/* * include/haproxy/fd.h * File descriptors states - exported variables and functions * * Copyright (C) 2000-2020 Willy Tarreau - w@1wt.eu * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation, version 2.1 * exclusively. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ #ifndef _HAPROXY_FD_H #define _HAPROXY_FD_H #include #include #include #include #include #include #include #include #include #include #include #include /* public variables */ extern struct poller cur_poller; /* the current poller */ extern int nbpollers; extern struct poller pollers[MAX_POLLERS]; /* all registered pollers */ extern struct fdtab *fdtab; /* array of all the file descriptors */ extern struct fdinfo *fdinfo; /* less-often used infos for file descriptors */ extern int totalconn; /* total # of terminated sessions */ extern int actconn; /* # of active sessions */ extern volatile struct fdlist update_list; extern struct polled_mask *polled_mask; extern THREAD_LOCAL int *fd_updt; // FD updates list extern THREAD_LOCAL int fd_nbupdt; // number of updates in the list extern int poller_wr_pipe[MAX_THREADS]; extern volatile int ha_used_fds; // Number of FDs we're currently using /* Deletes an FD from the fdsets. * The file descriptor is also closed. */ void fd_delete(int fd); /* * Take over a FD belonging to another thread. * Returns 0 on success, and -1 on failure. */ int fd_takeover(int fd, void *expected_owner); /* lock used by FD migration */ #ifndef HA_HAVE_CAS_DW __decl_thread(extern HA_RWLOCK_T fd_mig_lock); #endif ssize_t fd_write_frag_line(int fd, size_t maxlen, const struct ist pfx[], size_t npfx, const struct ist msg[], size_t nmsg, int nl); /* close all FDs starting from */ void my_closefrom(int start); /* disable the specified poller */ void disable_poller(const char *poller_name); void poller_pipe_io_handler(int fd); /* * Initialize the pollers till the best one is found. * If none works, returns 0, otherwise 1. * The pollers register themselves just before main() is called. */ int init_pollers(); /* * Deinitialize the pollers. */ void deinit_pollers(); /* * Some pollers may lose their connection after a fork(). It may be necessary * to create initialize part of them again. Returns 0 in case of failure, * otherwise 1. The fork() function may be NULL if unused. In case of error, * the the current poller is destroyed and the caller is responsible for trying * another one by calling init_pollers() again. */ int fork_poller(); /* * Lists the known pollers on . * Should be performed only before initialization. */ int list_pollers(FILE *out); /* * Runs the polling loop */ void run_poller(); void fd_add_to_fd_list(volatile struct fdlist *list, int fd, int off); void fd_rm_from_fd_list(volatile struct fdlist *list, int fd, int off); void updt_fd_polling(const int fd); /* Called from the poller to acknowledge we read an entry from the global * update list, to remove our bit from the update_mask, and remove it from * the list if we were the last one. */ static inline void done_update_polling(int fd) { unsigned long update_mask; update_mask = _HA_ATOMIC_AND(&fdtab[fd].update_mask, ~tid_bit); while ((update_mask & all_threads_mask)== 0) { /* If we were the last one that had to update that entry, remove it from the list */ fd_rm_from_fd_list(&update_list, fd, offsetof(struct fdtab, update)); update_mask = (volatile unsigned long)fdtab[fd].update_mask; if ((update_mask & all_threads_mask) != 0) { /* Maybe it's been re-updated in the meanwhile, and we * wrongly removed it from the list, if so, re-add it */ fd_add_to_fd_list(&update_list, fd, offsetof(struct fdtab, update)); update_mask = (volatile unsigned long)(fdtab[fd].update_mask); /* And then check again, just in case after all it * should be removed, even if it's very unlikely, given * the current thread wouldn't have been able to take * care of it yet */ } else break; } } /* * returns true if the FD is active for recv */ static inline int fd_recv_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_R; } /* * returns true if the FD is ready for recv */ static inline int fd_recv_ready(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_READY_R; } /* * returns true if the FD is active for send */ static inline int fd_send_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_W; } /* * returns true if the FD is ready for send */ static inline int fd_send_ready(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_READY_W; } /* * returns true if the FD is active for recv or send */ static inline int fd_active(const int fd) { return (unsigned)fdtab[fd].state & FD_EV_ACTIVE_RW; } /* Disable processing recv events on fd */ static inline void fd_stop_recv(int fd) { if (!