用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1122 lines
42 KiB

/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/**
@file
Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
by replacing the aggregate expression with a constant.
Given a table with a compound key on columns (a,b,c), the following
types of queries are optimised (assuming the table handler supports
the required methods)
@verbatim
SELECT COUNT(*) FROM t1[,t2,t3,...]
SELECT MIN(b) FROM t1 WHERE a=const
SELECT MAX(c) FROM t1 WHERE a=const AND b=const
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
SELECT MIN(b) FROM t1 WHERE a=const AND b>const
SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
@endverbatim
Instead of '<' one can use '<=', '>', '>=' and '=' as well.
Instead of 'a=const' the condition 'a IS NULL' can be used.
If all selected fields are replaced then we will also remove all
involved tables and return the answer without any join. Thus, the
following query will be replaced with a row of two constants:
@verbatim
SELECT MAX(b), MIN(d) FROM t1,t2
WHERE a=const AND b<const AND d>const
@endverbatim
(assuming a index for column d of table t2 is defined)
*/
#include <limits.h>
#include <stddef.h>
#include <sys/types.h>
#include "ft_global.h"
#include "my_base.h"
#include "my_bitmap.h"
#include "my_dbug.h"
#include "my_inttypes.h"
#include "my_sys.h"
#include "my_table_map.h"
#include "mysql_com.h"
#include "sql/field.h"
#include "sql/handler.h"
#include "sql/item.h"
#include "sql/item_cmpfunc.h"
#include "sql/item_func.h"
#include "sql/item_sum.h" // Item_sum
#include "sql/key.h" // key_cmp_if_same
#include "sql/sql_bitmap.h"
#include "sql/sql_class.h"
#include "sql/sql_const.h"
#include "sql/sql_error.h"
#include "sql/sql_lex.h"
#include "sql/sql_list.h"
#include "sql/sql_opt_exec_shared.h"
#include "sql/sql_select.h"
#include "sql/table.h"
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
Item_field *item_field, Item *cond,
uint *range_fl, uint *key_prefix_length);
static bool reckey_in_range(bool max_fl, TABLE_REF *ref, Item_field *item_field,
Item *cond, uint range_fl, uint prefix_len);
static bool maxmin_in_range(bool max_fl, Item_field *item_field, Item *cond);
/**
Get exact count of rows in all tables. This is called, when at least one of
the table handlers support HA_COUNT_ROWS_INSTANT, but not
HA_STATS_RECORDS_IS_EXACT (NDB is one such storage engine).
@param tables List of tables
@retval Product of number of rows in all tables. ULLONG_MAX for error.
*/
ulonglong get_exact_record_count(TABLE_LIST *tables) {
ulonglong count = 1;
for (TABLE_LIST *tl = tables; tl; tl = tl->next_leaf) {
ha_rows tmp = 0;
int error = tl->table->file->ha_records(&tmp);
if (error != 0) return ULLONG_MAX;
count *= tmp;
}
return count;
}
/**
Use index to read MIN(field) value.
@param table Table object
@param ref Reference to the structure where we store the key value
@param item_field Field used in MIN()
@param range_fl Whether range endpoint is strict less than
@param prefix_len Length of common key part for the range
@retval
0 No errors
HA_ERR_... Otherwise
*/
static int get_index_min_value(TABLE *table, TABLE_REF *ref,
Item_field *item_field, uint range_fl,
uint prefix_len) {
int error;
if (!ref->key_length)
error = table->file->ha_index_first(table->record[0]);
else {
/*
Use index to replace MIN/MAX functions with their values
according to the following rules:
1) Insert the minimum non-null values where the WHERE clause still
matches, or
2) a NULL value if there are only NULL values for key_part_k.
3) Fail, producing a row of nulls
Implementation: Read the smallest value using the search key. If
the interval is open, read the next value after the search
key. If read fails, and we're looking for a MIN() value for a
nullable column, test if there is an exact match for the key.
*/
if (!(range_fl & NEAR_MIN))
/*
Closed interval: Either The MIN argument is non-nullable, or
we have a >= predicate for the MIN argument.
*/
error = table->file->ha_index_read_map(
table->record[0], ref->key_buff,
make_prev_keypart_map(ref->key_parts), HA_READ_KEY_OR_NEXT);
else {
/*
Open interval: There are two cases:
1) We have only MIN() and the argument column is nullable, or
2) there is a > predicate on it, nullability is irrelevant.
We need to scan the next bigger record first.
Open interval is not used if the search key involves the last keypart,
and it would not work.
