/* Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "sql/rpl_applier_reader.h" #include "include/mutex_lock.h" #include "mysql/components/services/log_builtins.h" #include "sql/log.h" #include "sql/mysqld.h" #include "sql/rpl_rli.h" #include "sql/rpl_rli_pdb.h" #include "sql/rpl_slave.h" #include "sql/sql_backup_lock.h" /** It manages a stage and the related mutex and makes the process of locking and entering stage/unlock and exiting stage as monolithic operations. - locking and entering stage can be done in the constructor automatically. - unlocking and exiting stage are done in the destructor automatically. So the caller just need to initialize an Stage_controller object in a proper code block. It will exit the stage automatically when the object is destroyed. */ class Rpl_applier_reader::Stage_controller { public: enum State { INACTIVE, LOCKED, IN_STAGE }; Stage_controller(THD *thd, mysql_mutex_t *mutex, mysql_cond_t *cond, const PSI_stage_info &new_stage, enum State state = INACTIVE) : m_thd(thd), m_mutex(mutex), m_cond(cond), m_new_stage(new_stage) { if (state >= LOCKED) { lock(); if (state == IN_STAGE) enter_stage(); } } ~Stage_controller() { if (m_state >= LOCKED) { mysql_mutex_unlock(m_mutex); if (m_state == IN_STAGE) m_thd->EXIT_COND(&m_old_stage); } } void lock() { DBUG_ASSERT(m_state == INACTIVE); mysql_mutex_lock(m_mutex); m_state = LOCKED; } void enter_stage() { DBUG_ASSERT(m_state = LOCKED); m_thd->ENTER_COND(m_cond, m_mutex, &m_new_stage, &m_old_stage); m_state = IN_STAGE; } private: THD *m_thd = nullptr; mysql_mutex_t *m_mutex = nullptr; mysql_cond_t *m_cond = nullptr; PSI_stage_info m_old_stage; const PSI_stage_info &m_new_stage; enum State m_state = INACTIVE; }; Rpl_applier_reader::Rpl_applier_reader(Relay_log_info *rli) : m_relaylog_file_reader( opt_slave_sql_verify_checksum, std::max(slave_max_allowed_packet, binlog_row_event_max_size + MAX_LOG_EVENT_HEADER)), m_rli(rli) {} Rpl_applier_reader::~Rpl_applier_reader() { close(); } bool Rpl_applier_reader::open(const char **errmsg) { bool ret = true; Relay_log_info *rli = m_rli; if (rli->relay_log.find_log_pos(&m_linfo, rli->get_group_relay_log_name(), true /*need_index_lock*/)) { *errmsg = "Could not find relay log file."; return true; } Format_description_log_event *fdle = nullptr; if (m_relaylog_file_reader.open(m_linfo.log_file_name, rli->get_group_relay_log_pos(), &fdle)) goto err; { // Begin context block for `m_rli->data_lock` mutex acquisition MUTEX_LOCK(lock, &m_rli->data_lock); bool is_fdle_allocated_here{fdle == nullptr}; if (is_fdle_allocated_here) { fdle = new Format_description_log_event(); } if (rli->set_rli_description_event(fdle)) { if (is_fdle_allocated_here) delete fdle; return true; // Release acquired lock on `m_rli->data_lock` } /** group_relay_log_name may be different from the one in index file. For example group_relay_log_name includes a full path. But the one in index file has relative path. So set group_relay_log_name to the one in index file. It guarantes MYSQL_BIN_LOG::purge works well. */ rli->set_group_relay_log_name(m_linfo.log_file_name); rli->set_event_relay_log_pos(rli->get_group_relay_log_pos()); rli->set_event_relay_log_name(rli->get_group_relay_log_name()); if (relay_log_purge == 0 && rli->log_space_limit > 0) { rli->log_space_limit = 0; LogErr(WARNING_LEVEL, ER_RELAY_LOG_SPACE_LIMIT_DISABLED); } } // Release acquired lock on `m_rli->data_lock` m_reading_active_log = m_rli->relay_log.is_active(m_linfo.log_file_name); ret = false; #ifndef DBUG_OFF debug_print_next_event_positions(); #endif err: if (ret) *errmsg = m_relaylog_file_reader.get_error_str(); return