用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1478 lines
54 KiB

// Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2.0,
// as published by the Free Software Foundation.
//
// This program is also distributed with certain software (including
// but not limited to OpenSSL) that is licensed under separate terms,
// as designated in a particular file or component or in included license
// documentation. The authors of MySQL hereby grant you an additional
// permission to link the program and your derivative works with the
// separately licensed software that they have included with MySQL.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License, version 2.0, for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
/// @file
///
/// This file implements the within functor and function.
#include <cmath> // std::isfinite
#include <limits>
#include <memory> // std::unique_ptr
#include <boost/geometry.hpp>
#include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system
#include "sql/gis/box.h"
#include "sql/gis/box_traits.h"
#include "sql/gis/difference_functor.h"
#include "sql/gis/equals_functor.h"
#include "sql/gis/gc_utils.h"
#include "sql/gis/geometries.h"
#include "sql/gis/geometries_traits.h"
#include "sql/gis/intersects_functor.h"
#include "sql/gis/mbr_utils.h"
#include "sql/gis/relops.h"
#include "sql/gis/within_functor.h"
#include "sql/sql_exception_handler.h" // handle_gis_exception
#include "template_utils.h" // down_cast
namespace bg = boost::geometry;
namespace gis {
Within::Within(double semi_major, double semi_minor)
: m_semi_major(semi_major),
m_semi_minor(semi_minor),
m_geographic_pl_pa_strategy(
bg::srs::spheroid<double>(semi_major, semi_minor)),
m_geographic_ll_la_aa_strategy(
bg::srs::spheroid<double>(semi_major, semi_minor)) {}
bool Within::operator()(const Geometry *g1, const Geometry *g2) const {
return apply(*this, g1, g2);
}
bool Within::operator()(const Box *b1, const Box *b2) const {
DBUG_ASSERT(b1->coordinate_system() == b2->coordinate_system());
switch (b1->coordinate_system()) {
case Coordinate_system::kCartesian:
return eval(down_cast<const Cartesian_box *>(b1),
down_cast<const Cartesian_box *>(b2));
case Coordinate_system::kGeographic:
return eval(down_cast<const Geographic_box *>(b1),
down_cast<const Geographic_box *>(b2));
}
DBUG_ASSERT(false);
return false;
}
bool Within::eval(const Geometry *g1, const Geometry *g2) const {
// All parameter type combinations have been implemented.
DBUG_ASSERT(false);
throw not_implemented_exception::for_non_projected(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_point, *)
bool Within::eval(const Cartesian_point *g1, const Cartesian_point *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_linestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_polygon *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_geometrycollection *g2) const {
// g1 must be within one of the elements of g2.
for (auto g : *g2)
if ((*this)(g1, g)) return true;
return false;
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_multipoint *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_multilinestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_point *g1,
const Cartesian_multipolygon *g2) const {
return bg::within(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_linestring, *)
bool Within::eval(const Cartesian_linestring *, const Cartesian_point *) const {
// A linestring can never be within a point.
return false;
}
bool Within::eval(const Cartesian_linestring *g1,
const Cartesian_linestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_linestring *g1,
const Cartesian_polygon *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_linestring *g1,
const Cartesian_geometrycollection *g2) const {
// For g1 to be within g2, no point of g1 may be in the exterior of g2 and at
// least one point of the interior of g1 has to be within the interior of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Multilinestring> g1_diff_g2(new Cartesian_multilinestring());
g1_diff_g2.reset(down_cast<Cartesian_multilinestring *>(
difference(g1, down_cast<Cartesian_multilinestring *>(g2_mls.get()))));
g1_diff_g2.reset(down_cast<Cartesian_multilinestring *>(
difference(down_cast<Cartesian_multilinestring *>(g1_diff_g2.get()),
down_cast<Cartesian_multipolygon *>(g2_mpy.get()))));
boost::geometry::de9im::mask mask("T********");
return g1_diff_g2->empty() &&
(bg::relate(*g1, *down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask) ||
bg::relate(*g1, *down_cast<Cartesian_multipolygon *>(g2_mpy.get()),
mask));
}
bool Within::eval(const Cartesian_linestring *,
const Cartesian_multipoint *) const {
// A linestring can never be within a multipoint.