*/
DBUG_ASSERT(prefix_len < ref->key_length);
error = table->file->ha_index_read_map(
table->record[0], ref->key_buff,
make_prev_keypart_map(ref->key_parts), HA_READ_AFTER_KEY);
/*
If the found record is outside the group formed by the search
prefix, or there is no such record at all, check if all
records in that group have NULL in the MIN argument
column. If that is the case return that NULL.
Check if case 1 from above holds. If it does, we should read
the skipped tuple.
*/
if (item_field->field->real_maybe_null() &&
ref->key_buff[prefix_len] == 1 &&
/*
Last keypart (i.e. the argument to MIN) is set to NULL by
find_key_for_maxmin only if all other keyparts are bound
to constants in a conjunction of equalities. Hence, we
can detect this by checking only if the last keypart is
NULL.
*/
(error == HA_ERR_KEY_NOT_FOUND ||
key_cmp_if_same(table, ref->key_buff, ref->key, prefix_len))) {
DBUG_ASSERT(item_field->field->real_maybe_null());
error = table->file->ha_index_read_map(
table->record[0], ref->key_buff,
make_prev_keypart_map(ref->key_parts), HA_READ_KEY_EXACT);
}
}
}
return error;
}
/**
Use index to read MAX(field) value.
@param table Table object
@param ref Reference to the structure where we store the key value
@param range_fl Whether range endpoint is strict greater than
@retval
0 No errors
HA_ERR_... Otherwise
*/
static int get_index_max_value(TABLE *table, TABLE_REF *ref, uint range_fl) {
return (ref->key_length
? table->file->ha_index_read_map(
table->record[0], ref->key_buff,
make_prev_keypart_map(ref->key_parts),
range_fl & NEAR_MAX ? HA_READ_BEFORE_KEY
: HA_READ_PREFIX_LAST_OR_PREV)
: table->file->ha_index_last(table->record[0]));
}
/**
Substitute constants for some COUNT(), MIN() and MAX() functions
in an aggregated (implicitly grouped) query
@param[in] thd thread handler
@param[in] select query block
@param[in] all_fields All fields to be returned
@param[in] conds WHERE clause
@param[out] decision outcome for successful execution
= AGGR_REGULAR regular execution required
= AGGR_COMPLETE values available
= AGGR_DELAYED execution with ha_records() required
= AGGR_EMPTY source tables empty,
aggregates are NULL or zero (for COUNT)
@returns false if success, true if error
This function is called for queries with aggregate functions and no
GROUP BY, thus the result set will contain a single row only.
First, the function will analyze the source tables and WHERE clause to see
whether the query qualifies for optimization. If not, the decision
AGGR_REGULAR is returned.
Second, the function walks over all expressions in the SELECT list.
If the expression can be optimized with a storage engine operation that
is O(1) (MIN or MAX) or O(0) (instant COUNT), the value is looked up
and inserted in the value buffer, and the corresponding Item is marked
as being const.
If the expression is a COUNT operation that can be evaluated
efficiently by the storage manager (but still O(N)), indicated with
HA_COUNT_ROWS_INSTANT, it will be marked as such.
When all SELECT list expressions have been processed, there are four
possible outcomes:
- An empty result from the source tables is indicated, and the
output state is AGGR_EMPTY. Notice that the result of aggregation
is still one row, filled with zero for COUNT operations and NULL
values for all other expressions.
- All expressions have been given values, indicated with output state
AGGR_COMPLETE.
- All expressions have been given values, except for one or more COUNT
operations that will be evaluated in execution. This is indicated
with AGGR_DELAYED.
- Some expressions must be evaluated as part of a regular execution,
indicated with AGGR_REGULAR. Notice that some of the expressions
may have been given values and are marked as const, but no expressions
will be candidates for delayed execution.
*/
bool optimize_aggregated_query(THD *thd, SELECT_LEX *select,
List<Item> &all_fields, Item *conds,
aggregate_evaluated *decision) {
DBUG_TRACE;
// True means at least one aggregate must be calculated by regular execution
bool aggr_impossible = false;
// True means COUNT expressions will be calculated by ha_records()
// storage engine operations during execution phase
bool aggr_delayed = false;
bool recalc_const_item = false;
// Calculated row count, valid only if have_exact_count is true.
ulonglong row_count = 1;
// True when all tables have an exact count
bool have_exact_count = true;
// True if all tables have contents and can be read
bool tables_filled = true;
// The set of tables optimized for MIN or MAX
table_map removed_tables = 0;
// The set of inner tables of outer join(s)
table_map inner_tables = 0;
// The set of tables in the join, excluding the inner tables of outer join
table_map used_tables = 0;
TABLE_LIST *tables = select->leaf_tables;
int error;
*decision = AGGR_REGULAR; // Default return value
// Local flag that indicates that ha_records() can be called in the
// execution phase only.
bool delay_ha_records_to_exec_phase = false;
const table_map where_tables = conds ? conds->used_tables() : 0;
/*
A subquery is optimized once but executed possibly multiple times.