ret; } void Rpl_applier_reader::close() { m_relaylog_file_reader.close(); m_reading_active_log = true; m_log_end_pos = 0; m_errmsg = nullptr; } Log_event *Rpl_applier_reader::read_next_event() { DBUG_TRACE; Log_event *ev = nullptr; /* data_lock is needed when accessing members of Relay_log_info, and this function temporarily releases it while waiting. */ mysql_mutex_assert_owner(&m_rli->data_lock); DBUG_EXECUTE_IF("force_sql_thread_error", return nullptr;); if (m_reading_active_log && m_relaylog_file_reader.position() >= m_log_end_pos) { while (true) { if (sql_slave_killed(m_rli->info_thd, m_rli)) return nullptr; #ifndef DBUG_OFF debug_print_next_event_positions(); #endif if (read_active_log_end_pos()) break; /* At this point the coordinator has no job to delegate to workers. However, workers are executing their assigned jobs and as such the checkpoint routine must be periodically invoked. mts_checkpoint_routine has to be called before enter_stage(). Otherwise, it will cause a deadlock with STOP SLAVE or other thread has the same lock pattern. STOP SLAVE Thread Coordinator Thread ================= ================== lock LOCK_thd_data lock LOCK_binlog_end_pos enter_stage(LOCK_binlog_end_pos) lock LOCK_binlog_end_pos in THD::awake lock LOCK_thd_data in mts_checkpoint_routine() flush_info() ... close_thread_table() */ mysql_mutex_unlock(&m_rli->data_lock); if ((m_rli->is_time_for_mts_checkpoint() || DBUG_EVALUATE_IF("check_slave_debug_group", 1, 0)) && mts_checkpoint_routine(m_rli, false)) { m_errmsg = "Failed to compute mts checkpoint"; mysql_mutex_lock(&m_rli->data_lock); return nullptr; } mysql_mutex_lock(&m_rli->data_lock); /* Lock LOCK_binlog_end_pos before wait */ Stage_controller stage_controller( m_rli->info_thd, m_rli->relay_log.get_binlog_end_pos_lock(), m_rli->relay_log.get_log_cond(), stage_slave_has_read_all_relay_log, Stage_controller::LOCKED); /* Check it again to avoid missing update signals from receiver thread */ if (read_active_log_end_pos()) break; reset_seconds_behind_master(); /* It should be protected by relay_log.LOCK_binlog_end_pos */ if (m_rli->ign_master_log_name_end[0]) return generate_rotate_event(); stage_controller.enter_stage(); if (sql_slave_killed(m_rli->info_thd, m_rli)) return nullptr; if (wait_for_new_event()) return nullptr; } } m_rli->set_event_start_pos(m_relaylog_file_reader.position()); ev = m_relaylog_file_reader.read_event_object(); if (ev != nullptr) { m_rli->set_future_event_relay_log_pos(m_relaylog_file_reader.position()); ev->future_event_relay_log_pos = m_rli->get_future_event_relay_log_pos(); return ev; } if (m_relaylog_file_reader.get_error_type() == Binlog_read_error::READ_EOF && !m_reading_active_log) { if (!move_to_next_log()) return read_next_event(); } LogErr(ERROR_LEVEL, ER_RPL_SLAVE_ERROR_READING_RELAY_LOG_EVENTS, m_rli->get_for_channel_str(), m_errmsg ? m_errmsg : m_relaylog_file_reader.get_error_str()); return nullptr; } bool Rpl_applier_reader::read_active_log_end_pos() { m_log_end_pos = m_rli->relay_log.get_binlog_end_pos(); m_reading_active_log = m_rli->relay_log.is_active(m_linfo.log_file_name); if (m_log_end_pos > m_relaylog_file_reader.position() || !m_reading_active_log) { reopen_log_reader_if_needed(); return true; } return false; } Rotate_log_event *Rpl_applier_reader::generate_rotate_event() { DBUG_TRACE; Rotate_log_event *ev = nullptr; ev = new Rotate_log_event(m_rli->ign_master_log_name_end, 0, m_rli->ign_master_log_pos_end, Rotate_log_event::DUP_NAME); m_rli->ign_master_log_name_end[0] = 0; if (unlikely(!ev)) { m_errmsg = "Slave SQL thread failed to create a Rotate event " "(out