACE;
*exists = !ha_discover(thd, db, name, &frmblob, &frmlen);
if (*exists) my_free(frmblob);
return false;
}
/**
Check if a table specified by name is a system table.
@param db Database name for the table.
@param table_name Table name to be checked.
@param [out] is_sql_layer_system_table True if a system table belongs to
sql_layer.
@return Operation status
@retval true If the table name is a system table.
@retval false If the table name is a user-level table.
*/
static bool check_if_system_table(const char *db, const char *table_name,
bool *is_sql_layer_system_table) {
st_handler_tablename *systab;
// Check if we have the system database name in the command.
if (!dd::get_dictionary()->is_dd_schema_name(db)) return false;
// Check if this is SQL layer system tables.
systab = mysqld_system_tables;
while (systab && systab->db) {
if (strcmp(systab->tablename, table_name) == 0) {
*is_sql_layer_system_table = true;
break;
}
systab++;
}
return true;
}
/**
@brief Check if a given table is a system table.
@details The primary purpose of introducing this function is to stop system
tables to be created or being moved to undesired storage engines.
@todo There is another function called is_system_table_name() used by
get_table_category(), which is used to set TABLE_SHARE table_category.
It checks only a subset of table name like proc, event and time*.
We cannot use below function in get_table_category(),
as that affects locking mechanism. If we need to
unify these functions, we need to fix locking issues generated.
@param hton Handlerton of new engine.
@param db Database name.
@param table_name Table name to be checked.
@return Operation status
@retval true If the table name is a valid system table
or if its a valid user table.
@retval false If the table name is a system table name
and does not belong to engine specified
in the command.
*/
bool ha_check_if_supported_system_table(handlerton *hton, const char *db,
const char *table_name) {
DBUG_TRACE;
st_sys_tbl_chk_params check_params;
check_params.is_sql_layer_system_table = false;
if (!check_if_system_table(db, table_name,
&check_params.is_sql_layer_system_table))
return true; // It's a user table name
// Check if this is a system table and if some engine supports it.
check_params.status = check_params.is_sql_layer_system_table
? st_sys_tbl_chk_params::KNOWN_SYSTEM_TABLE
: st_sys_tbl_chk_params::NOT_KNOWN_SYSTEM_TABLE;
check_params.db_type = hton->db_type;
check_params.table_name = table_name;
check_params.db = db;
plugin_foreach(NULL, check_engine_system_table_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, &check_params);
// SE does not support this system table.
if (check_params.status == st_sys_tbl_chk_params::KNOWN_SYSTEM_TABLE)
return false;
// It's a system table or a valid user table.
return true;
}
/**
@brief Called for each SE to check if given db, tablename is a system table.
@details The primary purpose of introducing this function is to stop system
tables to be created or being moved to undesired storage engines.
@param plugin Points to specific SE.
@param arg Is of type struct st_sys_tbl_chk_params.
@note
args->status Indicates OUT param,
see struct st_sys_tbl_chk_params definition for more info.
@return Operation status
@retval true There was a match found.
This will stop doing checks with other SE's.
@retval false There was no match found.
Other SE's will be checked to find a match.
*/
static bool check_engine_system_table_handlerton(THD *, plugin_ref plugin,
void *arg) {
st_sys_tbl_chk_params *check_params = (st_sys_tbl_chk_params *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
// Do we already know that the table is a system table?
if (check_params->status == st_sys_tbl_chk_params::KNOWN_SYSTEM_TABLE) {
/*
If this is the same SE specified in the command, we can
simply ask the SE if it supports it stop the search regardless.
*/
if (hton->db_type == check_params->db_type) {
if (hton->is_supported_system_table &&
hton->is_supported_system_table(
check_params->db, check_params->table_name,
check_params->is_sql_layer_system_table))
check_params->status = st_sys_tbl_chk_params::SUPPORTED_SYSTEM_TABLE;
return true;
}
/*
If this is a different SE, there is no point in asking the SE
since we already know it's a system table and we don't care
if it is supported or not.
*/
return false;
}
/*
We don't yet know if the table is a system table or not.
We therefore must always ask the SE.
*/
if (hton->is_supported_system_table &&
hton->is_supported_system_table(
check_params->db, check_params->table_name,
check_params->is_sql_layer_system_table)) {
/*
If this is the same SE specified in the command, we know it's a
supported system table and can stop the search.
*/
if (hton->db_type == check_params->db_type) {
check_params->status = st_sys_tbl_chk_params::SUPPORTED_SYSTEM_TABLE;
return true;
} else
check_params->status = st_sys_tbl_chk_params::KNOWN_SYSTEM_TABLE;
}
return false;
}
static bool rm_tmp_tables_handlerton(THD *thd, plugin_ref plugin, void *files) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->rm_tmp_tables &&
hton->rm_tmp_tables(hton, thd, (List<LEX_STRING> *)files))
return true;
return false;
}
/**
Ask all SEs to drop all temporary tables which have been left from
previous server run. Used on server start-up.
@param[in] thd Thread context.
@param[in,out] files List of files in directories for temporary files
which match tmp_file_prefix and thus can belong to
temporary tables. If any SE recognizes some file as
belonging to temporary table in this SE and deletes
the file it is also supposed to remove file from
this list.
*/
bool ha_rm_tmp_tables(THD *thd, List<LEX_STRING> *files) {
return plugin_foreach(thd, rm_tmp_tables_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, files);
}
/**
Default implementation for handlerton::rm_tmp_tables() method which
simply removes all files from "files" list which have one of SE's
extensions. This implementation corresponds to default implementation
of handler::delete_table() method.
*/
bool default_rm_tmp_tables(handlerton *hton, THD *, List<LEX_STRING> *files) {
List_iterator<LEX_STRING> files_it(*files);
LEX_STRING *file_path;
if (!hton->file_extensions) return 0;
while ((file_path = files_it++)) {
const char *file_ext = fn_ext(file_path->str);
for (const char **ext = hton->file_extensions; *ext; ext++) {
if (strcmp(file_ext, *ext) == 0) {
if (my_is_symlink(file_path->str, NULL) &&
test_if_data_home_dir(file_path->str)) {
/*
For safety reasons, if temporary table file is a symlink pointing
to a file in the data directory, don't delete the file, delete
symlink file only. It would be nicer to not delete symlinked files
at all but MyISAM supports temporary tables with DATA
DIRECTORY/INDEX DIRECTORY options.
*/
(void)mysql_file_delete(key_file_misc, file_path->str, MYF(0));
} else
(void)mysql_file_delete_with_symlink(key_file_misc, file_path->str,
MYF(0));
files_it.remove();
break;
}
}
}
return false;
}
void HA_CHECK_OPT::init() { flags = sql_flags = 0; }
/*****************************************************************************
Key cache handling.
This code is only relevant for ISAM/MyISAM tables
key_cache->cache may be 0 only in the case where a key cache is not
initialized or when we where not able to init the key cache in a previous
call to ha_init_key_cache() (probably out of memory)
*****************************************************************************/
/**
Init a key cache if it has not been initied before.
*/
int ha_init_key_cache(const char *, KEY_CACHE *key_cache) {
DBUG_TRACE;
if (!key_cache->key_cache_inited) {
mysql_mutex_lock(&LOCK_global_system_variables);
size_t tmp_buff_size = (size_t)key_cache->param_buff_size;
ulonglong tmp_block_size = key_cache->param_block_size;
ulonglong division_limit = key_cache->param_division_limit;
ulonglong age_threshold = key_cache->param_age_threshold;
mysql_mutex_unlock(&LOCK_global_system_variables);
return !init_key_cache(key_cache, tmp_block_size, tmp_buff_size,
division_limit, age_threshold);
}
return 0;
}
/**
Resize key cache.
*/
int ha_resize_key_cache(KEY_CACHE *key_cache) {
DBUG_TRACE;
if (key_cache->key_cache_inited) {
mysql_mutex_lock(&LOCK_global_system_variables);
size_t tmp_buff_size = (size_t)key_cache->param_buff_size;
ulonglong tmp_block_size = key_cache->param_block_size;
ulonglong division_limit = key_cache->param_division_limit;
ulonglong age_threshold = key_cache->param_age_threshold;
mysql_mutex_unlock(&LOCK_global_system_variables);
const int retval =
resize_key_cache(key_cache, keycache_thread_var(), tmp_block_size,
tmp_buff_size, division_limit, age_threshold);
return !retval;
}
return 0;
}
/**
Move all tables from one key cache to another one.
*/
int ha_change_key_cache(KEY_CACHE *old_key_cache, KEY_CACHE *new_key_cache) {
mi_change_key_cache(old_key_cache, new_key_cache);
return 0;
}
/**
Try to discover one table from handler(s).
@param[in] thd Thread context.
@param[in] db Schema of table
@param[in] name Name of table
@param[out] frmblob Pointer to blob with table defintion.
@param[out] frmlen Length of the returned table definition blob
@retval
-1 Table did not exists
@retval
0 OK. Table could be discovered from SE.
The *frmblob and *frmlen may be set if returning a blob
which should be installed into data dictionary
by the caller.
@retval
>0 error. frmblob and frmlen may not be set
*/
struct st_discover_args {
const char *db;
const char *name;
uchar **frmblob;
size_t *frmlen;
};
static bool discover_handlerton(THD *thd, plugin_ref plugin, void *arg) {
st_discover_args *vargs = (st_discover_args *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->discover &&
(!(hton->discover(hton, thd, vargs->db, vargs->name, vargs->frmblob,
vargs->frmlen))))
return true;
return false;
}
static int ha_discover(THD *thd, const char *db, const char *name,
uchar **frmblob, size_t *frmlen) {
int error = -1; // Table does not exist in any handler
DBUG_TRACE;
DBUG_PRINT("enter", ("db: %s, name: %s", db, name));
st_discover_args args = {db, name, frmblob, frmlen};
if (is_prefix(name, tmp_file_prefix)) /* skip temporary tables */
return error;
if (plugin_foreach(thd, discover_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
&args))
error = 0;
if (!error) {
DBUG_ASSERT(!thd->status_var_aggregated);
thd->status_var.ha_discover_count++;
}
return error;
}
/**
Call this function in order to give the handler the possiblity
to ask engine if there are any new tables that should be written to disk
or any dropped tables that need to be removed from disk
*/
struct st_find_files_args {
const char *db;
const char *path;
const char *wild;
bool dir;
List<LEX_STRING> *files;
};
static bool find_files_handlerton(THD *thd, plugin_ref plugin, void *arg) {
st_find_files_args *vargs = (st_find_files_args *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->find_files)
if (hton->find_files(hton, thd, vargs->db, vargs->path, vargs->wild,
vargs->dir, vargs->files))
return true;
return false;
}
int ha_find_files(THD *thd, const char *db, const char *path, const char *wild,
bool dir, List<LEX_STRING> *files) {
int error = 0;
DBUG_TRACE;
DBUG_PRINT("enter", ("db: '%s' path: '%s' wild: '%s' dir: %d", db, path,
wild ? wild : "NULL", dir));
st_find_files_args args = {db, path, wild, dir, files};
plugin_foreach(thd, find_files_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
&args);
/* The return value is not currently used */
return error;
}
/**
Ask handler if the table exists in engine.
@retval
HA_ERR_NO_SUCH_TABLE Table does not exist
@retval
HA_ERR_TABLE_EXIST Table exists
*/
struct st_table_exists_in_engine_args {
const char *db;
const char *name;
int err;
};
static bool table_exists_in_engine_handlerton(THD *thd, plugin_ref plugin,
void *arg) {
st_table_exists_in_engine_args *vargs = (st_table_exists_in_engine_args *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
int err = HA_ERR_NO_SUCH_TABLE;
if (hton->state == SHOW_OPTION_YES && hton->table_exists_in_engine)
err = hton->table_exists_in_engine(hton, thd, vargs->db, vargs->name);
vargs->err = err;
if (vargs->err == HA_ERR_TABLE_EXIST) return true;
return false;
}
int ha_table_exists_in_engine(THD *thd, const char *db, const char *name) {
DBUG_TRACE;
DBUG_PRINT("enter", ("db: %s, name: %s", db, name));
st_table_exists_in_engine_args args = {db, name, HA_ERR_NO_SUCH_TABLE};
plugin_foreach(thd, table_exists_in_engine_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, &args);
DBUG_PRINT("exit", ("error: %d", args.err));
return args.err;
}
/**
Prepare (sub-) sequences of joins in this statement
which may be pushed to each storage engine for execution.
*/
struct st_make_pushed_join_args {
const AQP::Join_plan *plan; // Query plan provided by optimizer
int err; // Error code to return.