return false;
}
bool Within::eval(const Cartesian_linestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_linestring *g1,
const Cartesian_multipolygon *g2) const {
return bg::within(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_polygon, *)
bool Within::eval(const Cartesian_polygon *, const Cartesian_point *) const {
// A polygon can never be within a point.
return false;
}
bool Within::eval(const Cartesian_polygon *,
const Cartesian_linestring *) const {
// A polygon can never be within a linestring.
return false;
}
bool Within::eval(const Cartesian_polygon *g1,
const Cartesian_polygon *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_polygon *g1,
const Cartesian_geometrycollection *g2) const {
// Polygons can only be within other polygons or multipolygons, so we can
// ignore points and linestrings. g1 is within g2 if g1 is within the union
// multipolygon of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
return eval(g1, down_cast<Cartesian_multipolygon *>(g2_mpy.get()));
}
bool Within::eval(const Cartesian_polygon *,
const Cartesian_multipoint *) const {
// A polygon can never be within a multipoint.
return false;
}
bool Within::eval(const Cartesian_polygon *,
const Cartesian_multilinestring *) const {
// A polygon can never be within a multilinestring.
return false;
}
bool Within::eval(const Cartesian_polygon *g1,
const Cartesian_multipolygon *g2) const {
return bg::within(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_geometrycollection, *)
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_point *g2) const {
Equals equals(m_semi_major, m_semi_minor);
return equals(g1, g2);
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_linestring *g2) const {
// g1 is within g2 if g1 contains only points and linestrings. One of the
// elements of g1 must be within g2, the rest must be covered by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (!g1_mpy->empty()) return false;
if (eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2))
return g1_mls->empty() ||
bg::covered_by(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*g2);
if (eval(down_cast<Cartesian_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return true;
}
return false;
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_polygon *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2)) {
return (g1_mls->empty() ||
bg::covered_by(
*down_cast<Cartesian_multilinestring *>(g1_mls.get()), *g2)) &&
(g1_mpy->empty() ||
bg::covered_by(*down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
*g2));
}
if (eval(down_cast<Cartesian_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return g1_mpy->empty() ||
bg::covered_by(*down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
*g2);
}
if (eval(down_cast<Cartesian_multipolygon *>(g1_mpy.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return g1_mls->empty() ||
bg::covered_by(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*g2);
}
return false;
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_geometrycollection *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
// Check that no part of g1 is in the exterior of g2.
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Cartesian_multipoint> g1_mpt_diff_g2(
new Cartesian_multipoint());
g1_mpt_diff_g2.reset(down_cast<Cartesian_multipoint *>(
difference(down_cast<Cartesian_multipoint *>(g1_mpt.get()),
down_cast<Cartesian_multipoint *>(g2_mpt.get()))));
g1_mpt_diff_g2.reset(down_cast<Cartesian_multipoint *>(
difference(g1_mpt_diff_g2.get(),
down_cast<Cartesian_multilinestring *>(g2_mls.get()))));
g1_mpt_diff_g2.reset(down_cast<Cartesian_multipoint *>(
difference(g1_mpt_diff_g2.get(),
down_cast<Cartesian_multipolygon *>(g2_mpy.get()))));
if (!g1_mpt_diff_g2->empty()) return false;
std::unique_ptr<Cartesian_multilinestring> g1_mls_diff_g2(
new Cartesian_multilinestring());
g1_mls_diff_g2.reset(down_cast<Cartesian_multilinestring *>(
difference(down_cast<Cartesian_multilinestring *>(g1_mls.get()),
down_cast<Cartesian_multilinestring *>(g2_mls.get()))));
g1_mls_diff_g2.reset(down_cast<Cartesian_multilinestring *>(
difference(g1_mls_diff_g2.get(),
down_cast<Cartesian_multipolygon *>(g2_mpy.get()))));
if (!g1_mls_diff_g2->empty()) return false;
std::unique_ptr<Cartesian_multipolygon> g1_mpy_diff_g2(
new Cartesian_multipolygon());
g1_mpy_diff_g2.reset(down_cast<Cartesian_multipolygon *>(
difference(down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
down_cast<Cartesian_multipolygon *>(g2_mpy.get()))));
if (!g1_mpy_diff_g2->empty()) return false;
// Check that the interiors of g1 and g2 have at least one point in common.