If the value of the set function depends on the join's emptiness (like
MIN() does), and the join's emptiness depends on the outer row or
something nondeterministic, we cannot mark the set function as constant:
*/
if (where_tables & (OUTER_REF_TABLE_BIT | RAND_TABLE_BIT)) return false;
/*
Analyze outer join dependencies, and, if possible, compute the number
of returned rows.
*/
for (TABLE_LIST *tl = tables; tl; tl = tl->next_leaf) {
// Don't replace expression on a table that is part of an outer join
if (tl->is_inner_table_of_outer_join()) {
inner_tables |= tl->map();
/*
We can't optimise LEFT JOIN in cases where the WHERE condition
restricts the table that is used, like in:
SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
WHERE t2.field IS NULL;
*/
if (tl->map() & where_tables) return false;
} else
used_tables |= tl->map();
/*
If the storage manager of 'tl' gives exact row count as part of
statistics (cheap), compute the total number of rows. If there are
no outer table dependencies, this count may be used as the real count.
Schema tables are filled after this function is invoked, so we can't
get row count.
Derived tables aren't filled yet, their number of rows are estimates.
FORCE INDEX implies that user wants a specific index to be used. So skip
using stats.records.
*/
tables_filled &= !(tl->schema_table || tl->uses_materialization());
ulonglong table_flags = tl->table->file->ha_table_flags();
if ((table_flags & HA_STATS_RECORDS_IS_EXACT) && tables_filled &&
!tl->table->force_index) {
error = tl->fetch_number_of_rows();
if (error) {
tl->table->file->print_error(error, MYF(ME_FATALERROR));
return true;
}
row_count *= tl->table->file->stats.records;
} else {
/*
Note: If at least one of the tables can't be optimized,
then all tables will be read in the execution phase
(i.e. end_send_count).
Example: SELECT COUNT(*) FROM t_myisam, t_innodb;
*/
delay_ha_records_to_exec_phase |=
!(table_flags & HA_COUNT_ROWS_INSTANT) || tl->table->force_index;
have_exact_count = false;
}
}
/*
Iterate through all items in the SELECT clause and replace
COUNT(), MIN() and MAX() with constants (if possible).
*/
List_iterator_fast<Item> it(all_fields);
Item *item;
while ((item = it++)) {
if (item->type() == Item::SUM_FUNC_ITEM && !item->m_is_window_function) {
if (item->used_tables() & OUTER_REF_TABLE_BIT) {
aggr_impossible = true;
continue;
}
Item_sum *item_sum = down_cast<Item_sum *>(item);
enum Item_func::Functype func_type =
conds != nullptr && conds->type() == Item::FUNC_ITEM
? down_cast<Item_func *>(conds)->functype()
: Item_func::UNKNOWN_FUNC;
switch (item_sum->sum_func()) {
case Item_sum::COUNT_FUNC: {
Item_sum_count *item_count = down_cast<Item_sum_count *>(item_sum);
/*
If the expr in COUNT(expr) can never be null we can change this
to the number of rows in the tables if this number is exact and
there are no outer joins nor semi-joins.
*/
if (conds == nullptr && !item_count->get_arg(0)->maybe_null &&
!inner_tables && !select->has_sj_nests && !select->has_aj_nests &&
tables_filled) {
if (delay_ha_records_to_exec_phase) {
aggr_delayed = true;
} else {
if (!have_exact_count) {
row_count = get_exact_record_count(tables);
if (row_count == ULLONG_MAX) {
/*
Error from handler in counting rows. Don't optimize count()
*/
aggr_impossible = true;
continue;
}
have_exact_count = true; // count is now exact
}
}
}
/*
For result count of full-text search: If
1. it is a single table query,
2. the WHERE condition is a single MATCH expresssion,
3. the table engine can provide the row count from FTS result, and
4. the expr in COUNT(expr) can not be NULL,
we do the full-text search now, and replace with the actual count.
Note: Item_func_match::init_search() will be called again later in
the optimization phase by init_fts_funcs(), but search will
still only be done once.