of memory?), SHOW SLAVE STATUS may be inaccurate"; return nullptr; } ev->server_id = 0; // don't be ignored by slave SQL thread return ev; } bool Rpl_applier_reader::wait_for_new_event() { mysql_mutex_assert_owner(m_rli->relay_log.get_binlog_end_pos_lock()); mysql_mutex_assert_owner(&m_rli->data_lock); /* We can, and should release data_lock while we are waiting for update. If we do not, show slave status will block */ mysql_mutex_unlock(&m_rli->data_lock); disable_relay_log_space_limit_if_needed(); int ret = 0; if (m_rli->is_parallel_exec() && (opt_mts_checkpoint_period != 0 || DBUG_EVALUATE_IF("check_slave_debug_group", 1, 0))) { struct timespec waittime; set_timespec_nsec(&waittime, opt_mts_checkpoint_period * 1000000ULL); DBUG_EXECUTE_IF("check_slave_debug_group", { set_timespec_nsec(&waittime, 10000000); }); ret = m_rli->relay_log.wait_for_update(&waittime); } else ret = m_rli->relay_log.wait_for_update(nullptr); // re-acquire data lock since we released it earlier mysql_mutex_lock(&m_rli->data_lock); DBUG_ASSERT(ret == 0 || is_timeout(ret)); return ret != 0 && !is_timeout(ret); } bool Rpl_applier_reader::reopen_log_reader_if_needed() { /* The SQL thread was reading from the "active" relay log file but that file was truncated by the I/O thread. We will re-init the reader of the SQL thread in order to avoid reading content that was in the source's cache but no longer exists on the relay log file because of the truncation. Suppose: a) the relay log file have a full transaction (many events) with a total of finishing at position 8190; b) the I/O thread is receiving and queuing a 32K event; c) the disk had only space to write 30K of the event; In this situation, the I/O thread will be waiting for disk space, and the SQL thread would be allowed to read up to the end of the last fully queued event (that would be the 8190 position of the file). Starting the SQL thread, it would read until the relay_log.binlog_end_pos (the 8190), but, because of some optimizations, the source(IO_CACHE) will read a full "buffer" (8192 bytes) from the file. The additional 2 bytes belong to the not yet complete queued event, and should not be read by the SQL thread. If the I/O thread is killed, it will truncate the relay log file at position 8190. This means that the SQL thread reader(Its source IO_CACHE) have 2 bytes that doesn't belong to the relay log file anymore and should re-initialize its source to remove such data from it. */ mysql_mutex_assert_owner(&m_rli->data_lock); if (m_rli->is_relay_log_truncated()) { m_rli->clear_relay_log_truncated(); my_off_t pos = m_relaylog_file_reader.position(); m_relaylog_file_reader.close(); if (m_relaylog_file_reader.open(m_linfo.log_file_name) || m_relaylog_file_reader.seek(pos)) return true; } return false; } bool Rpl_applier_reader::move_to_next_log() { /* Current relay file can be purged if group_relay_log_pos has reached the end of it. It is rarely true because Rotate_log_event(generated by slave) doesn't advance group relay pos. */ bool should_purge_current_relay_log = m_rli->get_group_relay_log_pos() == m_rli->get_event_relay_log_pos() && strcmp(m_rli->get_group_relay_log_name(), m_rli->get_event_relay_log_name()) == 0; m_relaylog_file_reader.close(); if (!m_rli->relay_log.is_open() || m_rli->relay_log.find_next_log(&m_linfo, true)) { m_errmsg = "error switching to the next log"; return true; } m_rli->set_event_relay_log_pos(BIN_LOG_HEADER_SIZE); m_rli->set_event_relay_log_name(m_linfo.log_file_name); if (!m_rli->is_in_group()) { /* To make the code be simpler, it is better to remove the following 'if' code block. should_purge_current_relay_log