/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Email: opensource_embedded@phytium.com.cn * * Change Logs: * Date Author Notes * 2023-03-20 zhangyan first version * */ #include "rtconfig.h" #include "rtdevice.h" #define LOG_TAG "qspi_drv" #include "drv_log.h" #include #ifdef RT_USING_SMART #include #endif #include "drv_qspi.h" #include "fqspi_flash.h" #include "fiopad.h" #include "fqspi_hw.h" #include "fio_mux.h" #define DAT_LENGTH 128 #define QSPI_ALIGNED_BYTE 4 static rt_uint8_t rd_buf[DAT_LENGTH]; static rt_uint8_t wr_buf[DAT_LENGTH]; typedef struct { rt_uint32_t fqspi_id; const char *name; rt_uint32_t init; /* 0 is init already */ FQspiCtrl fqspi; struct rt_spi_bus qspi_bus; } phytium_qspi_bus; rt_err_t FQspiInit(phytium_qspi_bus *phytium_qspi_bus) { FError ret = FT_SUCCESS; rt_uint32_t qspi_id = phytium_qspi_bus->fqspi_id; FIOPadSetQspiMux(qspi_id, FQSPI_CS_0); FIOPadSetQspiMux(qspi_id, FQSPI_CS_1); FQspiDeInitialize(&(phytium_qspi_bus->fqspi)); FQspiConfig pconfig = *FQspiLookupConfig(qspi_id); #ifdef RT_USING_SMART pconfig.base_addr = (uintptr)rt_ioremap((void *)pconfig.base_addr, 0x1000); #endif /* Norflash init, include reset and read flash_size */ ret = FQspiCfgInitialize(&(phytium_qspi_bus->fqspi), &pconfig); if (FT_SUCCESS != ret) { LOG_E("Qspi init failed.\n"); return -RT_ERROR; } else { rt_kprintf("Qspi init successfully.\n"); } /* Detect connected flash infomation */ ret = FQspiFlashDetect(&(phytium_qspi_bus->fqspi)); if (FT_SUCCESS != ret) { LOG_E("Qspi flash detect failed.\n"); return -RT_ERROR; } else { rt_kprintf("Qspi flash detect successfully.\n"); } return RT_EOK; } #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ') void FtDumpHexByte(const u8 *ptr, u32 buflen) { u8 *buf = (u8 *)ptr; fsize_t i, j; for (i = 0; i < buflen; i += 16) { rt_kprintf("%p: ", ptr + i); for (j = 0; j < 16; j++) if (i + j < buflen) { rt_kprintf("%02X ", buf[i + j]); } else { rt_kprintf(" "); } rt_kprintf(" "); for (j = 0; j < 16; j++) if (i + j < buflen) { rt_kprintf("%c", (char)(__is_print(buf[i + j]) ? buf[i + j] : '.')); } rt_kprintf("\r\n"); } } static rt_err_t phytium_qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); phytium_qspi_bus *qspi_bus; qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data; rt_err_t ret = RT_EOK; ret = FQspiInit(qspi_bus); if (RT_EOK != ret) { qspi_bus->init = RT_FALSE; rt_kprintf("Qspi init failed!!!\n"); return -RT_ERROR; } qspi_bus->init = RT_EOK; return RT_EOK; } static FError QspiFlashWriteData(FQspiCtrl *pctrl, u8 command, uintptr addr, const u8 *buf, size_t len) { RT_ASSERT(pctrl && buf); FError ret = FQSPI_SUCCESS; u32 loop = 0; const u32 mask = (u32)GENMASK(1, 0); u32 reg_val = 0; u32 val = 0; u32 aligned_bit = 0; u8 tmp[QSPI_ALIGNED_BYTE] = {0xff, 0xff, 0xff, 0xff}; uintptr base_addr = pctrl->config.base_addr; if (FT_COMPONENT_IS_READY != pctrl->is_ready) { LOG_E("Nor flash not ready !!!"); return FQSPI_NOT_READY; } /* Flash write enable */ FQspiFlashEnableWrite(pctrl); memset(&pctrl->wr_cfg, 0, sizeof(pctrl->wr_cfg)); /* set cmd region, command */ pctrl->wr_cfg.wr_cmd = command; pctrl->wr_cfg.wr_wait = FQSPI_WAIT_ENABLE; /* clear addr select bit */ pctrl->wr_cfg.wr_addr_sel = 0; /* set wr mode, use buffer */ pctrl->wr_cfg.wr_mode = FQSPI_USE_BUFFER_ENABLE; /* set sck_sel region, clk_div */ pctrl->wr_cfg.wr_sck_sel = FQSPI_SCK_DIV_128; /* set addr_sel region, FQSPI_ADDR_SEL_3 or FQSPI_ADDR_SEL_4 */ switch (command) { case FQSPI_FLASH_CMD_PP: case FQSPI_FLASH_CMD_QPP: pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_3; break; case FQSPI_FLASH_CMD_4PP: case FQSPI_FLASH_CMD_4QPP: pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_4; break; default: ret |= FQSPI_NOT_SUPPORT; return ret; break; } /*write wr_cfg to Write config register 0x08 */ FQspiWrCfgConfig(pctrl); if (IS_ALIGNED(addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */ { /* write alligned data into memory space */ for (loop = 0; loop < (len >> 2); loop++) { FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop)); } /* write not alligned data into memory space */ if (len & mask) { addr = addr + (len & ~mask); memcpy(tmp, buf + (len & ~mask), len & mask); FQSPI_DAT_WRITE(addr, *(u32 *)(tmp)); } } else { aligned_bit = (addr & mask); addr = addr - aligned_bit; reg_val = FQSPI_READ_REG32(addr, 0); for (loop = 0; loop < (QSPI_ALIGNED_BYTE - aligned_bit); loop++) { val = (val << 8) | (buf[loop]); reg_val &= (~(0xff << (loop * 8))); } reg_val |= val; reg_val = __builtin_bswap32(reg_val); FQSPI_DAT_WRITE(addr, reg_val); buf = buf + loop; len = len - loop; addr = addr + QSPI_ALIGNED_BYTE; LOG_E("addr=%p, buf=%p, len=%d, value=%#x\r\n", addr, buf, len, *(u32 *)(buf)); for (loop = 0; loop < (len >> 2); loop++) { FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop)); } if (!IS_ALIGNED(len, QSPI_ALIGNED_BYTE)) { buf = buf + QSPI_ALIGNED_BYTE * loop; len = len - QSPI_ALIGNED_BYTE * loop; addr = addr + QSPI_ALIGNED_BYTE * loop; memcpy(tmp, buf, len); FQSPI_DAT_WRITE(addr, *(u32 *)(tmp)); } } /* flush buffer data to Flash */ FQspiWriteFlush(base_addr); ret = FQspiFlashWaitForCmd(pctrl); return ret; } size_t QspiFlashReadData(FQspiCtrl *pctrl, uintptr addr, u8 *buf, size_t len) { /* addr of copy dst or src might be zero */ RT_ASSERT(pctrl && buf); size_t loop = 0; const size_t cnt = len / QSPI_ALIGNED_BYTE; /* cnt number of 4-bytes need copy */ const size_t remain = len % QSPI_ALIGNED_BYTE; /* remain number of 1-byte not aligned */ u8 align_buf[QSPI_ALIGNED_BYTE]; size_t copy_len = 0; intptr src_addr = (intptr)addr; /* conver to 32/64 bit addr */ intptr dst_addr = (intptr)buf; if (FT_COMPONENT_IS_READY != pctrl->is_ready) { LOG_E("Nor flash not ready !!!"); return 0; } if (0 == pctrl->rd_cfg.rd_cmd) { LOG_E("Nor flash read command is not ready !!!"); return 0; } if (0 == len) { return 0; } if (IS_ALIGNED(src_addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */ { /* read 4-bytes aligned buf part */ for (loop = 0; loop < cnt; loop++) { *(u32 *)dst_addr = *(volatile u32 *)(src_addr); src_addr += QSPI_ALIGNED_BYTE; dst_addr += QSPI_ALIGNED_BYTE; } copy_len += (loop << 2); if (remain > 0) { *(u32 *)align_buf = *(volatile u32 *)(src_addr); } /* read remain un-aligned buf byte by byte */ for (loop = 0; loop < remain; loop++) { *(u8 *)dst_addr = align_buf[loop]; dst_addr += 1; } copy_len += loop; } else /* if copy src is not aligned */ { /* read byte by byte */ for (loop = 0; loop < len; loop++) { *(u8 *)dst_addr = *(volatile u8 *)(src_addr); dst_addr += 1; src_addr += 1; } copy_len += loop; } return copy_len; } static rt_ssize_t phytium_qspi_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { RT_ASSERT(device != RT_NULL); RT_ASSERT(message != RT_NULL); FError ret = FT_SUCCESS; phytium_qspi_bus *qspi_bus; struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message; rt_uint32_t cmd = qspi_message->instruction.content; rt_uint32_t flash_addr = qspi_message->address.content; rt_uint32_t len = message->length; const void *rcvb = message->recv_buf; const void *sndb = message->send_buf; qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data; #ifdef USING_QSPI_CHANNEL0 qspi_bus->fqspi.config.channel = 0; #elif defined USING_QSPI_CHANNEL1 qspi_bus->fqspi.config.channel = 1; #endif uintptr addr = qspi_bus->fqspi.config.mem_start + qspi_bus->fqspi.config.channel * qspi_bus->fqspi.flash_size + flash_addr; #ifdef RT_USING_SMART addr = (uintptr)rt_ioremap((void *)addr, 0x2000); #endif /*Distinguish the write mode according to different commands*/ if (cmd == FQSPI_FLASH_CMD_PP || cmd == FQSPI_FLASH_CMD_QPP || cmd == FQSPI_FLASH_CMD_4PP || cmd == FQSPI_FLASH_CMD_4QPP) { rt_memcpy(&wr_buf, (char *)message->send_buf, len); ret = FQspiFlashErase(&(qspi_bus->fqspi), FQSPI_FLASH_CMD_SE, flash_addr); if (FT_SUCCESS != ret) { LOG_E("Failed to erase mem, test result 0x%x.