*/
else if (tables->next_leaf == NULL && // 1
(func_type == Item_func::FT_FUNC ||
func_type == Item_func::MATCH_FUNC) && // 2
(tables->table->file->ha_table_flags() &
HA_CAN_FULLTEXT_EXT) && // 3
!item_count->get_arg(0)->maybe_null) // 4
{
Item_func_match *fts_item =
func_type == Item_func::FT_FUNC
? down_cast<Item_func_match *>(conds)
: down_cast<Item_func_match *>(
down_cast<Item_func_match_predicate *>(conds)
->arguments()[0]);
fts_item->get_master()->set_hints(NULL, FT_NO_RANKING, HA_POS_ERROR,
false);
if (fts_item->init_search(thd)) break;
row_count = fts_item->get_count();
have_exact_count = true;
} else
aggr_impossible = true;
// See comment above for get_exact_record_count()
if (!thd->lex->is_explain() && !aggr_impossible && !aggr_delayed) {
item_count->make_const((longlong)row_count);
recalc_const_item = true;
}
break;
}
case Item_sum::MIN_FUNC:
case Item_sum::MAX_FUNC: {
int is_max = (item_sum->sum_func() == Item_sum::MAX_FUNC);
/*
If MIN/MAX(expr) is the first part of a key or if all previous
parts of the key is found in the COND, then we can use
indexes to find the key.
*/
Item *expr = item_sum->get_arg(0)->real_item();
if (expr->type() == Item::FIELD_ITEM) {
uchar key_buff[MAX_KEY_LENGTH];
TABLE_REF ref;
uint range_fl, prefix_len;
ref.key_buff = key_buff;
Item_field *item_field = down_cast<Item_field *>(expr);
TABLE *table = item_field->field->table;
/*
We must not have accessed this table instance yet, because
it must be private to this query block, as we already ensured
that OUTER_REF_TABLE_BIT is not set.
*/
DBUG_ASSERT(!table->file->inited);
/*
Because the table handle has not been opened yet, we cannot have
determined yet if the table contains 1 record.
*/
DBUG_ASSERT(!table->const_table);
/*
Look for a partial key that can be used for optimization.
If we succeed, ref.key_length will contain the length of
this key, while prefix_len will contain the length of
the beginning of this key without field used in MIN/MAX().
Type of range for the key part for this field will be
returned in range_fl.
*/
if ((inner_tables & item_field->table_ref->map()) ||
!find_key_for_maxmin(is_max, &ref, item_field, conds, &range_fl,
&prefix_len)) {
aggr_impossible = true;
break;
}
if ((error = table->file->ha_index_init((uint)ref.key, 1))) {
table->file->print_error(error, MYF(0));
table->set_keyread(false);
return true;
}
/*
Necessary columns to read from the index have been determined by
find_key_for_maxmin(); they are the columns involved in
'WHERE col=const' and the aggregated one.
We may not need all columns of read_set, neither all columns of
the index.
*/
DBUG_ASSERT(table->read_set == &table->def_read_set);
DBUG_ASSERT(bitmap_is_clear_all(&table->tmp_set));
table->read_set = &table->tmp_set;
table->mark_columns_used_by_index_no_reset(ref.key, table->read_set,
ref.key_parts);
// The aggregated column may or not be included in ref.key_parts.
bitmap_set_bit(table->read_set, item_field->field->field_index);
error = is_max ? get_index_max_value(table, &ref, range_fl)
: get_index_min_value(table, &ref, item_field,
range_fl, prefix_len);
/*
Set table row status to "not started" unconditionally. This will
prepare the table for regular access in the join execution
machinery if this optimization is aborted and cannot be used.
The row status does not affect column values read into record[0].
*/
table->set_not_started();
table->read_set = &table->def_read_set;
bitmap_clear_all(&table->tmp_set);
/* Verify that the read tuple indeed matches the search key */
if (!error && reckey_in_range(is_max, &ref, item_field, conds,
range_fl, prefix_len))
error = HA_ERR_KEY_NOT_FOUND;
table->set_keyread(false);
table->file->ha_index_end();
if (error) {
if (error == HA_ERR_KEY_NOT_FOUND ||
error == HA_ERR_END_OF_FILE) {
*decision = AGGR_EMPTY;
return false; // No rows matching WHERE
}
/* HA_ERR_LOCK_DEADLOCK or some other error */
table->file->print_error(error, MYF(0));
return true;
}
removed_tables |= item_field->table_ref->map();
} else if (!expr->const_item() || conds || !have_exact_count) {
/*
We get here if the aggregate function is not based on a field.