};
static bool make_pushed_join_handlerton(THD *thd, plugin_ref plugin,
void *arg) {
st_make_pushed_join_args *vargs = (st_make_pushed_join_args *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton && hton->make_pushed_join) {
const int error = hton->make_pushed_join(hton, thd, vargs->plan);
if (unlikely(error)) {
vargs->err = error;
return true;
}
}
return false;
}
int ha_make_pushed_joins(THD *thd, const AQP::Join_plan *plan) {
DBUG_TRACE;
st_make_pushed_join_args args = {plan, 0};
plugin_foreach(thd, make_pushed_join_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
&args);
DBUG_PRINT("exit", ("error: %d", args.err));
return args.err;
}
/*
TODO: change this into a dynamic struct
List<handlerton> does not work as
1. binlog_end is called when MEM_ROOT is gone
2. cannot work with thd MEM_ROOT as memory should be freed
*/
#define MAX_HTON_LIST_ST 63
struct hton_list_st {
handlerton *hton[MAX_HTON_LIST_ST];
uint sz;
};
struct binlog_func_st {
enum_binlog_func fn;
void *arg;
};
/** @brief
Listing handlertons first to avoid recursive calls and deadlock
*/
static bool binlog_func_list(THD *, plugin_ref plugin, void *arg) {
hton_list_st *hton_list = (hton_list_st *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->binlog_func) {
uint sz = hton_list->sz;
if (sz == MAX_HTON_LIST_ST - 1) {
/* list full */
return false;
}
hton_list->hton[sz] = hton;
hton_list->sz = sz + 1;
}
return false;
}
static bool binlog_func_foreach(THD *thd, binlog_func_st *bfn) {
hton_list_st hton_list;
uint i, sz;
hton_list.sz = 0;
plugin_foreach(thd, binlog_func_list, MYSQL_STORAGE_ENGINE_PLUGIN,
&hton_list);
for (i = 0, sz = hton_list.sz; i < sz; i++)
hton_list.hton[i]->binlog_func(hton_list.hton[i], thd, bfn->fn, bfn->arg);
return false;
}
int ha_reset_logs(THD *thd) {
binlog_func_st bfn = {BFN_RESET_LOGS, 0};
binlog_func_foreach(thd, &bfn);
return 0;
}
void ha_reset_slave(THD *thd) {
binlog_func_st bfn = {BFN_RESET_SLAVE, 0};
binlog_func_foreach(thd, &bfn);
}
void ha_binlog_wait(THD *thd) {
binlog_func_st bfn = {BFN_BINLOG_WAIT, 0};
binlog_func_foreach(thd, &bfn);
}
int ha_binlog_index_purge_file(THD *thd, const char *file) {
binlog_func_st bfn = {BFN_BINLOG_PURGE_FILE, const_cast<char *>(file)};
binlog_func_foreach(thd, &bfn);
return 0;
}
struct binlog_log_query_st {
enum_binlog_command binlog_command;
const char *query;
size_t query_length;
const char *db;
const char *table_name;
};
static bool binlog_log_query_handlerton2(THD *thd, handlerton *hton,
void *args) {
struct binlog_log_query_st *b = (struct binlog_log_query_st *)args;
if (hton->state == SHOW_OPTION_YES && hton->binlog_log_query)
hton->binlog_log_query(hton, thd, b->binlog_command, b->query,
b->query_length, b->db, b->table_name);
return false;
}
static bool binlog_log_query_handlerton(THD *thd, plugin_ref plugin,
void *args) {
return binlog_log_query_handlerton2(thd, plugin_data<handlerton *>(plugin),
args);
}
void ha_binlog_log_query(THD *thd, handlerton *hton,
enum_binlog_command binlog_command, const char *query,
size_t query_length, const char *db,
const char *table_name) {
struct binlog_log_query_st b;
b.binlog_command = binlog_command;
b.query = query;
b.query_length = query_length;
b.db = db;
b.table_name = table_name;
if (hton == 0)
plugin_foreach(thd, binlog_log_query_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, &b);
else
binlog_log_query_handlerton2(thd, hton, &b);
}
int ha_binlog_end(THD *thd) {
binlog_func_st bfn = {BFN_BINLOG_END, 0};
binlog_func_foreach(thd, &bfn);
return 0;
}
static bool acl_notify_handlerton(THD *thd, plugin_ref plugin, void *data) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->acl_notify)
hton->acl_notify(thd,
static_cast<const class Acl_change_notification *>(data));
return false;
}
void ha_acl_notify(THD *thd, class Acl_change_notification *data) {
plugin_foreach(thd, acl_notify_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN, data);
}
/**
Calculate cost of 'index only' scan for given index and number of records
@param keynr Index number
@param records Estimated number of records to be retrieved
@note
It is assumed that we will read trough the whole key range and that all
key blocks are half full (normally things are much better). It is also
assumed that each time we read the next key from the index, the handler
performs a random seek, thus the cost is proportional to the number of
blocks read.
@return
Estimated cost of 'index only' scan
*/
double handler::index_only_read_time(uint keynr, double records) {
double read_time;
uint keys_per_block =
(stats.block_size / 2 /
(table_share->key_info[keynr].key_length + ref_length) +
1);
read_time = ((double)(records + keys_per_block - 1) / (double)keys_per_block);
return read_time;
}
double handler::table_in_memory_estimate() const {
DBUG_ASSERT(stats.table_in_mem_estimate == IN_MEMORY_ESTIMATE_UNKNOWN ||
(stats.table_in_mem_estimate >= 0.0 &&
stats.table_in_mem_estimate <= 1.0));
/*
If the storage engine has supplied information about how much of the
table that is currently in a memory buffer, then use this estimate.
*/
if (stats.table_in_mem_estimate != IN_MEMORY_ESTIMATE_UNKNOWN)
return stats.table_in_mem_estimate;
/*
The storage engine has not provided any information about how much of
this index is in memory, use an heuristic to produce an estimate.
*/
return estimate_in_memory_buffer(stats.data_file_length);
}
double handler::index_in_memory_estimate(uint keyno) const {
const KEY *key = &table->key_info[keyno];
/*
If the storage engine has supplied information about how much of the
index that is currently in a memory buffer, then use this estimate.
*/
const double est = key->in_memory_estimate();
if (est != IN_MEMORY_ESTIMATE_UNKNOWN) return est;
/*
The storage engine has not provided any information about how much of
this index is in memory, use an heuristic to produce an estimate.
*/
ulonglong file_length;
/*
If the index is a clustered primary index, then use the data file
size as estimate for how large the index is.
*/
if (keyno == table->s->primary_key && primary_key_is_clustered())
file_length = stats.data_file_length;
else
file_length = stats.index_file_length;
return estimate_in_memory_buffer(file_length);
}
double handler::estimate_in_memory_buffer(ulonglong table_index_size) const {
/*
The storage engine has not provided any information about how much of
the table/index is in memory. In this case we use a heuristic:
- if the size of the table/index is less than 20 percent (pick any
number) of the memory buffer, then the entire table/index is likely in
memory.
- if the size of the table/index is larger than the memory buffer, then
assume nothing of the table/index is in memory.
- if the size of the table/index is larger than 20 percent but less than
the memory buffer size, then use a linear function of the table/index
size that goes from 1.0 to 0.0.
*/
/*
If the storage engine has information about the size of its
memory buffer, then use this. Otherwise, assume that at least 100 MB
of data can be chached in memory.
*/
longlong memory_buf_size = get_memory_buffer_size();
if (memory_buf_size <= 0) memory_buf_size = 100 * 1024 * 1024; // 100 MB
/*
Upper limit for the relative size of a table to be considered
entirely available in a memory buffer. If the actual table size is
less than this we assume it is complete cached in a memory buffer.
*/
const double table_index_in_memory_limit = 0.2;
/*
Estimate for how much of the total memory buffer this table/index
can occupy.
*/
const double percent_of_mem =
static_cast<double>(table_index_size) / memory_buf_size;
double in_mem_est;
if (percent_of_mem < table_index_in_memory_limit) // Less than 20 percent
in_mem_est = 1.0;
else if (percent_of_mem > 1.0) // Larger than buffer
in_mem_est = 0.0;
else {
/*
The size of the table/index is larger than
"table_index_in_memory_limit" * "memory_buf_size" but less than
the total size of the memory buffer.
*/
in_mem_est = 1.0 - (percent_of_mem - table_index_in_memory_limit) /
(1.0 - table_index_in_memory_limit);
}
DBUG_ASSERT(in_mem_est >= 0.0 && in_mem_est <= 1.0);
return in_mem_est;
}
Cost_estimate handler::table_scan_cost() {
/*
This function returns a Cost_estimate object. The function should be
implemented in a way that allows the compiler to use "return value
optimization" to avoid creating the temporary object for the return value
and use of the copy constructor.
*/
const double io_cost = scan_time() * table->cost_model()->page_read_cost(1.0);
Cost_estimate cost;
cost.add_io(io_cost);
return cost;
}
Cost_estimate handler::index_scan_cost(uint index,
double ranges MY_ATTRIBUTE((unused)),
double rows) {
/*
This function returns a Cost_estimate object. The function should be
implemented in a way that allows the compiler to use "return value
optimization" to avoid creating the temporary object for the return value
and use of the copy constructor.
*/
DBUG_ASSERT(ranges >= 0.0);
DBUG_ASSERT(rows >= 0.0);
const double io_cost = index_only_read_time(index, rows) *
table->cost_model()->page_read_cost_index(index, 1.0);
Cost_estimate cost;
cost.add_io(io_cost);
return cost;
}
Cost_estimate handler::read_cost(uint index, double ranges, double rows) {
/*
This function returns a Cost_estimate object. The function should be
implemented in a way that allows the compiler to use "return value
optimization" to avoid creating the temporary object for the return value
and use of the copy constructor.
*/
DBUG_ASSERT(ranges >= 0.0);
DBUG_ASSERT(rows >= 0.0);
const double io_cost =
read_time(index, static_cast<uint>(ranges), static_cast<ha_rows>(rows)) *
table->cost_model()->page_read_cost(1.0);
Cost_estimate cost;
cost.add_io(io_cost);
return cost;
}
/**
Check if key has partially-covered columns
We can't use DS-MRR to perform range scans when the ranges are over
partially-covered keys, because we'll not have full key part values
(we'll have their prefixes from the index) and will not be able to check
if we've reached the end the range.
@param table Table to check keys for
@param keyno Key to check
@todo
Allow use of DS-MRR in cases where the index has partially-covered
components but they are not used for scanning.
@retval true Yes
@retval false No
*/
static bool key_uses_partial_cols(TABLE *table, uint keyno) {
KEY_PART_INFO *kp = table->key_info[keyno].key_part;
KEY_PART_INFO *kp_end = kp + table->key_info[keyno].user_defined_key_parts;
for (; kp != kp_end; kp++) {
if (!kp->field->part_of_key.is_set(keyno)) return true;
}
return false;
}
/****************************************************************************
* Default MRR implementation (MRR to non-MRR converter)
***************************************************************************/
/**
Get cost and other information about MRR scan over a known list of ranges
Calculate estimated cost and other information about an MRR scan for given
sequence of ranges.
@param keyno Index number
@param seq Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges_arg Number of ranges in the sequence, or 0 if the caller
can't efficiently determine it
@param [in,out] bufsz IN: Size of the buffer available for use
OUT: Size of the buffer that is expected to be actually
used, or 0 if buffer is not needed.
@param [in,out] flags A combination of HA_MRR_* flags
@param [out] cost Estimated cost of MRR access
@note
This method (or an overriding one in a derived class) must check for
\c thd->killed and return HA_POS_ERROR if it is not zero. This is required
for a user to be able to interrupt the calculation by killing the
connection/query.
@retval
HA_POS_ERROR Error or the engine is unable to perform the requested
scan. Values of OUT parameters are undefined.
@retval
other OK, *cost contains cost of the scan, *bufsz and *flags
contain scan parameters.
*/
ha_rows handler::multi_range_read_info_const(
uint keyno, RANGE_SEQ_IF *seq, void *seq_init_param,
uint n_ranges_arg MY_ATTRIBUTE((unused)), uint *bufsz, uint *flags,
Cost_estimate *cost) {
KEY_MULTI_RANGE range;
range_seq_t seq_it;
ha_rows rows, total_rows = 0;
uint n_ranges = 0;
THD *thd = current_thd;
/* Default MRR implementation doesn't need buffer */
*bufsz = 0;
DBUG_EXECUTE_IF("bug13822652_2", thd->killed = THD::KILL_QUERY;);
seq_it = seq->init(seq_init_param, n_ranges, *flags);
while (!seq->next(seq_it, &range)) {
if (unlikely(thd->killed != 0)) return HA_POS_ERROR;
n_ranges++;
key_range *min_endp, *max_endp;
if (range.range_flag & GEOM_FLAG) {
min_endp = &range.start_key;
max_endp = NULL;
} else {
min_endp = range.start_key.length ? &range.start_key : NULL;
max_endp = range.end_key.length ? &range.end_key : NULL;
}
/*
Get the number of rows in the range. This is done by calling
records_in_range() unless:
1) The index is unique.
There cannot be more than one matching row, so 1 is
assumed. Note that it is possible that the correct number
is actually 0, so the row estimate may be too high in this
case. Also note: ranges of the form "x IS NULL" may have more
than 1 mathing row so records_in_range() is called for these.
2) SKIP_RECORDS_IN_RANGE will be set when skip_records_in_range or
use_index_statistics are true.
Ranges of the form "x IS NULL" will not use index statistics
because the number of rows with this value are likely to be
very different than the values in the index statistics.
Note: With SKIP_RECORDS_IN_RANGE, use Index statistics if:
a) Index statistics is available.
b) The range is an equality range but the index is either not
unique or all of the keyparts are not used.
*/
int keyparts_used = 0;
if ((range.range_flag & UNIQUE_RANGE) && // 1)
!(range.range_flag & NULL_RANGE))
rows = 1; /* there can be at most one row */
else if (range.range_flag & SKIP_RECORDS_IN_RANGE && // 2)
!(range.range_flag & NULL_RANGE)) {
if ((range.range_flag & EQ_RANGE) &&
(keyparts_used = my_count_bits(range.start_key.keypart_map)) &&
table->key_info[keyno].has_records_per_key(keyparts_used - 1)) {
rows = static_cast<ha_rows>(
table->key_info[keyno].records_per_key(keyparts_used - 1));
} else {
/*
Since records_in_range has not been called, set the rows to 1.
FORCE INDEX has been used, cost model values will be ignored anyway.
*/
rows = 1;
}
} else {
DBUG_EXECUTE_IF("crash_records_in_range", DBUG_SUICIDE(););
DBUG_ASSERT(min_endp || max_endp);
if (HA_POS_ERROR ==
(rows = this->records_in_range(keyno, min_endp, max_endp))) {
/* Can't scan one range => can't do MRR scan at all */
total_rows = HA_POS_ERROR;
break;
}
}
total_rows += rows;
}
if (total_rows != HA_POS_ERROR) {
const Cost_model_table *const cost_model = table->cost_model();
/* The following calculation is the same as in multi_range_read_info(): */
*flags |= (HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SUPPORT_SORTED);
DBUG_ASSERT(cost->is_zero());
if (*flags & HA_MRR_INDEX_ONLY)
*cost = index_scan_cost(keyno, static_cast<double>(n_ranges),
static_cast<double>(total_rows));
else
*cost = read_cost(keyno, static_cast<double>(n_ranges),
static_cast<double>(total_rows));
cost->add_cpu(
cost_model->row_evaluate_cost(static_cast<double>(total_rows)) + 0.01);
}
return total_rows;
}
/**
Get cost and other information about MRR scan over some sequence of ranges
Calculate estimated cost and other information about an MRR scan for some
sequence of ranges.
The ranges themselves will be known only at execution phase. When this
function is called we only know number of ranges and a (rough) E(#records)
within those ranges.
Currently this function is only called for "n-keypart singlepoint" ranges,
i.e. each range is "keypart1=someconst1 AND ... AND keypartN=someconstN"
The flags parameter is a combination of those flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION, HA_MRR_LIMITS.
@param keyno Index number
@param n_ranges Estimated number of ranges (i.e. intervals) in the
range sequence.
@param n_rows Estimated total number of records contained within all
of the ranges
@param [in,out] bufsz IN: Size of the buffer available for use
OUT: Size of the buffer that will be actually used, or
0 if buffer is not needed.