boost::geometry::de9im::mask mask("T********");
return eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2) ||
bg::relate(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask) ||
bg::relate(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multipolygon *>(g2_mpy.get()), mask) ||
bg::relate(*down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
*down_cast<Cartesian_multipolygon *>(g2_mpy.get()), mask);
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_multipoint *g2) const {
// g1 is within g2 if g1 contains only points and those points are within g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
return g1_mls->empty() && g1_mpy->empty() &&
eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2);
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_multilinestring *g2) const {
// g1 is within g2 if g1 contains only points and linestrings. One of the
// elements of g1 must be within g2, the rest must be covered by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (!g1_mpy->empty()) return false;
if (eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2))
return g1_mls->empty() ||
bg::covered_by(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*g2);
if (eval(down_cast<Cartesian_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return true;
}
return false;
}
bool Within::eval(const Cartesian_geometrycollection *g1,
const Cartesian_multipolygon *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (eval(down_cast<Cartesian_multipoint *>(g1_mpt.get()), g2)) {
return (g1_mls->empty() ||
bg::covered_by(
*down_cast<Cartesian_multilinestring *>(g1_mls.get()), *g2)) &&
(g1_mpy->empty() ||
bg::covered_by(*down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
*g2));
}
if (eval(down_cast<Cartesian_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return g1_mpy->empty() ||
bg::covered_by(*down_cast<Cartesian_multipolygon *>(g1_mpy.get()),
*g2);
}
if (eval(down_cast<Cartesian_multipolygon *>(g1_mpy.get()), g2)) {
for (auto &pt : *down_cast<Cartesian_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2)) return false;
return g1_mls->empty() ||
bg::covered_by(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*g2);
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_multipoint, *)
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_point *g2) const {
Equals equals(m_semi_major, m_semi_minor);
return equals(g1, g2);
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_linestring *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2);
if (!within)
intersects = bg::intersects(pt, *g2);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_polygon *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2);
if (!within)
intersects = bg::intersects(pt, *g2);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_geometrycollection *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
Intersects intersects_func(m_semi_major, m_semi_minor);
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = eval(&pt, g2);
if (!within)
intersects = intersects_func(&pt, g2);
else
intersects = true;
} else {
intersects = intersects_func(&pt, g2);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_multipoint *g2) const {
for (auto &pt : *g1)
if (!bg::within(pt, *g2)) return false;
return true;
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_multilinestring *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2);
if (!within)
intersects = bg::intersects(pt, *g2);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Cartesian_multipoint *g1,
const Cartesian_multipolygon *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2);
if (!within)
intersects = bg::intersects(pt, *g2);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2);
}
if (!intersects) break;
}
return (within && intersects);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_multilinestring, *)
bool Within::eval(const Cartesian_multilinestring *,
const Cartesian_point *) const {
// A multilinestring can never be within a point.
return false;
}
bool Within::eval(const Cartesian_multilinestring *g1,
const Cartesian_linestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_multilinestring *g1,
const Cartesian_polygon *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_multilinestring *g1,
const Cartesian_geometrycollection *g2) const {
// For g1 to be within g2, no point of g1 may be in the exterior of g2 and at
// least one point of the interior of g1 has to be within the interior of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Cartesian_multilinestring> g1_diff_g2(
new Cartesian_multilinestring());
g1_diff_g2.reset(down_cast<Cartesian_multilinestring *>(
difference(g1, down_cast<Cartesian_multilinestring *>(g2_mls.get()))));
g1_diff_g2.reset(down_cast<Cartesian_multilinestring *>(difference(
g1_diff_g2.get(), down_cast<Cartesian_multipolygon *>(g2_mpy.get()))));
boost::geometry::de9im::mask mask("T********");
return g1_diff_g2->empty() &&
(bg::relate(*g1, *down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask) ||
bg::relate(*g1, *down_cast<Cartesian_multipolygon *>(g2_mpy.get()),
mask));
}
bool Within::eval(const Cartesian_multilinestring *,
const Cartesian_multipoint *) const {
// A multilinestring can never be within a multipoint.