Example: "SELECT MAX(1) FROM table ..."
This constant optimization is not applicable if
1. the expression is not constant, or
2. it is unknown if the query returns any rows. MIN/MAX must
return NULL if the query doesn't return any rows. We can't
determine this if:
- the query has a condition, because, in contrast to the
"MAX(field)" case above, the condition will not be evaluated
against an index for this case, or
- the storage engine does not provide exact count, which means
that it doesn't know whether there are any rows.
*/
aggr_impossible = true;
break;
}
item_sum->set_aggregator(item_sum->has_with_distinct()
? Aggregator::DISTINCT_AGGREGATOR
: Aggregator::SIMPLE_AGGREGATOR);
/*
If row_count == 0 and there are no outer joins, set to NULL,
otherwise set to the constant value.
*/
if (have_exact_count && row_count == 0 && !inner_tables) {
item_sum->aggregator_clear();
// Mark the aggregated value as based on no rows
item->no_rows_in_result();
} else
item_sum->reset_and_add();
item_sum->make_const();
recalc_const_item = true;
break;
}
default:
aggr_impossible = true;
break;
}
} else if (!aggr_impossible) {
if (recalc_const_item) item->update_used_tables();
if (!item->const_item()) aggr_impossible = true;
}
}
if (thd->is_error()) return true;
/*
With a where clause, only ignore searching in the tables if MIN/MAX
optimisation replaced all used tables.
We do not use replaced values in case of:
SELECT MIN(key) FROM table_1, empty_table
removed_tables is != 0 if we have used MIN() or MAX().
*/
if (removed_tables && used_tables != removed_tables)
aggr_impossible = true; // We didn't remove all tables
*decision = aggr_impossible ? AGGR_REGULAR
: aggr_delayed ? AGGR_DELAYED : AGGR_COMPLETE;
return false;
}
/**
Test if the predicate compares a field with constants.
@param func_item Predicate item
@param[out] args Here we store the field followed by constants
@param[out] inv_order Is set to 1 if the predicate is of the form
'const op field'
@retval
0 func_item is a simple predicate: a field is compared with
constants
@retval
1 Otherwise
*/
bool simple_pred(Item_func *func_item, Item **args, bool *inv_order) {
Item *item;
*inv_order = 0;
switch (func_item->argument_count()) {
case 0:
/* MULT_EQUAL_FUNC */
{
Item_equal *item_equal = (Item_equal *)func_item;
Item_equal_iterator it(*item_equal);
args[0] = it++;
if (it++) return 0;
if (!(args[1] = item_equal->get_const())) return 0;
}
break;
case 1:
/* field IS NULL */
item = func_item->arguments()[0];
if (item->type() != Item::FIELD_ITEM) return 0;
args[0] = item;
break;
case 2:
/* 'field op const' or 'const op field' */
item = func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM) {
args[0] = item;
item = func_item->arguments()[1];
if (!item->const_item()) return 0;
args[1] = item;
} else if (item->const_item()) {
args[1] = item;
item = func_item->arguments()[1];
if (item->type() != Item::FIELD_ITEM) return 0;
args[0] = item;
*inv_order = 1;
} else
return 0;
break;
case 3:
/* field BETWEEN const AND const */
item = func_item->arguments()[0];
if (item->type() == Item::FIELD_ITEM) {
args[0] = item;
for (int i = 1; i <= 2; i++) {
item = func_item->arguments()[i];
if (!item->const_item()) return 0;
args[i] = item;
}
} else
return 0;
}
return 1;
}
/**
Check whether a condition matches a key to get {MAX|MIN}(field):.
For the index specified by the keyinfo parameter and an index that
contains the field as its component (field_part), the function
checks whether
- the condition cond is a conjunction,
- all of its conjuncts refer to columns of the same table, and
- each conjunct is on one of the following forms:
- f_i = const_i or const_i = f_i or f_i IS NULL,
where f_i is part of the index
- field {<|<=|>=|>|=} const
- const {<|<=|>=|>|=} field
- field BETWEEN const_1 AND const_2
As a side-effect, the key value to be used for looking up the MIN/MAX value
is actually stored inside the Field object. An interesting feature is that
the function will find the most restrictive endpoint by over-eager
evaluation of the @c WHERE condition. It continually stores the current
endpoint inside the Field object. For a query such as
@code
SELECT MIN(a) FROM t1 WHERE a > 3 AND a > 5;
@endcode
the algorithm will recurse over the conjuction, storing first a 3 in the
field. In the next recursive invocation the expression a > 5 is evaluated
as 3 > 5 (Due to the dual nature of Field objects as value carriers and
field identifiers), which will obviously fail, leading to 5 being stored in
the Field object.