is rarely true. So it is ok not to purge current relay log. */ if (should_purge_current_relay_log) { /* Move group relay log to next file, so that current relay log will be purged. */ m_rli->set_group_relay_log_pos(BIN_LOG_HEADER_SIZE); m_rli->set_group_relay_log_name(m_linfo.log_file_name); } if (purge_applied_logs()) return true; } else { m_rli->force_flush_postponed_due_to_split_trans = true; } /* Reset the relay-log-change-notified status of slave workers */ if (m_rli->is_parallel_exec()) { DBUG_PRINT("info", ("next_event: MTS group relay log changes to %s %lu\n", m_rli->get_group_relay_log_name(), (ulong)m_rli->get_group_relay_log_pos())); m_rli->reset_notified_relay_log_change(); } m_reading_active_log = m_rli->relay_log.is_active(m_linfo.log_file_name); m_log_end_pos = m_relaylog_file_reader.position(); return m_relaylog_file_reader.open(m_linfo.log_file_name); } bool Rpl_applier_reader::purge_applied_logs() { DBUG_TRACE; mysql_mutex_assert_owner(&m_rli->data_lock); if (!relay_log_purge) return false; Is_instance_backup_locked_result is_instance_locked = is_instance_backup_locked(m_rli->info_thd); if (is_instance_locked == Is_instance_backup_locked_result::OOM) { m_errmsg = "Out of memory happened when checking if instance was locked for " "backup"; return true; } if (is_instance_locked == Is_instance_backup_locked_result::LOCKED) return false; if (m_rli->flush_info(true)) { m_errmsg = "Error purging processed logs"; return true; } m_rli->relay_log.lock_index(); DBUG_EXECUTE_IF("crash_before_purge_logs", DBUG_SUICIDE();); mysql_mutex_lock(&m_rli->log_space_lock); if (m_rli->relay_log.purge_logs( m_rli->get_group_relay_log_name(), false /* include */, false /*need_lock_index*/, false /*need_update_threads*/, &m_rli->log_space_total, true) != 0) m_errmsg = "Error purging processed logs"; // Tell the I/O thread to take the relay_log_space_limit into account m_rli->ignore_log_space_limit = false; mysql_cond_broadcast(&m_rli->log_space_cond); mysql_mutex_unlock(&m_rli->log_space_lock); /* Need to update the log pos because purge_logs has been called. */ if (m_errmsg == nullptr && m_rli->relay_log.find_log_pos(&m_linfo, m_rli->get_event_relay_log_name(), false /*need_lock_index*/)) { m_errmsg = "error switching to the next log"; } m_rli->relay_log.unlock_index(); return m_errmsg != nullptr; } /** Temporarily disables the receiver thread's check for log space, allowing it to queue more than log_space_limit events or rotate relay log. This is needed to avoid a deadlock in the following situation : - the I/O thread has reached log_space_limit - the SQL thread has read all relay logs, but cannot purge for some reasons: * it has already purged all logs except the current one * there are other logs than the current one but they're involved in a transaction that is not finished. Solution : Wake up the possibly waiting I/O thread, and set a boolean asking the I/O thread to temporarily ignore the log_space_limit constraint. Then the I/O thread stops waiting and reads one more event and starts honoring log_space_limit again. If the SQL thread needs more events to be able to rotate the log (it might need to finish the current group first), then it can ask for one more at a time. Thus we don't outgrow the relay log indefinitely, but rather in a controlled manner, until the next rotate. */ void Rpl_applier_reader::disable_relay_log_space_limit_if_needed() { mysql_mutex_lock(&m_rli->log_space_lock); /* If we have reached the limit of the relay space: 1. If outside a group, SQL thread asks the IO thread to force a rotation. Thus the SQL thread can purge the finished log next time it processes an event to free space. 