return false;
}
bool Within::eval(const Cartesian_multilinestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_multilinestring *g1,
const Cartesian_multipolygon *g2) const {
return bg::within(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Cartesian_multipolygon, *)
bool Within::eval(const Cartesian_multipolygon *,
const Cartesian_point *) const {
// A multipolygon can never be within a point.
return false;
}
bool Within::eval(const Cartesian_multipolygon *,
const Cartesian_linestring *) const {
// A multipolygon can never be within a linestring.
return false;
}
bool Within::eval(const Cartesian_multipolygon *g1,
const Cartesian_polygon *g2) const {
return bg::within(*g1, *g2);
}
bool Within::eval(const Cartesian_multipolygon *g1,
const Cartesian_geometrycollection *g2) const {
// A multipolygon may not be within the points and linestrings of g2, so the
// only way a multipolygon is within a geometrycollectin, is if it's within
// the union multipolygon of the geometrycollection.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
return eval(g1, down_cast<Cartesian_multipolygon *>(g2_mpy.get()));
}
bool Within::eval(const Cartesian_multipolygon *,
const Cartesian_multipoint *) const {
// A multipolygon can never be within a multipoint.
return false;
}
bool Within::eval(const Cartesian_multipolygon *,
const Cartesian_multilinestring *) const {
// A multipolygon can never be within a multilinestring.
return false;
}
bool Within::eval(const Cartesian_multipolygon *g1,
const Cartesian_multipolygon *g2) const {
return bg::within(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_point, *)
bool Within::eval(const Geographic_point *g1,
const Geographic_point *g2) const {
// Default strategy is OK. P/P computations do not depend on shape of
// ellipsoid.
return bg::within(*g1, *g2);
}
bool Within::eval(const Geographic_point *g1,
const Geographic_linestring *g2) const {
return bg::within(*g1, *g2, m_geographic_pl_pa_strategy);
}
bool Within::eval(const Geographic_point *g1,
const Geographic_polygon *g2) const {
return bg::within(*g1, *g2, m_geographic_pl_pa_strategy);
}
bool Within::eval(const Geographic_point *g1,
const Geographic_geometrycollection *g2) const {
// g1 must be within one of the elements of g2.
for (auto g : *g2)
if ((*this)(g1, g)) return true;
return false;
}
bool Within::eval(const Geographic_point *g1,
const Geographic_multipoint *g2) const {
// Default strategy is OK. P/P computations do not depend on shape of
// ellipsoid.
return bg::within(*g1, *g2);
}
bool Within::eval(const Geographic_point *g1,
const Geographic_multilinestring *g2) const {
return bg::within(*g1, *g2, m_geographic_pl_pa_strategy);
}
bool Within::eval(const Geographic_point *g1,
const Geographic_multipolygon *g2) const {
return bg::within(*g1, *g2, m_geographic_pl_pa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_linestring, *)
bool Within::eval(const Geographic_linestring *,
const Geographic_point *) const {
// A linestring can never be within a point.
return false;
}
bool Within::eval(const Geographic_linestring *g1,
const Geographic_linestring *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_linestring *g1,
const Geographic_polygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_linestring *g1,
const Geographic_geometrycollection *g2) const {
// For g1 to be within g2, no point of g1 may be in the exterior of g2 and at
// least one point of the interior of g1 has to be within the interior of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Multilinestring> g1_diff_g2(new Geographic_multilinestring());
g1_diff_g2.reset(down_cast<Geographic_multilinestring *>(
difference(g1, down_cast<Geographic_multilinestring *>(g2_mls.get()))));
g1_diff_g2.reset(down_cast<Geographic_multilinestring *>(
difference(down_cast<Geographic_multilinestring *>(g1_diff_g2.get()),
down_cast<Geographic_multipolygon *>(g2_mpy.get()))));
boost::geometry::de9im::mask mask("T********");
return g1_diff_g2->empty() &&
(bg::relate(*g1,
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask, m_geographic_ll_la_aa_strategy) ||
bg::relate(*g1, *down_cast<Geographic_multipolygon *>(g2_mpy.get()),
mask, m_geographic_ll_la_aa_strategy));
}
bool Within::eval(const Geographic_linestring *,
const Geographic_multipoint *) const {
// A linestring can never be within a multipoint.
