/* Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ // First include (the generated) my_config.h, to get correct platform defines. #include "my_config.h" #include #include #include #include "prealloced_array.h" namespace prealloced_array_unittest { class PreallocedArrayTest : public ::testing::Test { public: PreallocedArrayTest() : int_10(PSI_NOT_INSTRUMENTED) {} protected: Prealloced_array int_10; int some_integer; }; TEST_F(PreallocedArrayTest, Empty) { EXPECT_EQ(10U, int_10.capacity()); EXPECT_EQ(sizeof(int), int_10.element_size()); EXPECT_TRUE(int_10.empty()); EXPECT_EQ(0U, int_10.size()); } #if !defined(DBUG_OFF) // Google Test recommends DeathTest suffix for classes used in death tests. typedef PreallocedArrayTest PreallocedArrayDeathTest; TEST_F(PreallocedArrayDeathTest, OutOfBoundsRead) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; EXPECT_DEATH_IF_SUPPORTED(some_integer = int_10[5], ".*Assertion .*n < size.*"); } TEST_F(PreallocedArrayDeathTest, OutOfBoundsWrite) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; EXPECT_DEATH_IF_SUPPORTED(int_10[5] = some_integer, ".*Assertion .*n < size.*"); } TEST_F(PreallocedArrayDeathTest, EmptyBack) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; EXPECT_DEATH_IF_SUPPORTED(int_10.back() = 42, ".*Assertion .*n < size.*"); } TEST_F(PreallocedArrayDeathTest, EmptyPopBack) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; EXPECT_DEATH_IF_SUPPORTED(int_10.pop_back(), ".*Assertion .*!empty.*"); } TEST_F(PreallocedArrayDeathTest, EmptyErase) { ::testing::FLAGS_gtest_death_test_style = "threadsafe"; size_t ix = 0; EXPECT_DEATH_IF_SUPPORTED(int_10.erase(ix), ".*Assertion .*ix < size.*"); } #endif // DBUG_OFF TEST_F(PreallocedArrayTest, Insert5) { for (int ix = 0; ix < 5; ++ix) int_10.push_back(ix); for (int ix = 0; ix < 5; ++ix) EXPECT_EQ(ix, int_10[ix]); for (int ix = 0; ix < 5; ++ix) int_10[ix] = ix; EXPECT_EQ(5U, int_10.size()); EXPECT_EQ(10U, int_10.capacity()); } TEST_F(PreallocedArrayTest, Insert15) { for (int ix = 0; ix < 15; ++ix) int_10.push_back(ix); for (int ix = 0; ix < 15; ++ix) EXPECT_EQ(ix, int_10[ix]); for (int ix = 0; ix < 15; ++ix) int_10[ix] = ix; EXPECT_EQ(15U, int_10.size()); EXPECT_LE(15U, int_10.capacity()); } TEST_F(PreallocedArrayTest, Sort) { for (int ix = 20; ix >= 0; --ix) int_10.push_back(ix); std::sort(int_10.begin(), int_10.end()); for (int ix = 0; ix <= 20; ++ix) EXPECT_EQ(ix, int_10[ix]); } TEST_F(PreallocedArrayTest, Back) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(15, int_10.back()); int_10.back() = 42; EXPECT_EQ(42, int_10.back()); } TEST_F(PreallocedArrayTest, PopBack) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); for (int ix = 15; ix >= 0; --ix) { EXPECT_EQ(ix, int_10.back()); int_10.pop_back(); } } TEST_F(PreallocedArrayTest, EraseFirst) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(0, int_10[0]); EXPECT_EQ(16U, int_10.size()); int_10.erase(int_10.begin()); EXPECT_EQ(15U, int_10.size()); for (int ix = 0; ix < static_cast(int_10.size()); ++ix) { EXPECT_EQ(ix + 1, int_10[ix]); } } TEST_F(PreallocedArrayTest, EraseLast) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(15, int_10.back()); EXPECT_EQ(15, int_10.at(15)); int_10.erase(15); EXPECT_EQ(14, int_10.back()); EXPECT_EQ(14, int_10.at(14)); } TEST_F(PreallocedArrayTest, EraseMiddle) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(6, int_10[6]); EXPECT_EQ(7, int_10[7]); EXPECT_EQ(16U, int_10.size()); int_10.erase(7); EXPECT_EQ(6, int_10[6]); EXPECT_EQ(8, int_10[7]); EXPECT_EQ(9, int_10[8]); EXPECT_EQ(15U, int_10.size()); } TEST_F(PreallocedArrayTest, ResizeSame) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(16U, int_10.size()); int_10.resize(16U); EXPECT_EQ(16U, int_10.size()); } TEST_F(PreallocedArrayTest, ResizeGrow) { int_10.push_back(1); int_10.resize(20); EXPECT_EQ(1, int_10[0]); EXPECT_EQ(0, int_10[1]); EXPECT_EQ(20U, int_10.size()); EXPECT_GE(int_10.capacity(), 