\r\n", ret); return -RT_ERROR; } /* write norflash data */ ret = QspiFlashWriteData(&(qspi_bus->fqspi), cmd, addr, (u8 *)&wr_buf, len); if (FT_SUCCESS != ret) { LOG_E("Failed to write mem, test result 0x%x.\r\n", ret); return -RT_ERROR; } else { rt_kprintf("Write successfully!!!\r\n"); } return RT_EOK; } /*Distinguish the read mode according to different commands*/ if (cmd == FQSPI_FLASH_CMD_READ || cmd == FQSPI_FLASH_CMD_4READ || cmd == FQSPI_FLASH_CMD_FAST_READ || cmd == FQSPI_FLASH_CMD_4FAST_READ || cmd == FQSPI_FLASH_CMD_DUAL_READ || cmd == FQSPI_FLASH_CMD_QIOR || cmd == FQSPI_FLASH_CMD_4QIOR) { ret |= FQspiFlashReadDataConfig(&(qspi_bus->fqspi), cmd); if (FT_SUCCESS != ret) { rt_kprintf("Failed to config read, test result 0x%x.\r\n", ret); return -RT_ERROR; } /* read norflash data */ size_t read_len = QspiFlashReadData(&(qspi_bus->fqspi), addr, (u8 *)&rd_buf, len); if (read_len != len) { rt_kprintf("Failed to read mem, read len = %d.\r\n", read_len); return -RT_ERROR; } else { rt_kprintf("Read successfully!!!, read_len = %d\r\n", read_len); message->recv_buf = &rd_buf; } FtDumpHexByte(message->recv_buf, read_len); return read_len; } if (rcvb) { if (cmd == FQSPI_FLASH_CMD_RDID || cmd == FQSPI_FLASH_CMD_RDSR1 || cmd == FQSPI_FLASH_CMD_RDSR2 || cmd == FQSPI_FLASH_CMD_RDSR3) { ret |= FQspiFlashSpecialInstruction(&(qspi_bus->fqspi), cmd, (u8 *)rcvb, sizeof(rcvb)); if (FT_SUCCESS != ret) { LOG_E("Failed to read flash information.\n"); return -RT_ERROR; } } return 1; } if (sndb) { ret |= FQspiFlashEnableWrite(&(qspi_bus->fqspi)); if (FT_SUCCESS != ret) { LOG_E("Failed to enable flash reg write.\n"); return -RT_ERROR; } ret |= FQspiFlashWriteReg(&(qspi_bus->fqspi), cmd, (u8 *)sndb, 1); if (FT_SUCCESS != ret) { LOG_E("Failed to write flash reg.\n"); return -RT_ERROR; } return 1; } rt_kprintf("cmd not found!!!\r\n"); return ret; } static struct rt_spi_ops phytium_qspi_ops = { .configure = phytium_qspi_configure, .xfer = phytium_qspi_xfer, }; rt_err_t phytium_qspi_bus_attach_device(const char *bus_name, const char *device_name) { struct rt_qspi_device *qspi_device; rt_err_t result = RT_EOK; RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device)); rt_kprintf("qspi_device addr == %p\n", qspi_device); if (qspi_device == RT_NULL) { LOG_E("Qspi bus attach device failed."); result = RT_ENOMEM; goto __exit; } result = rt_spi_bus_attach_device(&(qspi_device->parent), device_name, bus_name, RT_NULL); __exit: if (result != RT_EOK) { if (qspi_device) { rt_free(qspi_device); } } return result; } static int rt_qspi_init(phytium_qspi_bus *phytium_qspi) { int result = RT_EOK; phytium_qspi->qspi_bus.parent.user_data = phytium_qspi; if (rt_qspi_bus_register(&phytium_qspi->qspi_bus, phytium_qspi->name, &phytium_qspi_ops) == RT_EOK) { rt_kprintf("Qspi bus register successfully!!!\n"); } else { LOG_E("Qspi bus register Failed!!!\n"); result = -RT_ERROR; } return result; } #if defined(RT_USING_QSPI0) static phytium_qspi_bus phytium_qspi0_bus; #endif int rt_hw_qspi_init(void) { #if defined(RT_USING_QSPI0) phytium_qspi0_bus.name = "QSPI0"; phytium_qspi0_bus.fqspi_id = FQSPI0_ID; rt_qspi_init(&phytium_qspi0_bus); #endif return 0; } INIT_BOARD_EXPORT(rt_hw_qspi_init);