return false;
}
bool Within::eval(const Geographic_linestring *g1,
const Geographic_multilinestring *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_linestring *g1,
const Geographic_multipolygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_polygon, *)
bool Within::eval(const Geographic_polygon *, const Geographic_point *) const {
// A polygon can never be within a point.
return false;
}
bool Within::eval(const Geographic_polygon *,
const Geographic_linestring *) const {
// A polygon can never be within a linestring.
return false;
}
bool Within::eval(const Geographic_polygon *g1,
const Geographic_polygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_polygon *g1,
const Geographic_geometrycollection *g2) const {
// Polygons can only be within other polygons or multipolygons, so we can
// ignore points and linestrings. g1 is within g2 if g1 is within the union
// multipolygon of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
return eval(g1, down_cast<Geographic_multipolygon *>(g2_mpy.get()));
}
bool Within::eval(const Geographic_polygon *,
const Geographic_multipoint *) const {
// A polygon can never be within a multipoint.
return false;
}
bool Within::eval(const Geographic_polygon *,
const Geographic_multilinestring *) const {
// A polygon can never be within a multilinestring.
return false;
}
bool Within::eval(const Geographic_polygon *g1,
const Geographic_multipolygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_geometrycollection, *)
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_point *g2) const {
Equals equals(m_semi_major, m_semi_minor);
return equals(g1, g2);
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_linestring *g2) const {
// g1 is within g2 if g1 contains only points and linestrings. One of the
// elements of g1 must be within g2, the rest must be covered by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (!g1_mpy->empty()) return false;
if (eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2))
return g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy);
if (eval(down_cast<Geographic_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return true;
}
return false;
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_polygon *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2)) {
return (g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy)) &&
(g1_mpy->empty() ||
bg::covered_by(*down_cast<Geographic_multipolygon *>(g1_mpy.get()),
*g2, m_geographic_ll_la_aa_strategy));
}
if (eval(down_cast<Geographic_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return g1_mpy->empty() ||
bg::covered_by(*down_cast<Geographic_multipolygon *>(g1_mpy.get()),
*g2, m_geographic_ll_la_aa_strategy);
}
if (eval(down_cast<Geographic_multipolygon *>(g1_mpy.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy);
}
return false;
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_geometrycollection *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
// Check that no part of g1 is in the exterior of g2.
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Geographic_multipoint> g1_mpt_diff_g2(
new Geographic_multipoint());
g1_mpt_diff_g2.reset(down_cast<Geographic_multipoint *>(
difference(down_cast<Geographic_multipoint *>(g1_mpt.get()),
down_cast<Geographic_multipoint *>(g2_mpt.get()))));
g1_mpt_diff_g2.reset(down_cast<Geographic_multipoint *>(
difference(g1_mpt_diff_g2.get(),
down_cast<Geographic_multilinestring *>(g2_mls.get()))));
g1_mpt_diff_g2.reset(down_cast<Geographic_multipoint *>(
difference(g1_mpt_diff_g2.get(),
down_cast<Geographic_multipolygon *>(g2_mpy.get()))));
if (!g1_mpt_diff_g2->empty()) return false;
std::unique_ptr<Geographic_multilinestring> g1_mls_diff_g2(
new Geographic_multilinestring());
g1_mls_diff_g2.reset(down_cast<Geographic_multilinestring *>(
difference(down_cast<Geographic_multilinestring *>(g1_mls.get()),
down_cast<Geographic_multilinestring *>(g2_mls.get()))));
g1_mls_diff_g2.reset(down_cast<Geographic_multilinestring *>(
difference(g1_mls_diff_g2.get(),
down_cast<Geographic_multipolygon *>(g2_mpy.get()))));
if (!g1_mls_diff_g2->empty()) return false;
std::unique_ptr<Geographic_multipolygon> g1_mpy_diff_g2(
new Geographic_multipolygon());
g1_mpy_diff_g2.reset(down_cast<Geographic_multipolygon *>(
difference(down_cast<Geographic_multipolygon *>(g1_mpy.get()),
down_cast<Geographic_multipolygon *>(g2_mpy.get()))));
if (!g1_mpy_diff_g2->empty()) return false;
// Check that the interiors of g1 and g2 have at least one point in common.