20U); } TEST_F(PreallocedArrayTest, ResizeGrowVal) { int_10.resize(20, 42); EXPECT_EQ(42, int_10[0]); EXPECT_EQ(42, int_10[19]); EXPECT_EQ(20U, int_10.size()); EXPECT_GE(int_10.capacity(), 20U); } TEST_F(PreallocedArrayTest, ResizeShrink) { for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix); EXPECT_EQ(16U, int_10.size()); int_10.resize(10); EXPECT_EQ(10U, int_10.size()); } TEST_F(PreallocedArrayTest, InsertUnique) { for (int ix = 0; ix < 10; ++ix) { int_10.push_back(ix); int_10.push_back(ix); } std::random_shuffle(int_10.begin(), int_10.end()); Prealloced_array unique_arr(PSI_NOT_INSTRUMENTED); for (int *pi = int_10.begin(); pi != int_10.end(); ++pi) { unique_arr.insert_unique(*pi); EXPECT_EQ(1U, unique_arr.count_unique(*pi)); } EXPECT_EQ(10U, unique_arr.size()); // Duplicates should have been ignored, and the result should be sorted. for (int ix = 0; ix < static_cast(unique_arr.size()); ++ix) { EXPECT_EQ(ix, unique_arr[ix]); } } TEST_F(PreallocedArrayTest, EraseUnique) { for (int ix = 0; ix < 20; ++ix) int_10.push_back(ix); // The array should be sorted by default. for (int ix = 0; ix < 20; ++ix) EXPECT_EQ(ix, int_10[ix]); // Now remove all even numbers. for (int ix = 0; ix < 10; ++ix) EXPECT_EQ(1U, int_10.erase_unique(2 * ix)); // 10 numbers should remain. EXPECT_EQ(10U, int_10.size()); // Removing non-existing numbers should return 0. for (int ix = 0; ix < 10; ++ix) { EXPECT_EQ(0U, int_10.count_unique(2 * ix)); EXPECT_EQ(0U, int_10.erase_unique(2 * ix)); } // 10 numbers should still remain. EXPECT_EQ(10U, int_10.size()); // The array should still be sorted and contain odd numbers. for (int ix = 0; ix < 10; ++ix) EXPECT_EQ(2 * ix + 1, int_10[ix]); } /* A simple class for testing that object copying and destruction is done properly when we have to expand the array a few times, and has_trivial_destructor == false. */ class IntWrap { public: IntWrap() { m_int = new int(0); } explicit IntWrap(int arg) { m_int = new int(arg); } IntWrap(const IntWrap &other) { m_int = new int(other.getval()); } ~IntWrap() { delete m_int; } IntWrap &operator=(const IntWrap &rhs) { *m_int = rhs.getval(); return *this; } int getval() const { return *m_int; } private: int *m_int; }; /* To verify that there are no leaks, do: valgrind ./prealloced_array-t --gtest_filter="-*DeathTest*" */ TEST_F(PreallocedArrayTest, NoMemLeaksAssignAt) { Prealloced_array array(PSI_NOT_INSTRUMENTED, 0); EXPECT_EQ(0U, array.size()); array.assign_at(3, IntWrap(3)); EXPECT_EQ(4U, array.size()); EXPECT_EQ(3, array[3].getval()); EXPECT_EQ(0, array[0].getval()); array.assign_at(0, IntWrap(42)); EXPECT_EQ(4U, array.size()); EXPECT_EQ(42, array[0].getval()); array.assign_at(4, IntWrap(4)); EXPECT_EQ(5U, array.size()); EXPECT_EQ(4, array[4].getval()); array.assign_at(42, IntWrap(42)); EXPECT_EQ(43U, array.size()); EXPECT_EQ(42, array[42].getval()); array.assign_at(0, IntWrap(0)); EXPECT_EQ(0, array[0].getval()); } TEST_F(PreallocedArrayTest, NoMemLeaksInitializing) { const size_t initial_capacity = 10; Prealloced_array array1(PSI_NOT_INSTRUMENTED, 