(fdtab[fd].state & FD_EV_ACTIVE_R) || !HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_ACTIVE_R_BIT)) return; } /* Disable processing send events on fd */ static inline void fd_stop_send(int fd) { if (!(fdtab[fd].state & FD_EV_ACTIVE_W) || !HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_ACTIVE_W_BIT)) return; } /* Disable processing of events on fd for both directions. */ static inline void fd_stop_both(int fd) { unsigned char old, new; old = fdtab[fd].state; do { if (!(old & FD_EV_ACTIVE_RW)) return; new = old & ~FD_EV_ACTIVE_RW; } while (unlikely(!_HA_ATOMIC_CAS(&fdtab[fd].state, &old, new))); } /* Report that FD cannot receive anymore without polling (EAGAIN detected). */ static inline void fd_cant_recv(const int fd) { /* marking ready never changes polled status */ if (!(fdtab[fd].state & FD_EV_READY_R) || !HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_READY_R_BIT)) return; } /* Report that FD may receive again without polling. */ static inline void fd_may_recv(const int fd) { /* marking ready never changes polled status */ if ((fdtab[fd].state & FD_EV_READY_R) || HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_R_BIT)) return; } /* Report that FD may receive again without polling but only if its not * active yet. This is in order to speculatively try to enable I/Os when it's * highly likely that these will succeed, but without interfering with polling. */ static inline void fd_cond_recv(const int fd) { if ((fdtab[fd].state & (FD_EV_ACTIVE_R|FD_EV_READY_R)) == 0) HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_R_BIT); } /* Report that FD may send again without polling but only if its not * active yet. This is in order to speculatively try to enable I/Os when it's * highly likely that these will succeed, but without interfering with polling. */ static inline void fd_cond_send(const int fd) { if ((fdtab[fd].state & (FD_EV_ACTIVE_W|FD_EV_READY_W)) == 0) HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_W_BIT); } /* Report that FD may receive and send without polling. Used at FD * initialization. */ static inline void fd_may_both(const int fd) { HA_ATOMIC_OR(&fdtab[fd].state, FD_EV_READY_RW); } /* Report that FD cannot send anymore without polling (EAGAIN detected). */ static inline void fd_cant_send(const int fd) { /* removing ready never changes polled status */ if (!(fdtab[fd].state & FD_EV_READY_W) || !HA_ATOMIC_BTR(&fdtab[fd].state, FD_EV_READY_W_BIT)) return; } /* Report that FD may send again without polling (EAGAIN not detected). */ static inline void fd_may_send(const int fd) { /* marking ready never changes polled status */ if ((fdtab[fd].state & FD_EV_READY_W) || HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_READY_W_BIT)) return; } /* Prepare FD to try to receive */ static inline void fd_want_recv(int fd) { if ((fdtab[fd].state & FD_EV_ACTIVE_R) || HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_ACTIVE_R_BIT)) return; updt_fd_polling(fd); } /* Prepare FD to try to receive, and only create update if fd_updt exists * (essentially for receivers during early boot). */ static inline void fd_want_recv_safe(int fd) { if ((fdtab[fd].state & FD_EV_ACTIVE_R) || HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_ACTIVE_R_BIT)) return; if (fd_updt) updt_fd_polling(fd); } /* Prepare FD to try to send */ static inline void fd_want_send(int fd) { if ((fdtab[fd].state & FD_EV_ACTIVE_W) || HA_ATOMIC_BTS(&fdtab[fd].state, FD_EV_ACTIVE_W_BIT)) return; updt_fd_polling(fd); } /* Set the fd as currently running on the current thread. * Returns 0 if all goes well, or -1 if we no longer own the fd, and should * do nothing with it. */ static inline int fd_set_running(int fd) { #ifndef HA_HAVE_CAS_DW HA_RWLOCK_RDLOCK(OTHER_LOCK, &fd_mig_lock); if (!(fdtab[fd].thread_mask & tid_bit)) { HA_RWLOCK_RDUNLOCK(OTHER_LOCK, &fd_mig_lock); return -1; } _HA_ATOMIC_OR(&fdtab[fd].running_mask, tid_bit); HA_RWLOCK_RDUNLOCK(OTHER_LOCK, &fd_mig_lock); return 0; #else unsigned long old_masks[2]; unsigned long new_masks[2]; old_masks[0] = fdtab[fd].running_mask; old_masks[1] = fdtab[fd].thread_mask; do { if (!(old_masks[1] & tid_bit)) return -1; new_masks[0] = fdtab[fd].running_mask | tid_bit; new_masks[1] = old_masks[1]; } while (!(HA_ATOMIC_DWCAS(&fdtab[fd].running_mask, &old_masks, &new_masks))); return 0; #endif } static inline void fd_set_running_excl(int fd) { unsigned long old_mask = 0; while (!