@param [in,out] flags A combination of HA_MRR_* flags
@param [out] cost Estimated cost of MRR access
@retval
0 OK, *cost contains cost of the scan, *bufsz and *flags contain scan
parameters.
@retval
other Error or can't perform the requested scan
*/
ha_rows handler::multi_range_read_info(uint keyno, uint n_ranges, uint n_rows,
uint *bufsz, uint *flags,
Cost_estimate *cost) {
*bufsz = 0; /* Default implementation doesn't need a buffer */
*flags |= HA_MRR_USE_DEFAULT_IMPL;
*flags |= HA_MRR_SUPPORT_SORTED;
DBUG_ASSERT(cost->is_zero());
/* Produce the same cost as non-MRR code does */
if (*flags & HA_MRR_INDEX_ONLY)
*cost = index_scan_cost(keyno, n_ranges, n_rows);
else
*cost = read_cost(keyno, n_ranges, n_rows);
return 0;
}
/**
Initialize the MRR scan.
This function may do heavyweight scan
initialization like row prefetching/sorting/etc (NOTE: but better not do
it here as we may not need it, e.g. if we never satisfy WHERE clause on
previous tables. For many implementations it would be natural to do such
initializations in the first multi_read_range_next() call)
mode is a combination of the following flags: HA_MRR_SORTED,
HA_MRR_INDEX_ONLY, HA_MRR_NO_ASSOCIATION
@param seq_funcs Range sequence to be traversed
@param seq_init_param First parameter for seq->init()
@param n_ranges Number of ranges in the sequence
@param mode Flags, see the description section for the details
@param buf INOUT: memory buffer to be used
@note
One must have called index_init() before calling this function. Several
multi_range_read_init() calls may be made in course of one query.
Until WL#2623 is done (see its text, section 3.2), the following will
also hold:
The caller will guarantee that if "seq->init == mrr_ranges_array_init"
then seq_init_param is an array of n_ranges KEY_MULTI_RANGE structures.
This property will only be used by NDB handler until WL#2623 is done.
Buffer memory management is done according to the following scenario:
The caller allocates the buffer and provides it to the callee by filling
the members of HANDLER_BUFFER structure.
The callee consumes all or some fraction of the provided buffer space, and
sets the HANDLER_BUFFER members accordingly.
The callee may use the buffer memory until the next multi_range_read_init()
call is made, all records have been read, or until index_end() call is
made, whichever comes first.
@retval 0 OK
@retval 1 Error
*/
int handler::multi_range_read_init(RANGE_SEQ_IF *seq_funcs,
void *seq_init_param, uint n_ranges,
uint mode,
HANDLER_BUFFER *buf MY_ATTRIBUTE((unused))) {
DBUG_TRACE;
mrr_iter = seq_funcs->init(seq_init_param, n_ranges, mode);
mrr_funcs = *seq_funcs;
mrr_is_output_sorted = mode & HA_MRR_SORTED;
mrr_have_range = false;
return 0;
}
int handler::ha_multi_range_read_next(char **range_info) {
int result;
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
result = multi_range_read_next(range_info);
if (!result && m_update_generated_read_fields) {
result =
update_generated_read_fields(table->record[0], table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/**
Get next record in MRR scan
Default MRR implementation: read the next record
@param range_info OUT Undefined if HA_MRR_NO_ASSOCIATION flag is in effect
Otherwise, the opaque value associated with the range
that contains the returned record.
@retval 0 OK
@retval other Error code
*/
int handler::multi_range_read_next(char **range_info) {
int result = HA_ERR_END_OF_FILE;
int range_res = 0;
bool dup_found = false;
DBUG_TRACE;
// For a multi-valued index the unique filter have to be used for correct
// result
DBUG_ASSERT(!(table->key_info[active_index].flags & HA_MULTI_VALUED_KEY) ||
m_unique);
if (!mrr_have_range) {
mrr_have_range = true;
goto start;
}
do {
/*
Do not call read_range_next() if its equality on a unique
index.
*/
if (!((mrr_cur_range.range_flag & UNIQUE_RANGE) &&
(mrr_cur_range.range_flag & EQ_RANGE))) {
result = read_range_next();
/*
On success or non-EOF errors check loop condition to filter
duplicates, if needed.
*/
if (result != HA_ERR_END_OF_FILE) continue;
} else {
if (was_semi_consistent_read()) goto scan_it_again;
}
start:
/* Try the next range(s) until one matches a record. */
while (!(range_res = mrr_funcs.next(mrr_iter, &mrr_cur_range))) {
scan_it_again:
result = read_range_first(
mrr_cur_range.start_key.keypart_map ? &mrr_cur_range.start_key : 0,
mrr_cur_range.end_key.keypart_map ? &mrr_cur_range.end_key : 0,
mrr_cur_range.range_flag & EQ_RANGE, mrr_is_output_sorted);
if (result != HA_ERR_END_OF_FILE) break;
}
} while (((result == HA_ERR_END_OF_FILE) ||
(m_unique && (dup_found = filter_dup_records()))) &&
!range_res);
*range_info = mrr_cur_range.ptr;
/*
Last found record was a duplicate and we retrieved records from all
ranges, so no more records can be returned.
*/
if (dup_found && range_res) result = HA_ERR_END_OF_FILE;
DBUG_PRINT("exit", ("handler::multi_range_read_next result %d", result));
return result;
}
/****************************************************************************
* DS-MRR implementation
***************************************************************************/
/**
DS-MRR: Initialize and start MRR scan
Initialize and start the MRR scan. Depending on the mode parameter, this
may use default or DS-MRR implementation.
The DS-MRR implementation will use a second handler object (h2) for
doing scan on the index:
- on the first call to this function the h2 handler will be created
and h2 will be opened using the same index as the main handler
is set to use. The index scan on the main index will be closed
and it will be re-opened to read records from the table using either
no key or the primary key. The h2 handler will be deleted when
reset() is called (which should happen on the end of the statement).
- when dsmrr_close() is called the index scan on h2 is closed.
- on following calls to this function one of the following must be valid:
a. if dsmrr_close has been called:
the main handler (h) must be open on an index, h2 will be opened
using this index, and the index on h will be closed and
h will be re-opened to read reads from the table using either
no key or the primary key.
b. dsmrr_close has not been called:
h2 will already be open, the main handler h must be set up
to read records from the table (handler->inited is RND) either
using the primary index or using no index at all.
@param seq_funcs Interval sequence enumeration functions
@param seq_init_param Interval sequence enumeration parameter
@param n_ranges Number of ranges in the sequence.
@param mode HA_MRR_* modes to use
@param[in,out] buf Buffer to use
@retval 0 Ok, Scan started.
@retval other Error
*/
int DsMrr_impl::dsmrr_init(RANGE_SEQ_IF *seq_funcs, void *seq_init_param,
uint n_ranges, uint mode, HANDLER_BUFFER *buf) {
DBUG_ASSERT(table != NULL); // Verify init() called
uint elem_size;
int retval = 0;
DBUG_TRACE;
THD *const thd = table->in_use; // current THD
if (!hint_key_state(thd, table->pos_in_table_list, h->active_index,
MRR_HINT_ENUM, OPTIMIZER_SWITCH_MRR) ||
mode & (HA_MRR_USE_DEFAULT_IMPL | HA_MRR_SORTED)) // DS-MRR doesn't sort
{
use_default_impl = true;
retval = h->handler::multi_range_read_init(seq_funcs, seq_init_param,
n_ranges, mode, buf);
return retval;
}
/*
This assert will hit if we have pushed an index condition to the
primary key index and then "change our mind" and use a different
index for retrieving data with MRR. One of the following criteria
must be true:
1. We have not pushed an index conditon on this handler.
2. We have pushed an index condition and this is on the currently used
index.
3. We have pushed an index condition but this is not for the primary key.
4. We have pushed an index condition and this has been transferred to
the clone (h2) of the handler object.
*/
DBUG_ASSERT(!h->pushed_idx_cond ||
h->pushed_idx_cond_keyno == h->active_index ||
h->pushed_idx_cond_keyno != table->s->primary_key ||
(h2 && h->pushed_idx_cond_keyno == h2->active_index));
rowids_buf = buf->buffer;
is_mrr_assoc = !(mode & HA_MRR_NO_ASSOCIATION);
if (is_mrr_assoc) {
DBUG_ASSERT(!thd->status_var_aggregated);
table->in_use->status_var.ha_multi_range_read_init_count++;
}
rowids_buf_end = buf->buffer_end;
elem_size = h->ref_length + (int)is_mrr_assoc * sizeof(void *);
rowids_buf_last =
rowids_buf + ((rowids_buf_end - rowids_buf) / elem_size) * elem_size;
rowids_buf_end = rowids_buf_last;
/*
The DS-MRR scan uses a second handler object (h2) for doing the
index scan. Create this by cloning the primary handler
object. The h2 handler object is deleted when DsMrr_impl::reset()
is called.
*/
if (!h2) {
handler *new_h2;
/*
::clone() takes up a lot of stack, especially on 64 bit platforms.
The constant 5 is an empiric result.
@todo Is this still the case? Leave it as it is for now but could
likely be removed?
*/
if (check_stack_overrun(thd, 5 * STACK_MIN_SIZE, (uchar *)&new_h2))
return 1;
if (!(new_h2 = h->clone(table->s->normalized_path.str, thd->mem_root)))
return 1;
h2 = new_h2; /* Ok, now can put it into h2 */
table->prepare_for_position();
}
/*
Open the index scan on h2 using the key from the primary handler.
*/
if (h2->active_index == MAX_KEY) {
DBUG_ASSERT(h->active_index != MAX_KEY);
const uint mrr_keyno = h->active_index;
if ((retval = h2->ha_external_lock(thd, h->get_lock_type()))) goto error;
if ((retval = h2->extra(HA_EXTRA_KEYREAD))) goto error;
if ((retval = h2->ha_index_init(mrr_keyno, false))) goto error;
if ((table->key_info[mrr_keyno].flags & HA_MULTI_VALUED_KEY) &&
(retval = h2->ha_extra(HA_EXTRA_ENABLE_UNIQUE_RECORD_FILTER)))
goto error; /* purecov: inspected */
// Transfer ICP from h to h2
if (mrr_keyno == h->pushed_idx_cond_keyno) {
if (h2->idx_cond_push(mrr_keyno, h->pushed_idx_cond)) {
retval = 1;
goto error;
}
} else {
// Cancel any potentially previously pushed index conditions
h2->cancel_pushed_idx_cond();
}
} else {
/*
h2 has already an open index. This happens when the DS-MRR scan
is re-started without closing it first. In this case the primary
handler must be used for reading records from the table, ie. it
must not be opened for doing a new range scan. In this case
the active_index must either not be set or be the primary key.
*/
DBUG_ASSERT(h->inited == handler::RND);
DBUG_ASSERT(h->active_index == MAX_KEY ||
h->active_index == table->s->primary_key);
}
/*
The index scan is now transferred to h2 and we can close the open
index scan on the primary handler.
*/
if (h->inited == handler::INDEX) {
/*
Calling h->ha_index_end() will invoke dsmrr_close() for this object,
which will close the index scan on h2. We need to keep it open, so
temporarily move h2 out of the DsMrr object.
*/
handler *save_h2 = h2;
h2 = NULL;
retval = h->ha_index_end();
h2 = save_h2;
if (retval) goto error;
}
/*
Verify consistency between h and h2.
*/
DBUG_ASSERT(h->inited != handler::INDEX);
DBUG_ASSERT(h->active_index == MAX_KEY ||
h->active_index == table->s->primary_key);
DBUG_ASSERT(h2->inited == handler::INDEX);
DBUG_ASSERT(h2->active_index != MAX_KEY);
DBUG_ASSERT(h->get_lock_type() == h2->get_lock_type());
if ((retval = h2->handler::multi_range_read_init(seq_funcs, seq_init_param,
n_ranges, mode, buf)))
goto error;
if ((retval = dsmrr_fill_buffer())) goto error;
/*
If the above call has scanned through all intervals in *seq, then
adjust *buf to indicate that the remaining buffer space will not be used.
*/
if (dsmrr_eof) buf->end_of_used_area = rowids_buf_last;
/*
h->inited == INDEX may occur when 'range checked for each record' is
used.
*/
if ((h->inited != handler::RND) &&
((h->inited == handler::INDEX ? h->ha_index_end() : false) ||
(h->ha_rnd_init(false)))) {
retval = 1;
goto error;
}
use_default_impl = false;
h->mrr_funcs = *seq_funcs;
return 0;
error:
h2->ha_index_or_rnd_end();
h2->ha_external_lock(thd, F_UNLCK);
h2->ha_close();
destroy(h2);
h2 = NULL;
DBUG_ASSERT(retval != 0);
return retval;
}
void DsMrr_impl::dsmrr_close() {
DBUG_TRACE;
// If there is an open index on h2, then close it
if (h2 && h2->active_index != MAX_KEY) {
h2->ha_index_or_rnd_end();
h2->ha_external_lock(current_thd, F_UNLCK);
}
use_default_impl = true;
}
void DsMrr_impl::reset() {
DBUG_TRACE;
if (h2) {
// Close any ongoing DS-MRR scan
dsmrr_close();
// Close and delete the h2 handler
h2->ha_close();
destroy(h2);
h2 = NULL;
}
}
/**
DS-MRR: Fill the buffer with rowids and sort it by rowid
{This is an internal function of DiskSweep MRR implementation}
Scan the MRR ranges and collect ROWIDs (or {ROWID, range_id} pairs) into
buffer. When the buffer is full or scan is completed, sort the buffer by
rowid and return.
The function assumes that rowids buffer is empty when it is invoked.
@retval 0 OK, the next portion of rowids is in the buffer,
properly ordered
@retval other Error
*/
int DsMrr_impl::dsmrr_fill_buffer() {
char *range_info;
int res = 0;
DBUG_TRACE;
DBUG_ASSERT(rowids_buf < rowids_buf_end);
/*
Set key_read to true since we only read fields from the index.
This ensures that any virtual columns are read from index and are not
attempted to be evaluated from base columns.
(Do not use TABLE::set_keyread() since the MRR implementation operates
with two handler objects, and set_keyread() would manipulate the keyread
property of the wrong handler. MRR sets the handlers' keyread properties
when initializing the MRR operation, independent of this call).
*/
DBUG_ASSERT(table->key_read == false);
table->key_read = true;
rowids_buf_cur = rowids_buf;
/*
Do not use ha_multi_range_read_next() as it would call the engine's
overridden multi_range_read_next() but the default implementation is wanted.