@param[in] max_fl Set to true if we are optimizing MAX(),
false means we are optimizing %MIN()
@param[in, out] ref Reference to the structure where the function
stores the key value
@param[in] keyinfo Reference to the key info
@param[in] field_part Pointer to the key part for the field
@param[in] cond WHERE condition
@param[in] map Table map for the key
@param[in,out] key_part_used Map of matchings parts. The function will
output the set of key parts actually being matched in this set, yet it relies
on the caller to initialize the value to zero. This is due to the fact that
this value is passed recursively.
@param[in,out] range_fl Says whether endpoints use strict greater/less
than.
@param[out] prefix_len Length of common key part for the range
where MAX/MIN is searched for
@retval
false Index can't be used.
@retval
true We can use the index to get MIN/MAX value
*/
static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo,
KEY_PART_INFO *field_part, Item *cond, table_map map,
key_part_map *key_part_used, uint *range_fl,
uint *prefix_len) {
DBUG_TRACE;
if (!cond) return true;
if (!(cond->used_tables() & map)) {
/* Condition doesn't restrict the used table */
return true;
}
if (cond->type() == Item::COND_ITEM) {
if (((Item_cond *)cond)->functype() == Item_func::COND_OR_FUNC)
return false;
/* AND */
List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
if (!matching_cond(max_fl, ref, keyinfo, field_part, item, map,
key_part_used, range_fl, prefix_len))
return false;
}
return true;
}
if (cond->type() != Item::FUNC_ITEM)
return false; // Not operator, can't optimize
bool eq_type = 0; // =, <=> or IS NULL
bool is_null_safe_eq = false; // The operator is NULL safe, e.g. <=>
bool noeq_type = 0; // < or >
bool less_fl = 0; // < or <=
bool is_null = 0; // IS NULL
bool between = 0; // BETWEEN ... AND ...
switch (((Item_func *)cond)->functype()) {
case Item_func::ISNULL_FUNC:
is_null = 1; /* fall through */
case Item_func::EQ_FUNC:
eq_type = true;
break;
case Item_func::EQUAL_FUNC:
eq_type = is_null_safe_eq = true;
break;
case Item_func::LT_FUNC:
noeq_type = 1; /* fall through */
case Item_func::LE_FUNC:
less_fl = 1;
break;
case Item_func::GT_FUNC:
noeq_type = 1; /* fall through */
case Item_func::GE_FUNC:
break;
case Item_func::BETWEEN:
between = 1;
// NOT BETWEEN is equivalent to OR and is therefore not a conjunction
if (((Item_func_between *)cond)->negated) return false;
break;
case Item_func::MULT_EQUAL_FUNC:
eq_type = 1;
break;
default:
return false; // Can't optimize function
}
Item *args[3];
bool inv;
/* Test if this is a comparison of a field and constant */
if (!simple_pred((Item_func *)cond, args, &inv)) return false;
if (!is_null_safe_eq && !is_null &&
(args[1]->is_null() || (between && args[2]->is_null())))
return false;
if (inv && !eq_type) less_fl = !less_fl; // Convert '<' -> '>' (etc)
/* Check if field is part of the tested partial key */
uchar *key_ptr = ref->key_buff;
KEY_PART_INFO *part;
for (part = keyinfo->key_part;; key_ptr += part++->store_length)
{
if (part > field_part) return false; // Field is beyond the tested parts
if (part->field->eq(((Item_field *)args[0])->field))
break; // Found a part of the key for the field
}
bool is_field_part = part == field_part;
if (!(is_field_part || eq_type)) return false;
key_part_map org_key_part_used = *key_part_used;
if (eq_type || between || max_fl == less_fl) {
size_t length = (key_ptr - ref->key_buff) + part->store_length;
if (ref->key_length < length) {
/* Ultimately ref->key_length will contain the length of the search key */
ref->key_length = length;
ref->key_parts = (part - keyinfo->key_part) + 1;
}
if (!*prefix_len && part + 1 == field_part) *prefix_len = length;
if (is_field_part && eq_type) *prefix_len = ref->key_length;
*key_part_used |= (key_part_map)1 << (part - keyinfo->key_part);
}
if (org_key_part_used == *key_part_used &&
/*
The current search key is not being extended with a new key part. This
means that the a condition is added a key part for which there was a
previous condition. We can only overwrite such key parts in some special
cases, e.g. a > 2 AND a > 1 (here range_fl must be set to something). In
all other cases the WHERE condition is always false anyway.