_HA_ATOMIC_CAS(&fdtab[fd].running_mask, &old_mask, tid_bit)); } static inline void fd_clr_running(int fd) { _HA_ATOMIC_AND(&fdtab[fd].running_mask, ~tid_bit); } /* Update events seen for FD and its state if needed. This should be * called by the poller, passing FD_EV_*_{R,W,RW} in . FD_EV_ERR_* * doesn't need to also pass FD_EV_SHUT_*, it's implied. ERR and SHUT are * allowed to be reported regardless of R/W readiness. */ static inline void fd_update_events(int fd, unsigned char evts) { unsigned long locked = atleast2(fdtab[fd].thread_mask); unsigned char old, new; int new_flags, must_stop; new_flags = ((evts & FD_EV_READY_R) ? FD_POLL_IN : 0) | ((evts & FD_EV_READY_W) ? FD_POLL_OUT : 0) | ((evts & FD_EV_SHUT_R) ? FD_POLL_HUP : 0) | ((evts & FD_EV_ERR_RW) ? FD_POLL_ERR : 0); /* SHUTW reported while FD was active for writes is an error */ if ((fdtab[fd].ev & FD_EV_ACTIVE_W) && (evts & FD_EV_SHUT_W)) new_flags |= FD_POLL_ERR; /* compute the inactive events reported late that must be stopped */ must_stop = 0; if (unlikely(!fd_active(fd))) { /* both sides stopped */ must_stop = FD_POLL_IN | FD_POLL_OUT; } else if (unlikely(!fd_recv_active(fd) && (evts & (FD_EV_READY_R | FD_EV_SHUT_R | FD_EV_ERR_RW)))) { /* only send remains */ must_stop = FD_POLL_IN; } else if (unlikely(!fd_send_active(fd) && (evts & (FD_EV_READY_W | FD_EV_SHUT_W | FD_EV_ERR_RW)))) { /* only recv remains */ must_stop = FD_POLL_OUT; } old = fdtab[fd].ev; new = (old & FD_POLL_STICKY) | new_flags; if (unlikely(locked)) { /* Locked FDs (those with more than 2 threads) are atomically updated */ while (unlikely(new != old && !_HA_ATOMIC_CAS(&fdtab[fd].ev, &old, new))) new = (old & FD_POLL_STICKY) | new_flags; } else { if (new != old) fdtab[fd].ev = new; } if (fdtab[fd].ev & (FD_POLL_IN | FD_POLL_HUP | FD_POLL_ERR)) fd_may_recv(fd); if (fdtab[fd].ev & (FD_POLL_OUT | FD_POLL_ERR)) fd_may_send(fd); if (fdtab[fd].iocb && fd_active(fd)) { if (fd_set_running(fd) == -1) return; fdtab[fd].iocb(fd); fd_clr_running(fd); } /* we had to stop this FD and it still must be stopped after the I/O * cb's changes, so let's program an update for this. */ if (must_stop && !(fdtab[fd].update_mask & tid_bit)) { if (((must_stop & FD_POLL_IN) && !fd_recv_active(fd)) || ((must_stop & FD_POLL_OUT) && !fd_send_active(fd))) if (!HA_ATOMIC_BTS(&fdtab[fd].update_mask, tid)) fd_updt[fd_nbupdt++] = fd; } ti->flags &= ~TI_FL_STUCK; // this thread is still running } /* Prepares for being polled */ static inline void fd_insert(int fd, void *owner, void (*iocb)(int fd), unsigned long thread_mask) { int locked = fdtab[fd].running_mask != tid_bit; extern void sock_conn_iocb(int); if (locked) fd_set_running_excl(fd); fdtab[fd].owner = owner; fdtab[fd].iocb = iocb; fdtab[fd].ev = 0; fdtab[fd].linger_risk = 0; fdtab[fd].cloned = 0; fdtab[fd].et_possible = 0; fdtab[fd].exported = 0; #ifdef DEBUG_FD fdtab[fd].event_count = 0; #endif /* conn_fd_handler should support edge-triggered FDs */ if ((global.tune.options & GTUNE_FD_ET) && fdtab[fd].iocb == sock_conn_iocb) fdtab[fd].et_possible = 1; fdtab[fd].thread_mask = thread_mask; /* note: do not reset polled_mask here as it indicates which poller * still knows this FD from a possible previous round. */ if (locked) fd_clr_running(fd); /* the two directions are ready until proven otherwise */ fd_may_both(fd); _HA_ATOMIC_ADD(&ha_used_fds, 1); } /* Computes the bounded poll() timeout based on the next expiration timer * by bounding it to MAX_DELAY_MS. may equal TICK_ETERNITY. The pollers * just needs to call this function right before polling to get their timeout * value. Timeouts that are already expired (possibly due to a pending event) * are accounted for in activity.poll_exp. */ static inline int compute_poll_timeout(int next) { int wait_time; if (!tick_isset(next)) wait_time = MAX_DELAY_MS; else if (tick_is_expired(next, now_ms)) { activity[tid].poll_exp++; wait_time = 0; } else { wait_time = TICKS_TO_MS(tick_remain(now_ms, next)) + 1; if (wait_time > MAX_DELAY_MS) wait_time = MAX_DELAY_MS; } return wait_time; } /* These are replacements for FD_SET, FD_CLR, FD_ISSET, working on uints */ static inline void hap_fd_set(int fd, unsigned int *evts) { _HA_ATOMIC_OR(&evts[fd / (8*sizeof(*evts))], 1U << (fd & (8*sizeof(*evts) - 1))); } static inline void hap_fd_clr(int fd, unsigned int *evts) { _HA_ATOMIC_AND(&evts[fd / (8*sizeof(*evts))], ~(1U << (fd & (8*sizeof(*evts) - 1)))); } static inline unsigned int hap_fd_isset(int fd, unsigned int *evts) { return evts[fd / (8*sizeof(*evts))] & (1U << (fd & (8*sizeof(*evts) - 1))); } static inline void wake_thread(int tid) { char c = 'c'; DISGUISE(write(poller_wr_pipe[tid], &c, 1)); } #endif /* _HAPROXY_FD_H */ /* * Local variables: * c-indent-level: 8 * c-basic-offset: 8 * End: */