*/
while ((rowids_buf_cur < rowids_buf_end) &&
!(res = h2->handler::multi_range_read_next(&range_info))) {
KEY_MULTI_RANGE *curr_range = &h2->handler::mrr_cur_range;
if (h2->mrr_funcs.skip_index_tuple &&
h2->mrr_funcs.skip_index_tuple(h2->mrr_iter, curr_range->ptr))
continue;
/* Put rowid, or {rowid, range_id} pair into the buffer */
h2->position(table->record[0]);
memcpy(rowids_buf_cur, h2->ref, h2->ref_length);
rowids_buf_cur += h2->ref_length;
if (is_mrr_assoc) {
memcpy(rowids_buf_cur, &range_info, sizeof(void *));
rowids_buf_cur += sizeof(void *);
}
}
// Restore key_read since the next read operation will read complete rows
table->key_read = false;
if (res && res != HA_ERR_END_OF_FILE) return res;
dsmrr_eof = (res == HA_ERR_END_OF_FILE);
/* Sort the buffer contents by rowid */
uint elem_size = h->ref_length + (int)is_mrr_assoc * sizeof(void *);
DBUG_ASSERT((rowids_buf_cur - rowids_buf) % elem_size == 0);
varlen_sort(
rowids_buf, rowids_buf_cur, elem_size,
[this](const uchar *a, const uchar *b) { return h->cmp_ref(a, b) < 0; });
rowids_buf_last = rowids_buf_cur;
rowids_buf_cur = rowids_buf;
return 0;
}
/*
DS-MRR implementation: multi_range_read_next() function
*/
int DsMrr_impl::dsmrr_next(char **range_info) {
int res;
uchar *cur_range_info = 0;
uchar *rowid;
if (use_default_impl) return h->handler::multi_range_read_next(range_info);
do {
if (rowids_buf_cur == rowids_buf_last) {
if (dsmrr_eof) {
res = HA_ERR_END_OF_FILE;
goto end;
}
res = dsmrr_fill_buffer();
if (res) goto end;
}
/* return eof if there are no rowids in the buffer after re-fill attempt */
if (rowids_buf_cur == rowids_buf_last) {
res = HA_ERR_END_OF_FILE;
goto end;
}
rowid = rowids_buf_cur;
if (is_mrr_assoc)
memcpy(&cur_range_info, rowids_buf_cur + h->ref_length, sizeof(uchar *));
rowids_buf_cur += h->ref_length + sizeof(void *) * is_mrr_assoc;
if (h2->mrr_funcs.skip_record &&
h2->mrr_funcs.skip_record(h2->mrr_iter, (char *)cur_range_info, rowid))
continue;
res = h->ha_rnd_pos(table->record[0], rowid);
break;
} while (true);
if (is_mrr_assoc) {
memcpy(range_info, rowid + h->ref_length, sizeof(void *));
}
end:
return res;
}
/*
DS-MRR implementation: multi_range_read_info() function
*/
ha_rows DsMrr_impl::dsmrr_info(uint keyno, uint n_ranges, uint rows,
uint *bufsz, uint *flags, Cost_estimate *cost) {
ha_rows res MY_ATTRIBUTE((unused));
uint def_flags = *flags;
uint def_bufsz = *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
res = h->handler::multi_range_read_info(keyno, n_ranges, rows, &def_bufsz,
&def_flags, cost);
DBUG_ASSERT(!res);
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost)) {
/* Default implementation is choosen */
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags = def_flags;
*bufsz = def_bufsz;
DBUG_ASSERT(*flags & HA_MRR_USE_DEFAULT_IMPL);
} else {
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return 0;
}
/*
DS-MRR Implementation: multi_range_read_info_const() function
*/
ha_rows DsMrr_impl::dsmrr_info_const(uint keyno, RANGE_SEQ_IF *seq,
void *seq_init_param, uint n_ranges,
uint *bufsz, uint *flags,
Cost_estimate *cost) {
ha_rows rows;
uint def_flags = *flags;
uint def_bufsz = *bufsz;
/* Get cost/flags/mem_usage of default MRR implementation */
rows = h->handler::multi_range_read_info_const(
keyno, seq, seq_init_param, n_ranges, &def_bufsz, &def_flags, cost);
if (rows == HA_POS_ERROR) {
/* Default implementation can't perform MRR scan => we can't either */
return rows;
}
/*
If HA_MRR_USE_DEFAULT_IMPL has been passed to us, that is an order to
use the default MRR implementation (we need it for UPDATE/DELETE).
Otherwise, make a choice based on cost and mrr* flags of
@@optimizer_switch.
*/
if ((*flags & HA_MRR_USE_DEFAULT_IMPL) ||
choose_mrr_impl(keyno, rows, flags, bufsz, cost)) {
DBUG_PRINT("info", ("Default MRR implementation choosen"));
*flags = def_flags;
*bufsz = def_bufsz;
DBUG_ASSERT(*flags & HA_MRR_USE_DEFAULT_IMPL);
} else {
/* *flags and *bufsz were set by choose_mrr_impl */
DBUG_PRINT("info", ("DS-MRR implementation choosen"));
}
return rows;
}
/**
DS-MRR Internals: Choose between Default MRR implementation and DS-MRR
Make the choice between using Default MRR implementation and DS-MRR.
This function contains common functionality factored out of dsmrr_info()
and dsmrr_info_const(). The function assumes that the default MRR
implementation's applicability requirements are satisfied.
@param keyno Index number
@param rows E(full rows to be retrieved)
@param flags IN MRR flags provided by the MRR user
OUT If DS-MRR is choosen, flags of DS-MRR implementation
else the value is not modified
@param bufsz IN If DS-MRR is choosen, buffer use of DS-MRR implementation
else the value is not modified
@param cost IN Cost of default MRR implementation
OUT If DS-MRR is choosen, cost of DS-MRR scan
else the value is not modified
@retval true Default MRR implementation should be used
@retval false DS-MRR implementation should be used
*/
bool DsMrr_impl::choose_mrr_impl(uint keyno, ha_rows rows, uint *flags,
uint *bufsz, Cost_estimate *cost) {
bool res;
THD *thd = current_thd;
TABLE_LIST *tl = table->pos_in_table_list;
const bool mrr_on =
hint_key_state(thd, tl, keyno, MRR_HINT_ENUM, OPTIMIZER_SWITCH_MRR);
const bool force_dsmrr_by_hints =
hint_key_state(thd, tl, keyno, MRR_HINT_ENUM, 0) ||
hint_table_state(thd, tl, BKA_HINT_ENUM, 0);
if (!(mrr_on || force_dsmrr_by_hints) ||
*flags & (HA_MRR_INDEX_ONLY | HA_MRR_SORTED) || // Unsupported by DS-MRR
(keyno == table->s->primary_key && h->primary_key_is_clustered()) ||
key_uses_partial_cols(table, keyno) ||
table->s->tmp_table != NO_TMP_TABLE) {
/* Use the default implementation, don't modify args: See comments */
return true;
}
/*
If @@optimizer_switch has "mrr_cost_based" on, we should avoid
using DS-MRR for queries where it is likely that the records are
stored in memory. Since there is currently no way to determine
this, we use a heuristic:
a) if the storage engine has a memory buffer, DS-MRR is only
considered if the table size is bigger than the buffer.
b) if the storage engine does not have a memory buffer, DS-MRR is
only considered if the table size is bigger than 100MB.
c) Since there is an initial setup cost of DS-MRR, so it is only
considered if at least 50 records will be read.
*/
if (thd->optimizer_switch_flag(OPTIMIZER_SWITCH_MRR_COST_BASED) &&
!force_dsmrr_by_hints) {
/*
If the storage engine has a database buffer we use this as the
minimum size the table should have before considering DS-MRR.
*/
longlong min_file_size = table->file->get_memory_buffer_size();
if (min_file_size == -1) {
// No estimate for database buffer
min_file_size = 100 * 1024 * 1024; // 100 MB
}
if (table->file->stats.data_file_length <
static_cast<ulonglong>(min_file_size) ||
rows <= 50)
return true; // Use the default implementation
}
Cost_estimate dsmrr_cost;
if (get_disk_sweep_mrr_cost(keyno, rows, *flags, bufsz, &dsmrr_cost))
return true;
/*
If @@optimizer_switch has "mrr" on and "mrr_cost_based" off, then set cost
of DS-MRR to be minimum of DS-MRR and Default implementations cost. This
allows one to force use of DS-MRR whenever it is applicable without
affecting other cost-based choices. Note that if MRR or BKA hint is
specified, DS-MRR will be used regardless of cost.
*/
const bool force_dsmrr =
(force_dsmrr_by_hints ||
!thd->optimizer_switch_flag(OPTIMIZER_SWITCH_MRR_COST_BASED));
if (force_dsmrr && dsmrr_cost.total_cost() > cost->total_cost())
dsmrr_cost = *cost;
if (force_dsmrr || (dsmrr_cost.total_cost() <= cost->total_cost())) {
*flags &= ~HA_MRR_USE_DEFAULT_IMPL; /* Use the DS-MRR implementation */
*flags &= ~HA_MRR_SUPPORT_SORTED; /* We can't provide ordered output */
*cost = dsmrr_cost;
res = false;
} else {
/* Use the default MRR implementation */
res = true;
}
return res;
}
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows,
Cost_estimate *cost);
/**
Get cost of DS-MRR scan
@param keynr Index to be used
@param rows E(Number of rows to be scanned)
@param flags Scan parameters (HA_MRR_* flags)
@param buffer_size INOUT Buffer size
@param cost OUT The cost
@retval false OK
@retval true Error, DS-MRR cannot be used (the buffer is too small
for even 1 rowid)
*/
bool DsMrr_impl::get_disk_sweep_mrr_cost(uint keynr, ha_rows rows, uint flags,
uint *buffer_size,
Cost_estimate *cost) {
ha_rows rows_in_last_step;
uint n_full_steps;
const uint elem_size =
h->ref_length + sizeof(void *) * !(flags & HA_MRR_NO_ASSOCIATION);
const ha_rows max_buff_entries = *buffer_size / elem_size;
if (!max_buff_entries)
return true; /* Buffer has not enough space for even 1 rowid */
/* Number of iterations we'll make with full buffer */
n_full_steps = (uint)floor(rows2double(rows) / max_buff_entries);
/*
Get numbers of rows we'll be processing in last iteration, with
non-full buffer
*/
rows_in_last_step = rows % max_buff_entries;
DBUG_ASSERT(cost->is_zero());
if (n_full_steps) {
get_sort_and_sweep_cost(table, max_buff_entries, cost);
cost->multiply(n_full_steps);
} else {
/*
Adjust buffer size since only parts of the buffer will be used:
1. Adjust record estimate for the last scan to reduce likelyhood
of needing more than one scan by adding 20 percent to the
record estimate and by ensuring this is at least 100 records.
2. If the estimated needed buffer size is lower than suggested by
the caller then set it to the estimated buffer size.
*/
const ha_rows keys_in_buffer =
max<ha_rows>(static_cast<ha_rows>(1.2 * rows_in_last_step), 100);
*buffer_size = min<ulong>(*buffer_size,
static_cast<ulong>(keys_in_buffer) * elem_size);
}
Cost_estimate last_step_cost;
get_sort_and_sweep_cost(table, rows_in_last_step, &last_step_cost);
(*cost) += last_step_cost;
/*
Cost of memory is not included in the total_cost() function and
thus will not be considered when comparing costs. Still, we
record it in the cost estimate object for future use.
*/
cost->add_mem(*buffer_size);
/* Total cost of all index accesses */
(*cost) += h->index_scan_cost(keynr, 1, static_cast<double>(rows));
/*
Add CPU cost for processing records (see
@handler::multi_range_read_info_const()).
*/
cost->add_cpu(
table->cost_model()->row_evaluate_cost(static_cast<double>(rows)));
return false;
}
/*
Get cost of one sort-and-sweep step
SYNOPSIS
get_sort_and_sweep_cost()
table Table being accessed
nrows Number of rows to be sorted and retrieved
cost OUT The cost
DESCRIPTION
Get cost of these operations:
- sort an array of #nrows ROWIDs using qsort
- read #nrows records from table in a sweep.
*/
static void get_sort_and_sweep_cost(TABLE *table, ha_rows nrows,
Cost_estimate *cost) {
DBUG_ASSERT(cost->is_zero());
if (nrows) {
get_sweep_read_cost(table, nrows, false, cost);
/*
@todo CostModel: For the old version of the cost model the
following code should be used. For the new version of the cost
model Cost_model::key_compare_cost() should be used. When
removing support for the old cost model this code should be
removed. The reason for this is that we should get rid of the
ROWID_COMPARE_SORT_COST and use key_compare_cost() instead. For
the current value returned by key_compare_cost() this would
overestimate the cost for sorting.
*/
/*
Constant for the cost of doing one key compare operation in the
sort operation. We should have used the value returned by
key_compare_cost() here but this would make the cost
estimate of sorting very high for queries accessing many
records. Until this constant is adjusted we introduce a constant
that is more realistic. @todo: Replace this with
key_compare_cost() when this has been given a realistic value.
*/
const double ROWID_COMPARE_SORT_COST =
table->cost_model()->key_compare_cost(1.0) / 10;
/* Add cost of qsort call: n * log2(n) * cost(rowid_comparison) */
// For the old version of the cost model this cost calculations should
// be used....
const double cpu_sort = nrows * log2(nrows) * ROWID_COMPARE_SORT_COST;
// .... For the new cost model something like this should be used...
// cpu_sort= nrows * log2(nrows) *
// table->cost_model()->rowid_compare_cost();
cost->add_cpu(cpu_sort);
}
}
/**
Get cost of reading nrows table records in a "disk sweep"
A disk sweep read is a sequence of handler->rnd_pos(rowid) calls that made
for an ordered sequence of rowids.
We take into account that some of the records might be in a memory
buffer while others need to be read from a secondary storage
device. The model for this assumes hard disk IO. A disk read is
performed as follows:
1. The disk head is moved to the needed cylinder
2. The controller waits for the plate to rotate
3. The data is transferred
Time to do #3 is insignificant compared to #2+#1.
Time to move the disk head is proportional to head travel distance.
Time to wait for the plate to rotate depends on whether the disk head
was moved or not.
If disk head wasn't moved, the wait time is proportional to distance
between the previous block and the block we're reading.
If the head was moved, we don't know how much we'll need to wait for the
plate to rotate. We assume the wait time to be a variate with a mean of
0.5 of full rotation time.