boost::geometry::de9im::mask mask("T********");
return eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2) ||
bg::relate(*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask, m_geographic_ll_la_aa_strategy) ||
bg::relate(*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multipolygon *>(g2_mpy.get()), mask,
m_geographic_ll_la_aa_strategy) ||
bg::relate(*down_cast<Geographic_multipolygon *>(g1_mpy.get()),
*down_cast<Geographic_multipolygon *>(g2_mpy.get()), mask,
m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_multipoint *g2) const {
// g1 is within g2 if g1 contains only points and those points are within g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
return g1_mls->empty() && g1_mpy->empty() &&
eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2);
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_multilinestring *g2) const {
// g1 is within g2 if g1 contains only points and linestrings. One of the
// elements of g1 must be within g2, the rest must be covered by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (!g1_mpy->empty()) return false;
if (eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2))
return g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy);
if (eval(down_cast<Geographic_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return true;
}
return false;
}
bool Within::eval(const Geographic_geometrycollection *g1,
const Geographic_multipolygon *g2) const {
// At least one element of g1 has to be within g2. The rest have to be covered
// by g2.
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
gc_union(m_semi_major, m_semi_minor, &g1_mpt, &g1_mls, &g1_mpy);
if (eval(down_cast<Geographic_multipoint *>(g1_mpt.get()), g2)) {
return (g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy)) &&
(g1_mpy->empty() ||
bg::covered_by(*down_cast<Geographic_multipolygon *>(g1_mpy.get()),
*g2, m_geographic_ll_la_aa_strategy));
}
if (eval(down_cast<Geographic_multilinestring *>(g1_mls.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return g1_mpy->empty() ||
bg::covered_by(*down_cast<Geographic_multipolygon *>(g1_mpy.get()),
*g2, m_geographic_ll_la_aa_strategy);
}
if (eval(down_cast<Geographic_multipolygon *>(g1_mpy.get()), g2)) {
for (auto &pt : *down_cast<Geographic_multipoint *>(g1_mpt.get()))
if (!bg::covered_by(pt, *g2, m_geographic_pl_pa_strategy)) return false;
return g1_mls->empty() ||
bg::covered_by(
*down_cast<Geographic_multilinestring *>(g1_mls.get()), *g2,
m_geographic_ll_la_aa_strategy);
}
return false;
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_multipoint, *)
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_point *g2) const {
Equals equals(m_semi_major, m_semi_minor);
return equals(g1, g2);
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_linestring *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2, m_geographic_pl_pa_strategy);
if (!within)
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_polygon *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2, m_geographic_pl_pa_strategy);
if (!within)
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_geometrycollection *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
Intersects intersects_func(m_semi_major, m_semi_minor);
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = eval(&pt, g2);
if (!within)
intersects = intersects_func(&pt, g2);
else
intersects = true;
} else {
intersects = intersects_func(&pt, g2);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_multipoint *g2) const {
// Default strategy is OK. P/P computations do not depend on shape of
// ellipsoid.
for (auto &pt : *g1)
if (!bg::within(pt, *g2)) return false;
return true;
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_multilinestring *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2, m_geographic_pl_pa_strategy);
if (!within)
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
}
if (!intersects) break;
}
return (within && intersects);
}
bool Within::eval(const Geographic_multipoint *g1,
const Geographic_multipolygon *g2) const {
// At least one point in g1 must be within g2. The rest has to intersect g2.
bool within = false;
bool intersects = false;
for (auto &pt : *g1) {
if (!within) {
within = bg::within(pt, *g2, m_geographic_pl_pa_strategy);
if (!within)
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
else
intersects = true;
} else {
intersects = bg::intersects(pt, *g2, m_geographic_pl_pa_strategy);
}
if (!intersects) break;
}
return (within && intersects);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_multilinestring, *)
bool Within::eval(const Geographic_multilinestring *,
const Geographic_point *) const {
// A multilinestring can never be within a point.