2. If in a group, SQL thread asks the IO thread to ignore the limit and queues yet one more event. Thus the SQL thread finishes the group and goes to logic 1. */ if (m_rli->log_space_limit && m_rli->log_space_limit < m_rli->log_space_total) { if (!m_rli->is_parallel_exec()) { m_rli->sql_force_rotate_relay = !m_rli->is_in_group(); } else { m_rli->sql_force_rotate_relay = (m_rli->mts_group_status != Relay_log_info::MTS_IN_GROUP); } m_rli->ignore_log_space_limit = true; mysql_cond_broadcast(&m_rli->log_space_cond); } mysql_mutex_unlock(&m_rli->log_space_lock); } #ifndef DBUG_OFF void Rpl_applier_reader::debug_print_next_event_positions() { DBUG_PRINT( "info", ("assertion skip %u file pos %llu event relay log pos %llu file %s\n", m_rli->slave_skip_counter, m_relaylog_file_reader.position(), m_rli->get_event_relay_log_pos(), m_rli->get_event_relay_log_name())); /* This is an assertion which sometimes fails, let's try to track it */ DBUG_PRINT("info", ("m_relaylog_file_reader->position() %llu " "m_rli->event_relay_log_pos=%llu", m_relaylog_file_reader.position(), m_rli->get_event_relay_log_pos())); DBUG_ASSERT(m_relaylog_file_reader.position() >= BIN_LOG_HEADER_SIZE); DBUG_ASSERT(m_relaylog_file_reader.position() == m_rli->get_event_relay_log_pos() || m_rli->is_parallel_exec()); DBUG_PRINT( "info", ("next_event group master %s %lu group relay %s %lu event %s %lu\n", m_rli->get_group_master_log_name(), (ulong)m_rli->get_group_master_log_pos(), m_rli->get_group_relay_log_name(), (ulong)m_rli->get_group_relay_log_pos(), m_rli->get_event_relay_log_name(), (ulong)m_rli->get_event_relay_log_pos())); DBUG_PRINT("info", ("m_rli->relay_log.get_binlog_end_pos()= %llu", m_log_end_pos)); DBUG_PRINT("info", ("active_log= %s", m_reading_active_log ? "true" : "false")); } #endif void Rpl_applier_reader::reset_seconds_behind_master() { /* We say in Seconds_Behind_Master that we have "caught up". Note that for example if network link is broken but I/O slave thread hasn't noticed it (slave_net_timeout not elapsed), then we'll say "caught up" whereas we're not really caught up. Fixing that would require internally cutting timeout in smaller pieces in network read. Another example: SQL has caught up on I/O, now I/O has read a new event and is queuing it; the false "0" will exist until SQL finishes executing the new event; it will be look abnormal only if the events have old timestamps (then you get "many", 0, "many"). Transient phases like this can be fixed with implemeting Heartbeat event which provides the slave the status of the master at time the master does not have any new update to send. Seconds_Behind_Master would be zero only when master has no more updates in binlog for slave. The heartbeat can be sent in a (small) fraction of slave_net_timeout. Until it's done m_rli->last_master_timestamp is temporarely (for time of waiting for the following event) reset whenever EOF is reached. Note, in MTS case Seconds_Behind_Master resetting follows slightly different schema where reaching EOF is not enough. The status parameter is updated per some number of processed group of events. The number can't be greater than @@global.slave_checkpoint_group and anyway SBM updating rate does not exceed @@global.slave_checkpoint_period. Notice that SBM is set to a new value after processing the terminal event (e.g Commit) of a group. Coordinator resets SBM when notices no more groups left neither to read from Relay-log nor to process by Workers. */ if (!m_rli->is_parallel_exec() || m_rli->gaq->empty()) m_rli->last_master_timestamp = 0; }