Our cost units are "random disk seeks". The cost of random disk seek is
actually not a constant, it depends one range of cylinders we're going
to access. We make it constant by introducing a fuzzy concept of "typical
datafile length" (it's fuzzy as it's hard to tell whether it should
include index file, temp.tables etc). Then random seek cost is:
1 = half_rotation_cost + move_cost * 1/3 * typical_data_file_length
We define half_rotation_cost as disk_seek_base_cost() (see
Cost_model_server::disk_seek_base_cost()).
@param table Table to be accessed
@param nrows Number of rows to retrieve
@param interrupted true <=> Assume that the disk sweep will be
interrupted by other disk IO. false - otherwise.
@param[out] cost the cost
*/
void get_sweep_read_cost(TABLE *table, ha_rows nrows, bool interrupted,
Cost_estimate *cost) {
DBUG_TRACE;
DBUG_ASSERT(cost->is_zero());
if (nrows > 0) {
const Cost_model_table *const cost_model = table->cost_model();
// The total number of blocks used by this table
double n_blocks =
ceil(ulonglong2double(table->file->stats.data_file_length) / IO_SIZE);
if (n_blocks < 1.0) // When data_file_length is 0
n_blocks = 1.0;
/*
The number of blocks that in average need to be read given that
the records are uniformly distribution over the table.
*/
double busy_blocks =
n_blocks * (1.0 - pow(1.0 - 1.0 / n_blocks, rows2double(nrows)));
if (busy_blocks < 1.0) busy_blocks = 1.0;
DBUG_PRINT("info",
("sweep: nblocks=%g, busy_blocks=%g", n_blocks, busy_blocks));
/*
The random access cost for reading the data pages will be the upper
limit for the sweep_cost.
*/
cost->add_io(cost_model->page_read_cost(busy_blocks));
if (!interrupted) {
Cost_estimate sweep_cost;
/*
Assume reading pages from disk is done in one 'sweep'.
The cost model and cost estimate for pages already in a memory
buffer will be different from pages that needed to be read from
disk. Calculate the number of blocks that likely already are
in memory and the number of blocks that need to be read from
disk.
*/
const double busy_blocks_mem =
busy_blocks * table->file->table_in_memory_estimate();
const double busy_blocks_disk = busy_blocks - busy_blocks_mem;
DBUG_ASSERT(busy_blocks_disk >= 0.0);
// Cost of accessing blocks in main memory buffer
sweep_cost.add_io(cost_model->buffer_block_read_cost(busy_blocks_mem));
// Cost of reading blocks from disk in a 'sweep'
const double seek_distance =
(busy_blocks_disk > 1.0) ? n_blocks / busy_blocks_disk : n_blocks;
const double disk_cost =
busy_blocks_disk * cost_model->disk_seek_cost(seek_distance);
sweep_cost.add_io(disk_cost);
/*
For some cases, ex: when only few blocks need to be read and the
seek distance becomes very large, the sweep cost model can produce
a cost estimate that is larger than the cost of random access.
To handle this case, we use the sweep cost only when it is less
than the random access cost.
*/
if (sweep_cost < *cost) *cost = sweep_cost;
}
}
DBUG_PRINT("info", ("returning cost=%g", cost->total_cost()));
}
/****************************************************************************
* DS-MRR implementation ends
***************************************************************************/
/** @brief
Read first row between two ranges.
Store ranges for future calls to read_range_next.
@param start_key Start key. Is 0 if no min range
@param end_key End key. Is 0 if no max range
@param eq_range_arg Set to 1 if start_key == end_key
@param sorted Set to 1 if result should be sorted per key
@note
Record is read into table->record[0]
@retval
0 Found row
@retval
HA_ERR_END_OF_FILE No rows in range
*/
int handler::read_range_first(const key_range *start_key,
const key_range *end_key, bool eq_range_arg,
bool sorted MY_ATTRIBUTE((unused))) {
int result;
DBUG_TRACE;
eq_range = eq_range_arg;
set_end_range(end_key, RANGE_SCAN_ASC);
range_key_part = table->key_info[active_index].key_part;
if (!start_key) // Read first record
result = ha_index_first(table->record[0]);
else
result = ha_index_read_map(table->record[0], start_key->key,
start_key->keypart_map, start_key->flag);
if (result)
return (result == HA_ERR_KEY_NOT_FOUND) ? HA_ERR_END_OF_FILE : result;
if (compare_key(end_range) > 0) {
/*
The last read row does not fall in the range. So request
storage engine to release row lock if possible.
*/
unlock_row();
result = HA_ERR_END_OF_FILE;
}
return result;
}
int handler::ha_read_range_first(const key_range *start_key,
const key_range *end_key, bool eq_range,
bool sorted) {
int result;
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
result = read_range_first(start_key, end_key, eq_range, sorted);
if (!result && m_update_generated_read_fields) {
result =
update_generated_read_fields(table->record[0], table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
int handler::ha_read_range_next() {
int result;
DBUG_TRACE;
// Set status for the need to update generated fields
m_update_generated_read_fields = table->has_gcol();
result = read_range_next();
if (!result && m_update_generated_read_fields) {
result =
update_generated_read_fields(table->record[0], table, active_index);
m_update_generated_read_fields = false;
}
table->set_row_status_from_handler(result);
return result;
}
/** @brief
Read next row between two endpoints.
@note
Record is read into table->record[0]
@retval
0 Found row
@retval
HA_ERR_END_OF_FILE No rows in range
*/
int handler::read_range_next() {
DBUG_TRACE;
int result;
if (eq_range) {
/* We trust that index_next_same always gives a row in range */
result =
ha_index_next_same(table->record[0], end_range->key, end_range->length);
} else {
result = ha_index_next(table->record[0]);
if (result) return result;
if (compare_key(end_range) > 0) {
/*
The last read row does not fall in the range. So request
storage engine to release row lock if possible.
*/
unlock_row();
result = HA_ERR_END_OF_FILE;
}
}
return result;
}
/**
Check if one of the columns in a key is a virtual generated column.
@param part the first part of the key to check
@param length the length of the key
@retval true if the key contains a virtual generated column
@retval false if the key does not contain a virtual generated column
*/
static bool key_has_vcol(const KEY_PART_INFO *part, uint length) {
for (uint len = 0; len < length; len += part->store_length, ++part)
if (part->field->is_virtual_gcol()) return true;
return false;
}
void handler::set_end_range(const key_range *range,
enum_range_scan_direction direction) {
if (range) {
save_end_range = *range;
end_range = &save_end_range;
range_key_part = table->key_info[active_index].key_part;
key_compare_result_on_equal =
((range->flag == HA_READ_BEFORE_KEY)
? 1
: (range->flag == HA_READ_AFTER_KEY) ? -1 : 0);
m_virt_gcol_in_end_range = key_has_vcol(range_key_part, range->length);
} else
end_range = NULL;
/*
Clear the out-of-range flag in the record buffer when a new range is
started. Also set the in_range_check_pushed_down flag, since the
storage engine needs to do the evaluation of the end-range to avoid
filling the record buffer with out-of-range records.
*/
if (m_record_buffer != nullptr) {
m_record_buffer->set_out_of_range(false);
in_range_check_pushed_down = true;
}
range_scan_direction = direction;
}
/**
Compare if found key (in row) is over max-value.
@param range range to compare to row. May be 0 for no range
@sa
key.cc::key_cmp()
@return
The return value is SIGN(key_in_row - range_key):
- 0 : Key is equal to range or 'range' == 0 (no range)
- -1 : Key is less than range
- 1 : Key is larger than range
*/
int handler::compare_key(key_range *range) {
int cmp;
if (!range || in_range_check_pushed_down) return 0; // No max range
cmp = key_cmp(range_key_part, range->key, range->length);
if (!cmp) cmp = key_compare_result_on_equal;
return cmp;
}
/*
Compare if a found key (in row) is within the range.
This function is similar to compare_key() but checks the range scan
direction to determine if this is a descending scan. This function
is used by the index condition pushdown implementation to determine
if the read record is within the range scan.
@param range Range to compare to row. May be NULL for no range.
@seealso
handler::compare_key()
@return Returns whether the key is within the range
- 0 : Key is equal to range or 'range' == 0 (no range)
- -1 : Key is within the current range
- 1 : Key is outside the current range
*/
int handler::compare_key_icp(const key_range *range) const {
int cmp;
if (!range) return 0; // no max range
cmp = key_cmp(range_key_part, range->key, range->length);
if (!cmp) cmp = key_compare_result_on_equal;
if (range_scan_direction == RANGE_SCAN_DESC) cmp = -cmp;
return cmp;
}
/**
Change the offsets of all the fields in a key range.
@param range the key range
@param key_part the first key part
@param diff how much to change the offsets with
*/
static inline void move_key_field_offsets(const key_range *range,
const KEY_PART_INFO *key_part,
ptrdiff_t diff) {
for (size_t len = 0; len < range->length;
len += key_part->store_length, ++key_part)
key_part->field->move_field_offset(diff);
}
/**
Check if the key in the given buffer (which is not necessarily
TABLE::record[0]) is within range. Called by the storage engine to
avoid reading too many rows.
@param buf the buffer that holds the key
@retval -1 if the key is within the range
@retval 0 if the key is equal to the end_range key, and
key_compare_result_on_equal is 0
@retval 1 if the key is outside the range
*/
int handler::compare_key_in_buffer(const uchar *buf) const {
DBUG_ASSERT(end_range != nullptr && (m_record_buffer == nullptr ||
!m_record_buffer->is_out_of_range()));
/*
End range on descending scans is only checked with ICP for now, and then we
check it with compare_key_icp() instead of this function.
*/
DBUG_ASSERT(range_scan_direction == RANGE_SCAN_ASC);
// Make the fields in the key point into the buffer instead of record[0].
const ptrdiff_t diff = buf - table->record[0];
if (diff != 0) move_key_field_offsets(end_range, range_key_part, diff);
// Compare the key in buf against end_range.
int cmp = key_cmp(range_key_part, end_range->key, end_range->length);
if (cmp == 0) cmp = key_compare_result_on_equal;
// Reset the field offsets.
if (diff != 0) move_key_field_offsets(end_range, range_key_part, -diff);
return cmp;
}
int handler::index_read_idx_map(uchar *buf, uint index, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag) {
int error, error1 = 0;
error = index_init(index, 0);
if (!error) {
error = index_read_map(buf, key, keypart_map, find_flag);
error1 = index_end();
}
return error ? error : error1;
}
uint calculate_key_len(TABLE *table, uint key, key_part_map keypart_map) {
/* works only with key prefixes */
DBUG_ASSERT(((keypart_map + 1) & keypart_map) == 0);
KEY *key_info = table->key_info + key;
KEY_PART_INFO *key_part = key_info->key_part;
KEY_PART_INFO *end_key_part = key_part + actual_key_parts(key_info);
uint length = 0;
while (key_part < end_key_part && keypart_map) {
length += key_part->store_length;
keypart_map >>= 1;
key_part++;
}
return length;
}
/**
Returns a list of all known extensions.
No mutexes, worst case race is a minor surplus memory allocation
We have to recreate the extension map if mysqld is restarted (for example
within libmysqld)
@retval
pointer pointer to TYPELIB structure
*/
static bool exts_handlerton(THD *, plugin_ref plugin, void *arg) {
List<const char> *found_exts = static_cast<List<const char> *>(arg);
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->file_extensions) {
List_iterator_fast<const char> it(*found_exts);
const char **ext, *old_ext;
for (ext = hton->file_extensions; *ext; ext++) {
while ((old_ext = it++)) {
if (!strcmp(old_ext, *ext)) break;
}
if (!old_ext) found_exts->push_back(*ext);
it.rewind();
}
}
return false;
}
TYPELIB *ha_known_exts() {
TYPELIB *known_extensions = (TYPELIB *)(*THR_MALLOC)->Alloc(sizeof(TYPELIB));
known_extensions->name = "known_exts";
known_extensions->type_lengths = NULL;
List<const char> found_exts;
const char **ext, *old_ext;
plugin_foreach(NULL, exts_handlerton, MYSQL_STORAGE_ENGINE_PLUGIN,
&found_exts);
size_t arr_length = sizeof(char *) * (found_exts.elements + 1);
ext = (const char **)(*THR_MALLOC)->Alloc(arr_length);
DBUG_ASSERT(NULL != ext);
known_extensions->count = found_exts.elements;
known_extensions->type_names = ext;
List_iterator_fast<const char> it(found_exts);
while ((old_ext = it++)) *ext++ = old_ext;
*ext = NULL;
return known_extensions;
}
static bool stat_print(THD *thd, const char *type, size_t type_len,
const char *file, size_t file_len, const char *status,
size_t status_len) {
Protocol *protocol = thd->get_protocol();
protocol->start_row();
protocol->store_string(type, type_len, system_charset_info);
protocol->store_string(file, file_len, system_charset_info);
protocol->store_string(status, status_len, system_charset_info);
if (protocol->end_row()) return true;
return false;
}
static bool showstat_handlerton(THD *thd, plugin_ref plugin, void *arg) {
enum ha_stat_type stat = *(enum ha_stat_type *)arg;
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->show_status &&
hton->show_status(hton, thd, stat_print, stat))
return true;
return false;
}
bool ha_show_status(THD *thd, handlerton *db_type, enum ha_stat_type stat) {
List<Item> field_list;
bool result;
field_list.push_back(new Item_empty_string("Type", 10));
field_list.push_back(new Item_empty_string("Name", FN_REFLEN));
field_list.push_back(new Item_empty_string("Status", 10));
if (thd->send_result_metadata(&field_list,
Protocol::SEND_NUM_ROWS | Protocol::SEND_EOF))
return true;
if (db_type == NULL) {
result = plugin_foreach(thd, showstat_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, &stat);
} else {
if (db_type->state != SHOW_OPTION_YES) {
const LEX_CSTRING *name = &se_plugin_array[db_type->slot]->name;
result = stat_print(thd, name->str, name->length, "", 0, "DISABLED", 8)
? 1
: 0;
} else {
DBUG_EXECUTE_IF("simulate_show_status_failure",
DBUG_SET("+d,simulate_net_write_failure"););
result = db_type->show_status &&
db_type->show_status(db_type, thd, stat_print, stat)
? 1
: 0;
DBUG_EXECUTE_IF("simulate_show_status_failure",
DBUG_SET("-d,simulate_net_write_failure"););
}
}
if (!result) my_eof(thd);
return result;
}
/*
Function to check if the conditions for row-based binlogging is
correct for the table.