*/
(eq_type || *range_fl == 0))
return false;
if (org_key_part_used != *key_part_used ||
(is_field_part && (between || eq_type || max_fl == less_fl) &&
!cond->val_int())) {
/*
It's the first predicate for this part or a predicate of the
following form that moves upper/lower bounds for max/min values:
- field BETWEEN const AND const
- field = const
- field {<|<=} const, when searching for MAX
- field {>|>=} const, when searching for MIN
*/
if (is_null || (is_null_safe_eq && args[1]->is_null())) {
/*
If we have a non-nullable index, we cannot use it,
since set_null will be ignored, and we will compare uninitialized data.
*/
if (!part->field->real_maybe_null()) return false;
part->field->set_null();
*key_ptr = (uchar)1;
} else {
/* Update endpoints for MAX/MIN, see function comment. */
Item *value = args[between && max_fl ? 2 : 1];
/*
A perfect save is neccessary. Truncated / incorrect value can result
in an incorrect index lookup. Truncation of trailing space is ignored
since that is expected for strings even in other cases.
*/
type_conversion_status retval =
value->save_in_field_no_warnings(part->field, true);
if (!(retval == TYPE_OK || retval == TYPE_NOTE_TRUNCATED)) return false;
if (part->null_bit) *key_ptr++ = (uchar)(part->field->is_null());
part->field->get_key_image(key_ptr, part->length, Field::itRAW);
}
if (is_field_part) {
if (between || eq_type)
*range_fl &= ~(NO_MAX_RANGE | NO_MIN_RANGE);
else {
*range_fl &= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
if (noeq_type)
*range_fl |= (max_fl ? NEAR_MAX : NEAR_MIN);
else
*range_fl &= ~(max_fl ? NEAR_MAX : NEAR_MIN);
}
}
} else if (eq_type) {
if ((!is_null && !cond->val_int()) || (is_null && !part->field->is_null()))
return false; // Impossible test
} else if (is_field_part)
*range_fl &= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
return true;
}
/**
Check whether we can get value for {max|min}(field) by using a key.
If where-condition is not a conjunction of 0 or more conjuct the
function returns false, otherwise it checks whether there is an
index including field as its k-th component/part such that:
-# for each previous component f_i there is one and only one conjunct
of the form: f_i= const_i or const_i= f_i or f_i is null
-# references to field occur only in conjucts of the form:
field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or
field BETWEEN const1 AND const2
-# all references to the columns from the same table as column field
occur only in conjucts mentioned above.
-# each of k first components the index is not partial, i.e. is not
defined on a fixed length proper prefix of the field.
If such an index exists the function through the ref parameter
returns the key value to find max/min for the field using the index,
the length of first (k-1) components of the key and flags saying
how to apply the key for the search max/min value.
(if we have a condition field = const, prefix_len contains the length
of the whole search key)
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
@param[in,out] ref Reference to the structure we store the key value
@param[in] item_field Field used inside MIN() / MAX()
@param[in] cond WHERE condition
@param[out] range_fl Bit flags for how to search if key is ok
@param[out] prefix_len Length of prefix for the search range
@note
This function may set field->table->key_read to true,
which must be reset after index is used!
(This can only happen when function returns 1)
@retval
0 Index can not be used to optimize MIN(field)/MAX(field)
@retval
1 Can use key to optimize MIN()/MAX().
In this case ref, range_fl and prefix_len are updated
*/
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
Item_field *item_field, Item *cond,
uint *range_fl, uint *prefix_len) {
Field *const field = item_field->field;
if (!(field->flags & PART_KEY_FLAG)) return false; // Not key field
DBUG_TRACE;
TABLE *const table = field->table;
uint idx = 0;
KEY *keyinfo, *keyinfo_end;
for (keyinfo = table->key_info, keyinfo_end = keyinfo + table->s->keys;
keyinfo != keyinfo_end; keyinfo++, idx++) {
KEY_PART_INFO *part, *part_end;
key_part_map key_part_to_use = 0;
/*
Perform a check if index is not disabled by ALTER TABLE
or IGNORE INDEX.