return false;
}
bool Within::eval(const Geographic_multilinestring *g1,
const Geographic_linestring *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_multilinestring *g1,
const Geographic_polygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_multilinestring *g1,
const Geographic_geometrycollection *g2) const {
// For g1 to be within g2, no point of g1 may be in the exterior of g2 and at
// least one point of the interior of g1 has to be within the interior of g2.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
Difference difference(m_semi_major, m_semi_minor);
std::unique_ptr<Geographic_multilinestring> g1_diff_g2(
new Geographic_multilinestring());
g1_diff_g2.reset(down_cast<Geographic_multilinestring *>(
difference(g1, down_cast<Geographic_multilinestring *>(g2_mls.get()))));
g1_diff_g2.reset(down_cast<Geographic_multilinestring *>(difference(
g1_diff_g2.get(), down_cast<Geographic_multipolygon *>(g2_mpy.get()))));
boost::geometry::de9im::mask mask("T********");
return g1_diff_g2->empty() &&
(bg::relate(*g1,
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask, m_geographic_ll_la_aa_strategy) ||
bg::relate(*g1, *down_cast<Geographic_multipolygon *>(g2_mpy.get()),
mask, m_geographic_ll_la_aa_strategy));
}
bool Within::eval(const Geographic_multilinestring *,
const Geographic_multipoint *) const {
// A multilinestring can never be within a multipoint.
return false;
}
bool Within::eval(const Geographic_multilinestring *g1,
const Geographic_multilinestring *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_multilinestring *g1,
const Geographic_multipolygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// within(Geographic_multipolygon, *)
bool Within::eval(const Geographic_multipolygon *,
const Geographic_point *) const {
// A multipolygon can never be within a point.
return false;
}
bool Within::eval(const Geographic_multipolygon *,
const Geographic_linestring *) const {
// A multipolygon can never be within a linestring.
return false;
}
bool Within::eval(const Geographic_multipolygon *g1,
const Geographic_polygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Within::eval(const Geographic_multipolygon *g1,
const Geographic_geometrycollection *g2) const {
// A multipolygon may not be within the points and linestrings of g2, so the
// only way a multipolygon is within a geometrycollectin, is if it's within
// the union multipolygon of the geometrycollection.
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
gc_union(m_semi_major, m_semi_minor, &g2_mpt, &g2_mls, &g2_mpy);
return eval(g1, down_cast<Geographic_multipolygon *>(g2_mpy.get()));
}
bool Within::eval(const Geographic_multipolygon *,
const Geographic_multipoint *) const {
// A multipolygon can never be within a multipoint.
return false;
}
bool Within::eval(const Geographic_multipolygon *,
const Geographic_multilinestring *) const {
// A multipolygon can never be within a multilinestring.
return false;
}
bool Within::eval(const Geographic_multipolygon *g1,
const Geographic_multipolygon *g2) const {
return bg::within(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// within(Box, Box)
bool Within::eval(const Cartesian_box *b1, const Cartesian_box *b2) const {
if (mbrs_are_equal(*b1, *b2)) return true;
// Work around bugs in BG for boxes that have zero height and/or width.
if (mbr_is_point(*b1)) {
Cartesian_point pt(b1->min_corner().x(), b1->min_corner().y());
if (mbr_is_line(*b2)) {
Cartesian_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Cartesian_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Cartesian_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::within(pt, b2_ls);
}
return bg::within(pt, *b2);
}
if (mbr_is_line(*b1)) {
Cartesian_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y());
Cartesian_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y());
Cartesian_linestring b1_ls;
b1_ls.push_back(b1_ls_start);
b1_ls.push_back(b1_ls_end);
if (mbr_is_line(*b2)) {
Cartesian_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Cartesian_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Cartesian_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::within(b1_ls, b2_ls);
}
Cartesian_point b2_pt1(b2->min_corner().x(), b2->min_corner().y());
Cartesian_point b2_pt2(b2->max_corner().x(), b2->min_corner().y());
Cartesian_point b2_pt3(b2->max_corner().x(), b2->max_corner().y());
Cartesian_point b2_pt4(b2->min_corner().x(), b2->max_corner().y());
Cartesian_point b2_pt5(b2->min_corner().x(), b2->min_corner().y());
Cartesian_linearring b2_lr;
b2_lr.push_back(b2_pt1);
b2_lr.push_back(b2_pt2);
b2_lr.push_back(b2_pt3);
b2_lr.push_back(b2_pt4);
b2_lr.push_back(b2_pt5);
Cartesian_polygon b2_py;
b2_py.push_back(b2_lr);
return bg::within(b1_ls, b2_py);
}
return bg::within(*b1, *b2);
}
bool Within::eval(const Geographic_box *b1, const Geographic_box *b2) const {
if (mbrs_are_equal(*b1, *b2)) return true;
// Work around bugs in BG for boxes that have zero height and/or width.