A row in the given table should be replicated if:
- Row-based replication is enabled in the current thread
- The binlog is enabled
- It is not a temporary table
- The binary log is open
- The database the table resides in shall be binlogged (binlog_*_db rules)
- table is not mysql.event
*/
static bool check_table_binlog_row_based(THD *thd, TABLE *table) {
if (table->s->cached_row_logging_check == -1) {
int const check(table->s->tmp_table == NO_TMP_TABLE &&
!table->no_replicate &&
binlog_filter->db_ok(table->s->db.str));
table->s->cached_row_logging_check = check;
}
DBUG_ASSERT(table->s->cached_row_logging_check == 0 ||
table->s->cached_row_logging_check == 1);
return (thd->is_current_stmt_binlog_format_row() &&
table->s->cached_row_logging_check &&
(thd->variables.option_bits & OPTION_BIN_LOG) &&
mysql_bin_log.is_open());
}
/** @brief
Write table maps for all (manually or automatically) locked tables
to the binary log.
SYNOPSIS
write_locked_table_maps()
thd Pointer to THD structure
DESCRIPTION
This function will generate and write table maps for all tables
that are locked by the thread 'thd'.
RETURN VALUE
0 All OK
1 Failed to write all table maps
SEE ALSO
THD::lock
*/
static int write_locked_table_maps(THD *thd) {
DBUG_TRACE;
DBUG_PRINT("enter", ("thd: %p thd->lock: %p "
"thd->extra_lock: %p",
thd, thd->lock, thd->extra_lock));
DBUG_PRINT("debug",
("get_binlog_table_maps(): %d", thd->get_binlog_table_maps()));
if (thd->get_binlog_table_maps() == 0) {
for (MYSQL_LOCK *lock : {thd->extra_lock, thd->lock}) {
if (lock == NULL) continue;
bool need_binlog_rows_query = thd->variables.binlog_rows_query_log_events;
TABLE **const end_ptr = lock->table + lock->table_count;
for (TABLE **table_ptr = lock->table; table_ptr != end_ptr; ++table_ptr) {
TABLE *const table = *table_ptr;
DBUG_PRINT("info", ("Checking table %s", table->s->table_name.str));
if (table->current_lock == F_WRLCK &&
check_table_binlog_row_based(thd, table)) {
/*
We need to have a transactional behavior for SQLCOM_CREATE_TABLE
(e.g. CREATE TABLE... SELECT * FROM TABLE) in order to keep a
compatible behavior with the STMT based replication even when
the table is not transactional. In other words, if the operation
fails while executing the insert phase nothing is written to the
binlog.
Note that at this point, we check the type of a set of tables to
create the table map events. In the function binlog_log_row(),
which calls the current function, we check the type of the table
of the current row.
*/
bool const has_trans = thd->lex->sql_command == SQLCOM_CREATE_TABLE ||
table->file->has_transactions();
int const error = thd->binlog_write_table_map(table, has_trans,
need_binlog_rows_query);
/* Binlog Rows_query log event once for one statement which updates
two or more tables.*/
if (need_binlog_rows_query) need_binlog_rows_query = false;
/*
If an error occurs, it is the responsibility of the caller to
roll back the transaction.
*/
if (unlikely(error)) return 1;
}
}
}
}
return 0;
}
int binlog_log_row(TABLE *table, const uchar *before_record,
const uchar *after_record, Log_func *log_func) {
bool error = 0;
THD *const thd = table->in_use;
if (check_table_binlog_row_based(thd, table)) {
if (thd->variables.transaction_write_set_extraction != HASH_ALGORITHM_OFF) {
if (before_record && after_record) {
/* capture both images pke */
add_pke(table, thd, table->record[0]);
add_pke(table, thd, table->record[1]);
} else {
add_pke(table, thd, table->record[0]);
}
}
if (table->in_use->is_error()) return error ? HA_ERR_RBR_LOGGING_FAILED : 0;
DBUG_DUMP("read_set 10", (uchar *)table->read_set->bitmap,
(table->s->fields + 7) / 8);
/*
If there are no table maps written to the binary log, this is
the first row handled in this statement. In that case, we need
to write table maps for all locked tables to the binary log.
*/
if (likely(!(error = write_locked_table_maps(thd)))) {
/*
We need to have a transactional behavior for SQLCOM_CREATE_TABLE
(i.e. CREATE TABLE... SELECT * FROM TABLE) in order to keep a
compatible behavior with the STMT based replication even when
the table is not transactional. In other words, if the operation
fails while executing the insert phase nothing is written to the
binlog.
*/
bool const has_trans = thd->lex->sql_command == SQLCOM_CREATE_TABLE ||
table->file->has_transactions();
error = (*log_func)(thd, table, has_trans, before_record, after_record);
}
}
return error ? HA_ERR_RBR_LOGGING_FAILED : 0;
}
int handler::ha_external_lock(THD *thd, int lock_type) {
int error;
DBUG_TRACE;
/*
Whether this is lock or unlock, this should be true, and is to verify that
if get_auto_increment() was called (thus may have reserved intervals or
taken a table lock), ha_release_auto_increment() was too.
*/
DBUG_ASSERT(next_insert_id == 0);
/* Consecutive calls for lock without unlocking in between is not allowed */
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE ||
((lock_type != F_UNLCK && m_lock_type == F_UNLCK) ||
lock_type == F_UNLCK));
/* SQL HANDLER call locks/unlock while scanning (RND/INDEX). */
DBUG_ASSERT(inited == NONE || table->open_by_handler);
ha_statistic_increment(&System_status_var::ha_external_lock_count);
MYSQL_TABLE_LOCK_WAIT(PSI_TABLE_EXTERNAL_LOCK, lock_type,
{ error = external_lock(thd, lock_type); })
/*
We cache the table flags if the locking succeeded. Otherwise, we
keep them as they were when they were fetched in ha_open().
*/
if (error == 0) {
/*
The lock type is needed by MRR when creating a clone of this handler
object.
*/
m_lock_type = lock_type;
cached_table_flags = table_flags();
}
return error;
}
/** @brief
Check handler usage and reset state of file to after 'open'
@note can be called regardless of it is locked or not.
*/
int handler::ha_reset() {
DBUG_TRACE;
/* Check that we have called all proper deallocation functions */
DBUG_ASSERT((uchar *)table->def_read_set.bitmap +
table->s->column_bitmap_size ==
(uchar *)table->def_write_set.bitmap);
DBUG_ASSERT(bitmap_is_set_all(&table->s->all_set));
DBUG_ASSERT(table->key_read == 0);
/* ensure that ha_index_end / ha_rnd_end has been called */
DBUG_ASSERT(inited == NONE);
/* Free cache used by filesort */
free_io_cache(table);
/* reset the bitmaps to point to defaults */
table->default_column_bitmaps();
/* Reset the handler flags used for dupilcate record handling */
table->file->extra(HA_EXTRA_NO_IGNORE_DUP_KEY);
table->file->extra(HA_EXTRA_WRITE_CANNOT_REPLACE);
/* Reset information about pushed engine conditions */
pushed_cond = NULL;
/* Reset information about pushed index conditions */
cancel_pushed_idx_cond();
// Forget the record buffer.
m_record_buffer = nullptr;
m_unique = nullptr;
const int retval = reset();
return retval;
}
int handler::ha_write_row(uchar *buf) {
int error;
Log_func *log_func = Write_rows_log_event::binlog_row_logging_function;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
DBUG_TRACE;
DBUG_EXECUTE_IF("inject_error_ha_write_row", return HA_ERR_INTERNAL_ERROR;);
DBUG_EXECUTE_IF("simulate_storage_engine_out_of_memory",
return HA_ERR_SE_OUT_OF_MEMORY;);
mark_trx_read_write();
DBUG_EXECUTE_IF(
"handler_crashed_table_on_usage",
my_error(HA_ERR_CRASHED, MYF(ME_ERRORLOG), table_share->table_name.str);
set_my_errno(HA_ERR_CRASHED); return HA_ERR_CRASHED;);
MYSQL_TABLE_IO_WAIT(PSI_TABLE_WRITE_ROW, MAX_KEY, error,
{ error = write_row(buf); })
if (unlikely(error)) return error;
if (unlikely((error = binlog_log_row(table, 0, buf, log_func))))
return error; /* purecov: inspected */
DEBUG_SYNC_C("ha_write_row_end");
return 0;
}
int handler::ha_update_row(const uchar *old_data, uchar *new_data) {
int error;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
Log_func *log_func = Update_rows_log_event::binlog_row_logging_function;
/*
Some storage engines require that the new record is in record[0]
(and the old record is in record[1]).
*/
DBUG_ASSERT(new_data == table->record[0]);
DBUG_ASSERT(old_data == table->record[1]);
mark_trx_read_write();
DBUG_EXECUTE_IF(
"handler_crashed_table_on_usage",
my_error(HA_ERR_CRASHED, MYF(ME_ERRORLOG), table_share->table_name.str);
set_my_errno(HA_ERR_CRASHED); return (HA_ERR_CRASHED););
MYSQL_TABLE_IO_WAIT(PSI_TABLE_UPDATE_ROW, active_index, error,
{ error = update_row(old_data, new_data); })
if (unlikely(error)) return error;
if (unlikely((error = binlog_log_row(table, old_data, new_data, log_func))))
return error;
return 0;
}
int handler::ha_delete_row(const uchar *buf) {
int error;
DBUG_ASSERT(table_share->tmp_table != NO_TMP_TABLE || m_lock_type == F_WRLCK);
Log_func *log_func = Delete_rows_log_event::binlog_row_logging_function;
/*
Normally table->record[0] is used, but sometimes table->record[1] is used.
*/
DBUG_ASSERT(buf == table->record[0] || buf == table->record[1]);
DBUG_EXECUTE_IF("inject_error_ha_delete_row", return HA_ERR_INTERNAL_ERROR;);
DBUG_EXECUTE_IF(
"handler_crashed_table_on_usage",
my_error(HA_ERR_CRASHED, MYF(ME_ERRORLOG), table_share->table_name.str);
set_my_errno(HA_ERR_CRASHED); return (HA_ERR_CRASHED););
mark_trx_read_write();
MYSQL_TABLE_IO_WAIT(PSI_TABLE_DELETE_ROW, active_index, error,
{ error = delete_row(buf); })
if (unlikely(error)) return error;
if (unlikely((error = binlog_log_row(table, buf, 0, log_func)))) return error;
return 0;
}
/** @brief
use_hidden_primary_key() is called in case of an update/delete when
(table_flags() and HA_PRIMARY_KEY_REQUIRED_FOR_DELETE) is defined
but we don't have a primary key
*/
void handler::use_hidden_primary_key() {
/* fallback to use all columns in the table to identify row */
table->use_all_columns();
}
/**
Get an initialized ha_share.
@return Initialized ha_share
@retval NULL ha_share is not yet initialized.
@retval != NULL previous initialized ha_share.
@note
If not a temp table, then LOCK_ha_data must be held.
*/
Handler_share *handler::get_ha_share_ptr() {
DBUG_TRACE;
DBUG_ASSERT(ha_share && table_share);
#ifndef DBUG_OFF
if (table_share->tmp_table == NO_TMP_TABLE)
mysql_mutex_assert_owner(&table_share->LOCK_ha_data);
#endif
return *ha_share;
}
/**
Set ha_share to be used by all instances of the same table/partition.
@param arg_ha_share Handler_share to be shared.
@note
If not a temp table, then LOCK_ha_data must be held.
*/
void handler::set_ha_share_ptr(Handler_share *arg_ha_share) {
DBUG_TRACE;
DBUG_ASSERT(ha_share);
#ifndef DBUG_OFF
if (table_share->tmp_table == NO_TMP_TABLE)
mysql_mutex_assert_owner(&table_share->LOCK_ha_data);
#endif
*ha_share = arg_ha_share;
}
/**
Take a lock for protecting shared handler data.
*/
void handler::lock_shared_ha_data() {
DBUG_ASSERT(table_share);
if (table_share->tmp_table == NO_TMP_TABLE)
mysql_mutex_lock(&table_share->LOCK_ha_data);
}
/**
Release lock for protecting ha_share.
*/
void handler::unlock_shared_ha_data() {
DBUG_ASSERT(table_share);
if (table_share->tmp_table == NO_TMP_TABLE)
mysql_mutex_unlock(&table_share->LOCK_ha_data);
}
/**
This structure is a helper structure for passing the length and pointer of
blob space allocated by storage engine.
*/
struct blob_len_ptr {
uint length; // length of the blob
uchar *ptr; // pointer of the value
};
/**
Get the blob length and pointer of allocated space from the record buffer.
During evaluating the blob virtual generated columns, the blob space will
be allocated by server. In order to keep the blob data after the table is
closed, we need write the data into a specified space allocated by storage
engine. Here, we have to extract the space pointer and length from the
record buffer.
After we get the value of virtual generated columns, copy the data into
the specified space and store it in the record buffer (@see copy_blob_data()).
@param table the pointer of table
@param fields bitmap of field index of evaluated
generated column
@param[out] blob_len_ptr_array an array to record the length and pointer
of allocated space by storage engine.
@note The caller should provide the blob_len_ptr_array with a size of
MAX_FIELDS.
*/
static void extract_blob_space_and_length_from_record_buff(
const TABLE *table, const MY_BITMAP *const fields,
blob_len_ptr *blob_len_ptr_array) {
int num = 0;
for (Field **vfield = table->vfield; *vfield; vfield++) {
// Check if this field should be included
if (bitmap_is_set(fields, (*vfield)->field_index) &&
(*vfield)->is_virtual_gcol() && (*vfield)->type() == MYSQL_TYPE_BLOB) {
auto field = down_cast<Field_blob *>(*vfield);
blob_len_ptr_array[num].length = field->data_length();
// TODO: The following check is only for Innodb.
DBUG_ASSERT(blob_len_ptr_array[num].length == 255 ||
blob_len_ptr_array[num].length == 768 ||
blob_len_ptr_array[num].length == 3073);
blob_len_ptr_array[num].ptr = field->get_blob_data();
// Let server allocate the space for BLOB virtual generated columns
field->reset();
num++;
DBUG_ASSERT(num <= MAX_FIELDS);
}
}
}
/**
Copy the value of BLOB virtual generated columns into the space allocated
by storage engine.
This is because the table is closed after evaluating the value. In order to
keep the BLOB value after the table is closed, we have to copy the value into
the place where storage engine prepares for.
@param table pointer of the table to be operated on
@param fields bitmap of field index of evaluated generated column
@param blob_len_ptr_array array of length and pointer of allocated space by
storage engine.