*/
if (!table->keys_in_use_for_query.is_set(idx)) continue;
uint jdx = 0;
*prefix_len = 0;
for (part = keyinfo->key_part, part_end = part + actual_key_parts(keyinfo);
part != part_end;
part++, jdx++, key_part_to_use = (key_part_to_use << 1) | 1) {
if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
return false;
// Due to lack of time, currently only ASC keyparts are supported.
if (part->key_part_flag & HA_REVERSE_SORT) break;
/* Check whether the index component is partial */
Field *part_field = table->field[part->fieldnr - 1];
if ((part_field->flags & BLOB_FLAG) ||
part->length < part_field->key_length())
break;
if (field->eq(part->field)) {
ref->key = idx;
ref->key_length = 0;
ref->key_parts = 0;
key_part_map key_part_used = 0;
*range_fl = NO_MIN_RANGE | NO_MAX_RANGE;
if (matching_cond(max_fl, ref, keyinfo, part, cond,
item_field->table_ref->map(), &key_part_used,
range_fl, prefix_len) &&
!(key_part_to_use & ~key_part_used)) {
if (!max_fl && key_part_used == key_part_to_use && part->null_bit) {
/*
The query is on this form:
SELECT MIN(key_part_k)
FROM t1
WHERE key_part_1 = const and ... and key_part_k-1 = const
If key_part_k is nullable, we want to find the first matching row
where key_part_k is not null. The key buffer is now {const, ...,
NULL}. This will be passed to the handler along with a flag
indicating open interval. If a tuple is read that does not match
these search criteria, an attempt will be made to read an exact
match for the key buffer.
*/
/* Set the first byte of key_part_k to 1, that means NULL */
ref->key_buff[ref->key_length] = 1;
ref->key_length += part->store_length;
ref->key_parts++;
DBUG_ASSERT(ref->key_parts == jdx + 1);
*range_fl &= ~NO_MIN_RANGE;
*range_fl |= NEAR_MIN; // Open interval
}
/*
The following test is false when the key in the key tree is
converted (for example to upper case)
*/
if (field->part_of_key.is_set(idx)) table->set_keyread(true);
return true;
}
}
}
}
return false;
}
/**
Check whether found key is in range specified by conditions.
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
@param[in] ref Reference to the key value and info
@param[in] item_field Item representing field used in MIN/MAX expression
@param[in] cond WHERE condition
@param[in] range_fl Says whether there is a condition to to be checked
@param[in] prefix_len Length of the constant part of the key
@retval
false ok
@retval
true WHERE was not true for the found row
*/
static bool reckey_in_range(bool max_fl, TABLE_REF *ref, Item_field *item_field,
Item *cond, uint range_fl, uint prefix_len) {
if (key_cmp_if_same(item_field->field->table, ref->key_buff, ref->key,
prefix_len))
return true;
if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
return false;
return maxmin_in_range(max_fl, item_field, cond);
}
/**
Check whether {MAX|MIN}(field) is in range specified by conditions.
@param[in] max_fl 0 for MIN(field) / 1 for MAX(field)
@param[in] item_field Item representing field used in MIN/MAX expression
@param[in] cond WHERE condition
@retval
false ok
@retval
true WHERE was not true for the found row
*/
static bool maxmin_in_range(bool max_fl, Item_field *item_field, Item *cond) {
/* If AND/OR condition */
if (cond->type() == Item::COND_ITEM) {
List_iterator_fast<Item> li(*((Item_cond *)cond)->argument_list());
Item *item;
while ((item = li++)) {
if (maxmin_in_range(max_fl, item_field, item)) return true;
}
return false;
}
if (cond->used_tables() != item_field->table_ref->map()) return false;
bool less_fl = false;
switch (((Item_func *)cond)->functype()) {
case Item_func::BETWEEN:
return cond->val_int() == 0; // Return 1 if WHERE is false
case Item_func::LT_FUNC:
case Item_func::LE_FUNC:
less_fl = true;
// Fall through
case Item_func::GT_FUNC:
case Item_func::GE_FUNC: {
Item *item = ((Item_func *)cond)->arguments()[1];
/* In case of 'const op item' we have to swap the operator */
if (!item->const_item()) less_fl = !less_fl;
/*
We only have to check the expression if we are using an expression like
SELECT MAX(b) FROM t1 WHERE a=const AND b>const
not for
SELECT MAX(b) FROM t1 WHERE a=const AND b<const
*/
if (max_fl != less_fl)
return cond->val_int() == 0; // Return 1 if WHERE is false
return false;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
case Item_func::MULT_EQUAL_FUNC:
case Item_func::ISNULL_FUNC:
break;
default: // Keep compiler happy
DBUG_ASSERT(false); // Impossible
break;
}
return false;
}