if (mbr_is_point(*b1)) {
Geographic_point pt(b1->min_corner().x(), b1->min_corner().y());
if (mbr_is_line(*b2)) {
Geographic_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Geographic_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Geographic_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::within(pt, b2_ls);
}
return bg::within(pt, *b2);
}
if (mbr_is_line(*b1)) {
Geographic_point b1_ls_start(b1->min_corner().x(), b1->min_corner().y());
Geographic_point b1_ls_end(b1->max_corner().x(), b1->max_corner().y());
Geographic_linestring b1_ls;
b1_ls.push_back(b1_ls_start);
b1_ls.push_back(b1_ls_end);
if (mbr_is_line(*b2)) {
Geographic_point b2_ls_start(b2->min_corner().x(), b2->min_corner().y());
Geographic_point b2_ls_end(b2->max_corner().x(), b2->max_corner().y());
Geographic_linestring b2_ls;
b2_ls.push_back(b2_ls_start);
b2_ls.push_back(b2_ls_end);
return bg::within(b1_ls, b2_ls);
}
// If b1 is a line along the border of b2, it's not within b2.
if (((b1_ls_start.x() == b1_ls_end.x()) &&
(b1_ls_start.x() == b2->min_corner().x() ||
b1_ls_start.x() == b2->max_corner().x())) ||
((b1_ls_start.y() == b1_ls_end.y()) &&
(b1_ls_start.y() == b2->min_corner().y() ||
b1_ls_start.y() == b2->max_corner().y())))
return false;
return bg::covered_by(b1_ls_start, *b2) && bg::covered_by(b1_ls_end, *b2);
}
return bg::within(*b1, *b2);
}
//////////////////////////////////////////////////////////////////////////////
bool within(const dd::Spatial_reference_system *srs, const Geometry *g1,
const Geometry *g2, const char *func_name, bool *within,
bool *null) noexcept {
try {
DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system());
DBUG_ASSERT(srs == nullptr ||
((srs->is_cartesian() &&
g1->coordinate_system() == Coordinate_system::kCartesian) ||
(srs->is_geographic() &&
g1->coordinate_system() == Coordinate_system::kGeographic)));
if ((*null = (g1->is_empty() || g2->is_empty()))) return false;
Within within_func(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
*within = within_func(g1, g2);
} catch (...) {
handle_gis_exception(func_name);
return true;
}
return false;
}
bool mbr_within(const dd::Spatial_reference_system *srs, const Geometry *g1,
const Geometry *g2, const char *func_name, bool *within,
bool *null) noexcept {
try {
DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system());
DBUG_ASSERT(srs == nullptr ||
((srs->is_cartesian() &&
g1->coordinate_system() == Coordinate_system::kCartesian) ||
(srs->is_geographic() &&
g1->coordinate_system() == Coordinate_system::kGeographic)));
if ((*null = (g1->is_empty() || g2->is_empty()))) return false;
Within within_func(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
switch (g1->coordinate_system()) {
case Coordinate_system::kCartesian: {
Cartesian_box mbr1;
box_envelope(g1, srs, &mbr1);
Cartesian_box mbr2;
box_envelope(g2, srs, &mbr2);
*within = within_func(&mbr1, &mbr2);
break;
}
case Coordinate_system::kGeographic: {
Geographic_box mbr1;
box_envelope(g1, srs, &mbr1);
Geographic_box mbr2;
box_envelope(g2, srs, &mbr2);
*within = within_func(&mbr1, &mbr2);
break;
}
}
} catch (...) {
handle_gis_exception(func_name);
return true;
}
return false;
}
} // namespace gis