*/
static void copy_blob_data(const TABLE *table, const MY_BITMAP *const fields,
blob_len_ptr *blob_len_ptr_array) {
uint num = 0;
for (Field **vfield = table->vfield; *vfield; vfield++) {
// Check if this field should be included
if (bitmap_is_set(fields, (*vfield)->field_index) &&
(*vfield)->is_virtual_gcol() && (*vfield)->type() == MYSQL_TYPE_BLOB) {
DBUG_ASSERT(blob_len_ptr_array[num].length > 0);
DBUG_ASSERT(blob_len_ptr_array[num].ptr != NULL);
/*
Only copy as much of the blob as the storage engine has
allocated space for. This is sufficient since the only use of the
blob in the storage engine is for using a prefix of it in a
secondary index.
*/
uint length = (*vfield)->data_length();
const uint alloc_len = blob_len_ptr_array[num].length;
length = length > alloc_len ? alloc_len : length;
memcpy(blob_len_ptr_array[num].ptr, (*vfield)->get_ptr(), length);
(down_cast<Field_blob *>(*vfield))
->store_in_allocated_space(
pointer_cast<char *>(blob_len_ptr_array[num].ptr), length);
num++;
DBUG_ASSERT(num <= MAX_FIELDS);
}
}
}
/*
Evaluate generated column's value. This is an internal helper reserved for
handler::my_eval_gcolumn_expr().
@param thd pointer of THD
@param table The pointer of table where evaluted generated
columns are in
@param fields bitmap of field index of evaluated generated column
@param[in,out] record record buff of base columns generated column depends.
After calling this function, it will be used to return
the value of generated column.
@param in_purge whether the function is called by purge thread
@return true in case of error, false otherwise.
*/
static bool my_eval_gcolumn_expr_helper(THD *thd, TABLE *table,
const MY_BITMAP *const fields,
uchar *record, bool in_purge,
const char **mv_data_ptr,
ulong *mv_length) {
DBUG_TRACE;
DBUG_ASSERT(table && table->vfield);
DBUG_ASSERT(!thd->is_error());
uchar *old_buf = table->record[0];
repoint_field_to_record(table, old_buf, record);
blob_len_ptr blob_len_ptr_array[MAX_FIELDS];
/*
If it's purge thread, we need get the space allocated by storage engine
for blob.
*/
if (in_purge)
extract_blob_space_and_length_from_record_buff(table, fields,
blob_len_ptr_array);
bool res = false;
Field *mv_field = nullptr;
MY_BITMAP fields_to_evaluate;
my_bitmap_map bitbuf[bitmap_buffer_size(MAX_FIELDS) / sizeof(my_bitmap_map)];
bitmap_init(&fields_to_evaluate, bitbuf, table->s->fields, 0);
bitmap_set_all(&fields_to_evaluate);
bitmap_intersect(&fields_to_evaluate, fields);
/*
In addition to evaluating the value for the columns requested by
the caller we also need to evaluate any virtual columns that these
depend on.
This loop goes through the columns that should be evaluated and
adds all the base columns. If the base column is virtual, it has
to be evaluated.
*/
for (Field **vfield_ptr = table->vfield; *vfield_ptr; vfield_ptr++) {
Field *field = *vfield_ptr;
// Validate that the field number is less than the bit map size
DBUG_ASSERT(field->field_index < fields->n_bits);
if (bitmap_is_set(fields, field->field_index)) {
bitmap_union(&fields_to_evaluate, &field->gcol_info->base_columns_map);
if (field->is_array()) {
mv_field = field;
// Backup current value and use dedicated temporary buffer
if ((down_cast<Field_blob *>(field))->backup_blob_field()) return true;
}
}
}
/*
Evaluate all requested columns and all base columns these depends
on that are virtual.
This function is called by the storage engine, which may request to
evaluate more generated columns than read_set/write_set says.
For example, InnoDB's row_sel_sec_rec_is_for_clust_rec() reads the full
record from the clustered index and asks us to compute generated columns
that match key fields in the used secondary index. So we trust that the
engine has filled all base columns necessary to requested computations,
and we ignore read_set/write_set.
*/
my_bitmap_map *old_maps[2];
dbug_tmp_use_all_columns(table, old_maps, table->read_set, table->write_set);
for (Field **vfield_ptr = table->vfield; *vfield_ptr; vfield_ptr++) {
Field *field = *vfield_ptr;
// Check if we should evaluate this field
if (bitmap_is_set(&fields_to_evaluate, field->field_index) &&
field->is_virtual_gcol()) {
DBUG_ASSERT(field->gcol_info && field->gcol_info->expr_item->fixed);
const type_conversion_status save_in_field_status =
field->gcol_info->expr_item->save_in_field(field, 0);
DBUG_ASSERT(!thd->is_error() || save_in_field_status != TYPE_OK);
/*
save_in_field() may return non-zero even if there was no
error. This happens if a warning is raised, such as an
out-of-range warning when converting the result to the target
type of the virtual column. We should stop only if the
non-zero return value was caused by an actual error.
*/
if (save_in_field_status != TYPE_OK && thd->is_error()) {
res = true;
break;
}
}
}
dbug_tmp_restore_column_maps(table->read_set, table->write_set, old_maps);
/*
If it's a purge thread, we need copy the blob data into specified place
allocated by storage engine so that the blob data still can be accessed
after table is closed.
*/
if (in_purge) copy_blob_data(table, fields, blob_len_ptr_array);
if (mv_field) {
DBUG_ASSERT(mv_data_ptr);
Field_json *fld = down_cast<Field_json *>(mv_field);
// Save calculated value
*mv_data_ptr = fld->get_binary();
*mv_length = fld->data_length();
// Restore original value
(fld)->restore_blob_backup();
}
repoint_field_to_record(table, record, old_buf);
return res;
}
// Set se_private_id and se_private_data during upgrade
bool handler::ha_upgrade_table(THD *thd, const char *dbname,
const char *table_name, dd::Table *dd_table,
TABLE *table_arg) {
table = table_arg;
return upgrade_table(thd, dbname, table_name, dd_table);
}
/**
Callback to allow InnoDB to prepare a template for generated
column processing. This function will open the table without
opening in the engine and call the provided function with
the TABLE object made. The function will then close the TABLE.
@param thd Thread handle
@param db_name Name of database containing the table
@param table_name Name of table to open
@param myc InnoDB function to call for processing TABLE
@param ib_table Argument for InnoDB function
@return true in case of error, false otherwise.
*/
bool handler::my_prepare_gcolumn_template(THD *thd, const char *db_name,
const char *table_name,
my_gcolumn_template_callback_t myc,
void *ib_table) {
char path[FN_REFLEN + 1];
bool was_truncated;
build_table_filename(path, sizeof(path) - 1 - reg_ext_length, db_name,
table_name, "", 0, &was_truncated);
DBUG_ASSERT(!was_truncated);
bool rc = true;
MDL_ticket *mdl_ticket = NULL;
if (dd::acquire_shared_table_mdl(thd, db_name, table_name, false,
&mdl_ticket))
return true;
TABLE *table = nullptr;
{
dd::cache::Dictionary_client::Auto_releaser releaser(thd->dd_client());
const dd::Table *tab_obj = nullptr;
if (thd->dd_client()->acquire(db_name, table_name, &tab_obj)) return true;
DBUG_ASSERT(tab_obj);
// Note! The second-to-last argument to open_table_uncached() must be false,
// since the table already exists in the TDC. Allowing the table to
// be opened in the SE in this case is dangerous as the two shares
// could get conflicting SE private data.
table = open_table_uncached(thd, path, db_name, table_name, false, false,
*tab_obj);
}
dd::release_mdl(thd, mdl_ticket);
if (table) {
myc(table, ib_table);
intern_close_table(table);
rc = false;
}
return rc;
}
/**
Callback for generated columns processing. Will open the table, in the
server *only*, and call my_eval_gcolumn_expr_helper() to do the actual
processing. This function is a variant of the other
handler::my_eval_gcolumn_expr() but is intended for use when no TABLE
object already exists - e.g. from purge threads.
Note! The call to open_table_uncached() must be made with the second-to-last
argument (open_in_engine) set to false. Failing to do so will cause
deadlocks and incorrect behavior.
@param thd thread handle
@param db_name database containing the table to open
@param table_name name of table to open
@param fields bitmap of field index of evaluated generated column
@param record record buffer
@param[out] mv_data_ptr For a typed array field in this arg the pointer
to its value is returned
@param[out] mv_length Length of the value above
@return true in case of error, false otherwise.
*/
bool handler::my_eval_gcolumn_expr_with_open(THD *thd, const char *db_name,
const char *table_name,
const MY_BITMAP *const fields,
uchar *record,
const char **mv_data_ptr,
ulong *mv_length) {
bool retval = true;
char path[FN_REFLEN + 1];
bool was_truncated;
build_table_filename(path, sizeof(path) - 1 - reg_ext_length, db_name,
table_name, "", 0, &was_truncated);
DBUG_ASSERT(!was_truncated);
MDL_ticket *mdl_ticket = NULL;
if (dd::acquire_shared_table_mdl(thd, db_name, table_name, false,
&mdl_ticket))
return true;
TABLE *table = nullptr;
{
dd::cache::Dictionary_client::Auto_releaser releaser(thd->dd_client());
const dd::Table *tab_obj = nullptr;
if (thd->dd_client()->acquire(db_name, table_name, &tab_obj)) return true;
DBUG_ASSERT(tab_obj);
table = open_table_uncached(thd, path, db_name, table_name, false, false,
*tab_obj);
}
dd::release_mdl(thd, mdl_ticket);
if (table) {
retval = my_eval_gcolumn_expr_helper(thd, table, fields, record, true,
mv_data_ptr, mv_length);
intern_close_table(table);
}
return retval;
}
bool handler::my_eval_gcolumn_expr(THD *thd, TABLE *table,
const MY_BITMAP *const fields, uchar *record,
const char **mv_data_ptr, ulong *mv_length) {
DBUG_TRACE;
const bool res = my_eval_gcolumn_expr_helper(thd, table, fields, record,
false, mv_data_ptr, mv_length);
return res;
}
bool handler::filter_dup_records() {
DBUG_ASSERT(inited == INDEX && m_unique);
position(table->record[0]);
return m_unique->unique_add(ref);
}
int handler::ha_extra(enum ha_extra_function operation) {
if (operation == HA_EXTRA_ENABLE_UNIQUE_RECORD_FILTER) {
// This operation should be called only for active multi-valued index
DBUG_ASSERT(inited == INDEX &&
(table->key_info[active_index].flags & HA_MULTI_VALUED_KEY));
// This unique filter uses only row id to weed out duplicates. Due to that
// it will work with any active index.
if (!m_unique &&
(!(m_unique = new (*THR_MALLOC) Unique_on_insert(ref_length)) ||
m_unique->init())) {
/* purecov: begin inspected */
destroy(m_unique);
return HA_ERR_OUT_OF_MEM;
/* purecov: end */
}
m_unique->reset(true);
return 0;
} else if (operation == HA_EXTRA_DISABLE_UNIQUE_RECORD_FILTER) {
if (m_unique) {
m_unique->cleanup();
destroy(m_unique);
m_unique = nullptr;
}
}
return extra(operation);
}
/**
Auxiliary structure for passing information to notify_*_helper()
functions.
*/
struct HTON_NOTIFY_PARAMS {
HTON_NOTIFY_PARAMS(const MDL_key *mdl_key, ha_notification_type mdl_type)
: key(mdl_key),
notification_type(mdl_type),
some_htons_were_notified(false),
victimized(false) {}
const MDL_key *key;
const ha_notification_type notification_type;
bool some_htons_were_notified;
bool victimized;
};
static bool notify_exclusive_mdl_helper(THD *thd, plugin_ref plugin,
void *arg) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->notify_exclusive_mdl) {
HTON_NOTIFY_PARAMS *params = reinterpret_cast<HTON_NOTIFY_PARAMS *>(arg);
if (hton->notify_exclusive_mdl(thd, params->key, params->notification_type,
&params->victimized)) {
// Ignore failures from post event notification.
if (params->notification_type == HA_NOTIFY_PRE_EVENT) return true;
} else
params->some_htons_were_notified = true;
}
return false;
}
/**
Notify/get permission from all interested storage engines before
acquisition or after release of exclusive metadata lock on object
represented by key.
@param thd Thread context.
@param mdl_key MDL key identifying object on which exclusive
lock is to be acquired/was released.
@param notification_type Indicates whether this is pre-acquire or
post-release notification.
@param victimized 'true' if locking failed as we were selected
as a victim in order to avoid possible deadlocks.
See @sa handlerton::notify_exclusive_mdl for details about
calling convention and error reporting.
@return False - if notification was successful/lock can be acquired,
True - if it has failed/lock should not be acquired.
*/
bool ha_notify_exclusive_mdl(THD *thd, const MDL_key *mdl_key,
ha_notification_type notification_type,
bool *victimized) {
HTON_NOTIFY_PARAMS params(mdl_key, notification_type);
*victimized = false;
if (plugin_foreach(thd, notify_exclusive_mdl_helper,
MYSQL_STORAGE_ENGINE_PLUGIN, &params)) {
*victimized = params.victimized;
/*
If some SE hasn't given its permission to acquire lock and some SEs
has given their permissions, we need to notify the latter group about
failed lock acquisition. We do this by calling post-release notification
for all interested SEs unconditionally.
*/
if (notification_type == HA_NOTIFY_PRE_EVENT &&
params.some_htons_were_notified) {
HTON_NOTIFY_PARAMS rollback_params(mdl_key, HA_NOTIFY_POST_EVENT);
(void)plugin_foreach(thd, notify_exclusive_mdl_helper,
MYSQL_STORAGE_ENGINE_PLUGIN, &rollback_params);
}
return true;
}
return false;
}
static bool notify_alter_table_helper(THD *thd, plugin_ref plugin, void *arg) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->notify_alter_table) {
HTON_NOTIFY_PARAMS *params = reinterpret_cast<HTON_NOTIFY_PARAMS *>(arg);
if (hton->notify_alter_table(thd, params->key, params->notification_type)) {
// Ignore failures from post event notification.
if (params->notification_type == HA_NOTIFY_PRE_EVENT) return true;
} else
params->some_htons_were_notified = true;
}
return false;
}
/**
Notify/get permission from all interested storage engines before
or after executed ALTER TABLE on the table identified by key.
@param thd Thread context.
@param mdl_key MDL key identifying table.
@param notification_type Indicates whether this is pre-ALTER or
post-ALTER notification.