0); EXPECT_EQ(0U, array1.size()); Prealloced_array array2(PSI_NOT_INSTRUMENTED, initial_capacity / 2); EXPECT_EQ(5U, array2.size()); Prealloced_array array3(PSI_NOT_INSTRUMENTED, initial_capacity); EXPECT_EQ(10U, array3.size()); Prealloced_array array4(PSI_NOT_INSTRUMENTED, 2 * initial_capacity); EXPECT_EQ(20U, array4.size()); } TEST_F(PreallocedArrayTest, NoMemLeaksPushing) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); for (int ix = 0; ix < 42; ++ix) EXPECT_EQ(ix, array[ix].getval()); } TEST_F(PreallocedArrayTest, NoMemLeaksPopping) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); while (!array.empty()) array.pop_back(); } TEST_F(PreallocedArrayTest, NoMemLeaksErasing) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); for (int ix = 0; !array.empty(); ++ix) { EXPECT_EQ(ix, array[0].getval()); array.erase(array.begin()); } } TEST_F(PreallocedArrayTest, NoMemLeaksClearing) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); array.clear(); EXPECT_EQ(0U, array.size()); } TEST_F(PreallocedArrayTest, NoMemLeaksResizing) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); array.resize(0); EXPECT_EQ(0U, array.size()); } TEST_F(PreallocedArrayTest, NoMemLeaksAssigning) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); Prealloced_array array2(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 10; ++ix) array2.push_back(IntWrap(ix + 100)); array2 = array1; EXPECT_EQ(array1.size(), array2.size()); for (size_t ix = 0; ix < array1.size(); ++ix) EXPECT_EQ(array1[ix].getval(), array2[ix].getval()); } TEST_F(PreallocedArrayTest, NoMemLeaksEraseAll) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); array.erase(array.begin(), array.end()); EXPECT_EQ(0U, array.size()); } TEST_F(PreallocedArrayTest, NoMemLeaksEraseMiddle) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix)); array.erase(array.begin() + 1, array.end() - 1); EXPECT_EQ(2U, array.size()); EXPECT_EQ(0, array[0].getval()); EXPECT_EQ(41, array[1].getval()); } TEST_F(PreallocedArrayTest, NoMemLeaksEraseSwap) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); Prealloced_array array2(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 10; ++ix) array2.push_back(IntWrap(ix + 100)); array1.swap(array2); EXPECT_EQ(10U, array1.size()); EXPECT_EQ(42U, array2.size()); Prealloced_array(PSI_NOT_INSTRUMENTED).swap(array1); EXPECT_EQ(0U, array1.size()); } TEST_F(PreallocedArrayTest, NoMemLeaksMySwap) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); Prealloced_array array2(PSI_NOT_INSTRUMENTED); array1.push_back(IntWrap(1)); array2.push_back(IntWrap(2)); array2.push_back(IntWrap(22)); array1.swap(array2); EXPECT_EQ(2U, array1.size()); EXPECT_EQ(1U, array2.size()); EXPECT_EQ(2, array1[0].getval()); EXPECT_EQ(22, array1[1].getval()); EXPECT_EQ(1, array2[0].getval()); } TEST_F(PreallocedArrayTest, NoMemLeaksStdSwap) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); Prealloced_array array2(PSI_NOT_INSTRUMENTED, array1.begin(), array1.begin() + 10); EXPECT_EQ(10U, array2.size()); IntWrap *p1 = array1.begin(); IntWrap *p2 = array2.begin(); array1.swap(array2); EXPECT_EQ(10U, array1.size()); EXPECT_EQ(42U, array2.size()); // We expect a buffer swap here. EXPECT_EQ(p1, array2.begin()); EXPECT_EQ(p2, array1.begin()); } TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitMalloc) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); IntWrap *p1 = array1.begin(); array1.shrink_to_fit(); EXPECT_EQ(42U, array1.size()); EXPECT_EQ(42U, array1.capacity()); EXPECT_NE(p1, array1.begin()); } TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitSameSize) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); for (int ix = 0; array1.size() != array1.capacity(); ++ix) array1.push_back(IntWrap(ix)); IntWrap *p1 = array1.begin(); array1.shrink_to_fit(); EXPECT_EQ(p1, array1.begin()); } TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitPrealloc) { Prealloced_array array1(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix)); IntWrap *p1 = array1.begin(); array1.shrink_to_fit(); EXPECT_EQ(42U, array1.size()); EXPECT_EQ(100U, array1.capacity()); EXPECT_EQ(p1, array1.begin()); } /* A simple class to verify that Prealloced_array also works for classes which have their own operator new/delete. */ class TestAlloc { public: explicit TestAlloc(int val) : m_int(val) {} int getval() const { return m_int; } private: int m_int; static void *operator new(size_t) { throw std::bad_alloc(); } }; /* There is no THD and no mem-root available for the execution of this test. This shows that the memory management of Prealloced_array works OK for classes with custom new/delete. */ TEST_F(PreallocedArrayTest, CustomNewDelete) { Prealloced_array array(PSI_NOT_INSTRUMENTED); for (int ix = 0; ix < 42; ++ix) array.push_back(TestAlloc(ix)); for (int ix = 0; ix < 42; ++ix) EXPECT_EQ(ix, array[ix].getval()); } /** A class that wraps an integer. Objects of this class can be moved, but cannot be copied. */ class IntWrapMove { std::unique_ptr m_i; public: explicit IntWrapMove(int i) : m_i(new int(i)) {} IntWrapMove(const IntWrapMove &) = delete; IntWrapMove &operator=(const IntWrapMove &) = delete; IntWrapMove(IntWrapMove &&) = default; IntWrapMove &operator=(IntWrapMove &&) = default; int getval() const { return *m_i; } }; /* Test that a Prealloced_array can hold objects that cannot be copied. */ TEST_F(PreallocedArrayTest, Move) { using IntArray = Prealloced_array; IntArray array(PSI_NOT_INSTRUMENTED); // Test that we can add non-copyable elements to the array. for (int i = 0; i < 5; ++i) array.push_back(IntWrapMove(i)); for (int i = 5; i < 10; ++i) array.emplace_back(i); for (int i = 0; i < 10; ++i) EXPECT_EQ(i, array[i].getval()); array.insert(array.begin(), IntWrapMove(100)); array.emplace(array.begin() + 1, IntWrapMove(101)); EXPECT_EQ(12U, array.size()); EXPECT_EQ(100, array[0].getval()); EXPECT_EQ(101, array[1].getval()); EXPECT_EQ(0, array[2].getval()); // Test that we can remove non-copyable elements from the array. IntArray::iterator it = array.erase(1); EXPECT_EQ(1, it - array.begin()); EXPECT_EQ(0, it->getval()); it = array.erase(array.cbegin() + 1); EXPECT_EQ(1, it - array.begin()); EXPECT_EQ(1, it->getval()); it = array.erase(array.cbegin() + 2, array.cend() - 2); EXPECT_EQ(8, it->getval()); EXPECT_EQ(2, array.end() - it); EXPECT_EQ(2, it - array.begin()); EXPECT_EQ(4U, array.size()); EXPECT_EQ(100, array[0].getval()); EXPECT_EQ(1, array[1].getval()); EXPECT_EQ(8, array[2].getval()); EXPECT_EQ(9, array[3].getval()); } TEST_F(PreallocedArrayTest, ShrinkToFit) { Prealloced_array array(PSI_NOT_INSTRUMENTED); array.push_back(1); array.push_back(2); array.push_back(3); size_t capacity = array.capacity(); EXPECT_LE(3U, capacity); // After clear(), array is empty, but the capacity is unchanged. array.clear(); EXPECT_TRUE(array.empty()); EXPECT_EQ(capacity, array.capacity()); // After shrink_to_fit(), the capacity should shrink to the prealloc size. array.shrink_to_fit(); EXPECT_EQ(1U, array.capacity()); } } // namespace prealloced_array_unittest