See @sa handlerton::notify_alter_table for rationale,
details about calling convention and error reporting.
@return False - if notification was successful/ALTER TABLE can
proceed.
True - if it has failed/ALTER TABLE should fail.
*/
bool ha_notify_alter_table(THD *thd, const MDL_key *mdl_key,
ha_notification_type notification_type) {
HTON_NOTIFY_PARAMS params(mdl_key, notification_type);
if (plugin_foreach(thd, notify_alter_table_helper,
MYSQL_STORAGE_ENGINE_PLUGIN, &params)) {
/*
If some SE hasn't given its permission to do ALTER TABLE and some SEs
has given their permissions, we need to notify the latter group about
failed attemopt. We do this by calling post-ALTER TABLE notification
for all interested SEs unconditionally.
*/
if (notification_type == HA_NOTIFY_PRE_EVENT &&
params.some_htons_were_notified) {
HTON_NOTIFY_PARAMS rollback_params(mdl_key, HA_NOTIFY_POST_EVENT);
(void)plugin_foreach(thd, notify_alter_table_helper,
MYSQL_STORAGE_ENGINE_PLUGIN, &rollback_params);
}
return true;
}
return false;
}
const char *ha_rkey_function_to_str(enum ha_rkey_function r) {
switch (r) {
case HA_READ_KEY_EXACT:
return ("HA_READ_KEY_EXACT");
case HA_READ_KEY_OR_NEXT:
return ("HA_READ_KEY_OR_NEXT");
case HA_READ_KEY_OR_PREV:
return ("HA_READ_KEY_OR_PREV");
case HA_READ_AFTER_KEY:
return ("HA_READ_AFTER_KEY");
case HA_READ_BEFORE_KEY:
return ("HA_READ_BEFORE_KEY");
case HA_READ_PREFIX:
return ("HA_READ_PREFIX");
case HA_READ_PREFIX_LAST:
return ("HA_READ_PREFIX_LAST");
case HA_READ_PREFIX_LAST_OR_PREV:
return ("HA_READ_PREFIX_LAST_OR_PREV");
case HA_READ_MBR_CONTAIN:
return ("HA_READ_MBR_CONTAIN");
case HA_READ_MBR_INTERSECT:
return ("HA_READ_MBR_INTERSECT");
case HA_READ_MBR_WITHIN:
return ("HA_READ_MBR_WITHIN");
case HA_READ_MBR_DISJOINT:
return ("HA_READ_MBR_DISJOINT");
case HA_READ_MBR_EQUAL:
return ("HA_READ_MBR_EQUAL");
case HA_READ_INVALID:
return ("HA_READ_INVALID");
}
return ("UNKNOWN");
}
std::string table_definition(const char *table_name, const TABLE *mysql_table) {
std::string def = table_name;
def += " (";
for (uint i = 0; i < mysql_table->s->fields; i++) {
Field *field = mysql_table->field[i];
String type(128);
field->sql_type(type);
def += i == 0 ? "`" : ", `";
def += field->field_name;
def += "` ";
def.append(type.ptr(), type.length());
if (!field->real_maybe_null()) {
def += " not null";
}
}
for (uint i = 0; i < mysql_table->s->keys; i++) {
const KEY &key = mysql_table->key_info[i];
/* A string like "col1, col2, col3". */
std::string columns;
for (uint j = 0; j < key.user_defined_key_parts; j++) {
columns += j == 0 ? "`" : ", `";
columns += key.key_part[j].field->field_name;
columns += "`";
}
def += ", ";
switch (key.algorithm) {
case HA_KEY_ALG_BTREE:
def += "tree ";
break;
case HA_KEY_ALG_HASH:
def += "hash ";
break;
case HA_KEY_ALG_SE_SPECIFIC:
def += "se_specific ";
break;
case HA_KEY_ALG_RTREE:
def += "rtree ";
break;
case HA_KEY_ALG_FULLTEXT:
def += "fulltext ";
break;
}
def += key.flags & HA_NOSAME ? "unique " : "";
def += "index" + std::to_string(i) + "(" + columns + ")";
}
def += ")";
return def;
}
#ifndef DBUG_OFF
/** Convert a binary buffer to a raw string, replacing non-printable characters
* with a dot.
* @param[in] buf buffer to convert
* @param[in] buf_size_bytes length of the buffer in bytes
* @return a printable string, e.g. "ab.d." for an input 0x61620064FF */
static std::string buf_to_raw(const uchar *buf, uint buf_size_bytes) {
std::string r;
r.reserve(buf_size_bytes);
for (uint i = 0; i < buf_size_bytes; ++i) {
const uchar c = buf[i];
r += static_cast<char>(isprint(c) ? c : '.');
}
return r;
}
/** Convert a binary buffer to a hex string, replacing each character with its
* hex number.
* @param[in] buf buffer to convert
* @param[in] buf_size_bytes length of the buffer in bytes
* @return a hex string, e.g. "61 62 63" for an input "abc" */
static std::string buf_to_hex(const uchar *buf, uint buf_size_bytes) {
std::string r;
r.reserve(buf_size_bytes * 3 -
1 /* the first hex byte has no leading space */);
char hex[3];
for (uint i = 0; i < buf_size_bytes; ++i) {
snprintf(hex, sizeof(hex), "%02x", buf[i]);
if (i > 0) {
r.append(" ", 1);
}
r.append(hex, 2);
}
return r;
}
std::string row_to_string(const uchar *mysql_row, TABLE *mysql_table) {
/* MySQL can either use handler::table->record[0] or handler::table->record[1]
* for buffers to store rows. We need each field in mysql_table->field[] to
* point inside the buffer which was used (either record[0] or record[1]). */
uchar *buf0 = mysql_table->record[0];
uchar *buf1 = mysql_table->record[1];
const uint mysql_row_length = mysql_table->s->rec_buff_length;
/* See which of the two buffers is being used. */
uchar *buf_used_by_mysql;
if (mysql_row == buf0) {
buf_used_by_mysql = buf0;
} else {
DBUG_ASSERT(mysql_row == buf1);
buf_used_by_mysql = buf1;
}
const uint number_of_fields = mysql_table->s->fields;
/* See where the fields currently point to. */
uchar *fields_orig_buf;
if (number_of_fields == 0) {
fields_orig_buf = buf_used_by_mysql;
} else {
Field *first_field = mysql_table->field[0];
if (first_field->ptr >= buf0 &&
first_field->ptr < buf0 + mysql_row_length) {
fields_orig_buf = buf0;
} else {
DBUG_ASSERT(first_field->ptr >= buf1);
DBUG_ASSERT(first_field->ptr < buf1 + mysql_row_length);
fields_orig_buf = buf1;
}
}
/* Repoint if necessary. */
if (buf_used_by_mysql != fields_orig_buf) {
repoint_field_to_record(mysql_table, fields_orig_buf, buf_used_by_mysql);
}
bool skip_raw_and_hex = false;
#ifdef HAVE_VALGRIND
/* It is expected that here not all bits in (mysql_row, mysql_row_length) are
* initialized. For example in the first byte (the null-byte) we only set
* the bits of the corresponding columns to 0 or 1 (is null). And leave the
* remaining bits uninitialized for performance reasons. Thus Valgrind is
* right to complain below when we print everything. We do not want to
* memset() everything, so that Valgrind does not complain here and we do
* not want to MEM_DEFINED_IF_ADDRESSABLE(mysql_row, mysql_row_length) either
* because that would silence Valgrind in other possible places where the
* uninitialized bits should not be read. In other words - we want the
* Valgrind warnings if somebody tries to use the uninitialized bits,
* except here in this function. */
uchar *mysql_row_copy = static_cast<uchar *>(malloc(mysql_row_length));
memcpy(mysql_row_copy, mysql_row, mysql_row_length);
MEM_DEFINED_IF_ADDRESSABLE(mysql_row_copy, mysql_row_length);
#else
const uchar *mysql_row_copy = mysql_row;
const char *running_valgrind = getenv("VALGRIND_SERVER_TEST");
int error = 0;
/* If testing with Valgrind, and MySQL isn't compiled for it, printing
would produce misleading errors, see comments for HAVE_VALGRIND above.
*/
skip_raw_and_hex =
(nullptr != running_valgrind &&
0 != my_strtoll10(running_valgrind, nullptr, &error) && 0 == error);
#endif /* HAVE_VALGRIND */
std::string r;
r += "len=" + std::to_string(mysql_row_length);
if (skip_raw_and_hex) {
r += ", raw=<skipped because of valgrind>";
r += ", hex=<skipped because of valgrind>";
} else {
r += ", raw=" + buf_to_raw(mysql_row_copy, mysql_row_length);
r += ", hex=" + buf_to_hex(mysql_row_copy, mysql_row_length);
}
#ifdef HAVE_VALGRIND
free(mysql_row_copy);
#endif /* HAVE_VALGRIND */
r += ", human=(";
for (uint i = 0; i < number_of_fields; ++i) {
Field *field = mysql_table->field[i];
DBUG_ASSERT(field->field_index == i);
DBUG_ASSERT(field->ptr >= mysql_row);
DBUG_ASSERT(field->ptr < mysql_row + mysql_row_length);
std::string val;
if (bitmap_is_set(mysql_table->read_set, i)) {
String s;
field->val_str(&s);
val = std::string(s.ptr(), s.length());
} else {
/* Field::val_str() asserts in ASSERT_COLUMN_MARKED_FOR_READ() if
* the read bit is not set. */
val = "read_bit_not_set";
}
r += std::string(i == 0 ? "`" : ", `") + field->field_name + "`=" + val;
}
r += ")";
/* Revert the above repoint_field_to_record(). */
if (buf_used_by_mysql != fields_orig_buf) {
repoint_field_to_record(mysql_table, buf_used_by_mysql, fields_orig_buf);
}
return r;
}
std::string indexed_cells_to_string(const uchar *indexed_cells,
uint indexed_cells_len,
const KEY &mysql_index) {
std::string r = "raw=" + buf_to_raw(indexed_cells, indexed_cells_len);
r += ", hex=" + buf_to_hex(indexed_cells, indexed_cells_len);
r += ", human=(";
uint key_len_so_far = 0;
for (uint i = 0; i < mysql_index.user_defined_key_parts; i++) {
const KEY_PART_INFO &key_part = mysql_index.key_part[i];
Field *field = key_part.field;
// Check if this field should be included
if (!bitmap_is_set(mysql_index.table->read_set, field->field_index)) {
continue;
}
if (key_len_so_far == indexed_cells_len) {
break;
}
DBUG_ASSERT(key_len_so_far < indexed_cells_len);
uchar *orig_ptr = field->ptr;
bool is_null = false;
field->ptr = const_cast<uchar *>(indexed_cells + key_len_so_far);
if (field->real_maybe_null()) {
if (field->ptr[0] != '\0') {
is_null = true;
} else {
field->ptr++;
}
}
uint32 orig_length_bytes;
String val;
if (!is_null) {
switch (field->type()) {
case MYSQL_TYPE_VARCHAR:
orig_length_bytes =
reinterpret_cast<Field_varstring *>(field)->length_bytes;
reinterpret_cast<Field_varstring *>(field)->length_bytes = 2;
field->val_str(&val);
reinterpret_cast<Field_varstring *>(field)->length_bytes =
orig_length_bytes;
break;
default:
field->val_str(&val);
break;
}
}
field->ptr = orig_ptr;
r += std::string(i > 0 ? ", `" : "`") + field->field_name +
"`=" + (is_null ? "NULL" : std::string(val.ptr(), val.length()));
key_len_so_far += key_part.store_length;
}
r += ")";
return r;
}
#endif /* DBUG_OFF */
/**
Set the transaction isolation level for the next transaction and update
session tracker information about the transaction isolation level.
@param thd THD session setting the tx_isolation.
@param tx_isolation The isolation level to be set.
@param one_shot True if the isolation level should be restored to
session default after finishing the transaction.
*/
bool set_tx_isolation(THD *thd, enum_tx_isolation tx_isolation, bool one_shot) {
Transaction_state_tracker *tst = NULL;
if (thd->variables.session_track_transaction_info > TX_TRACK_NONE)
tst = (Transaction_state_tracker *)thd->session_tracker.get_tracker(
TRANSACTION_INFO_TRACKER);
thd->tx_isolation = tx_isolation;
if (one_shot) {
DBUG_ASSERT(!thd->in_active_multi_stmt_transaction());
DBUG_ASSERT(!thd->in_sub_stmt);
enum enum_tx_isol_level l;
switch (thd->tx_isolation) {
case ISO_READ_UNCOMMITTED:
l = TX_ISOL_UNCOMMITTED;
break;
case ISO_READ_COMMITTED:
l = TX_ISOL_COMMITTED;
break;
case ISO_REPEATABLE_READ:
l = TX_ISOL_REPEATABLE;
break;
case ISO_SERIALIZABLE:
l = TX_ISOL_SERIALIZABLE;
break;
default:
DBUG_ASSERT(0);
return true;
}
if (tst) tst->set_isol_level(thd, l);
} else if (tst) {
tst->set_isol_level(thd, TX_ISOL_INHERIT);
}
return false;
}
static bool post_recover_handlerton(THD *, plugin_ref plugin, void *) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->post_recover)
hton->post_recover();
return false;
}
void ha_post_recover(void) {
(void)plugin_foreach(nullptr, post_recover_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN, nullptr);
}
void handler::ha_set_primary_handler(handler *primary_handler) {
DBUG_ASSERT((ht->flags & HTON_IS_SECONDARY_ENGINE) != 0);
DBUG_ASSERT(primary_handler->table->s->has_secondary_engine());
m_primary_handler = primary_handler;
}
/**
Checks if the database name is reserved word used by SE by invoking
the handlerton method.
@param plugin SE plugin.
@param name Database name.
@retval true If the name is reserved word.
@retval false If the name is not reserved word.
*/
static bool is_reserved_db_name_handlerton(THD *, plugin_ref plugin,
void *name) {
handlerton *hton = plugin_data<handlerton *>(plugin);
if (hton->state == SHOW_OPTION_YES && hton->is_reserved_db_name)
return (hton->is_reserved_db_name(hton, (const char *)name));
return false;
}
/**
Check if the database name is reserved word used by SE.
@param name Database name.
@retval true If the name is a reserved word.
@retval false If the name is not a reserved word.
*/
bool ha_check_reserved_db_name(const char *name) {
return (plugin_foreach(NULL, is_reserved_db_name_handlerton,
MYSQL_STORAGE_ENGINE_PLUGIN,
const_cast<char *>(name)));
}