#ifndef SQL_TIMING_ITERATOR_H_ #define SQL_TIMING_ITERATOR_H_ /* Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include #include #include #include "my_alloc.h" #include "sql/row_iterator.h" #include "sql/sql_class.h" #include "sql/sql_lex.h" /** An iterator template that wraps a RowIterator, such that all calls to Init() and Read() are timed (all others are passed through unchanged, and possibly even inlined, since all RowIterator implementations are final). This is used for EXPLAIN ANALYZE. See also NewIterator, below. */ template class TimingIterator final : public RowIterator { public: template TimingIterator(THD *thd, Args &&... args) : RowIterator(thd), m_iterator(thd, std::forward(args)...) {} bool Init() override; int Read() override; void SetNullRowFlag(bool is_null_row) override { m_iterator.SetNullRowFlag(is_null_row); } void UnlockRow() override { m_iterator.UnlockRow(); } std::vector children() const override { return m_iterator.children(); } std::vector DebugString() const override { return m_iterator.DebugString(); } void StartPSIBatchMode() override { m_iterator.StartPSIBatchMode(); } void EndPSIBatchModeIfStarted() override { m_iterator.EndPSIBatchModeIfStarted(); } std::string TimingString() const override; RowIterator *real_iterator() override { return &m_iterator; } const RowIterator *real_iterator() const override { return &m_iterator; } private: // To avoid a lot of repetitive writing. using steady_clock = std::chrono::steady_clock; template using duration = std::chrono::duration; steady_clock::time_point now() const { #ifdef __SUNPRO_CC // This no-op cast works around an optimization bug in Developer Studio // where it attempts to dereference an integral time value, leading to // crashes. return std::chrono::time_point_cast( steady_clock::now()); #else return steady_clock::now(); #endif } // These are at the same offset for all TimingIterator specializations, // in the hope that the linker can manage to fold all the TimingString() // implementations into one. uint64_t m_num_rows = 0; uint64_t m_num_init_calls = 0; steady_clock::time_point::duration m_time_spent_in_first_row{0}; steady_clock::time_point::duration m_time_spent_in_other_rows{0}; bool m_first_row; RealIterator m_iterator; }; template bool TimingIterator::Init() { ++m_num_init_calls; steady_clock::time_point start = now(); bool err = m_iterator.Init(); steady_clock::time_point end = now(); m_time_spent_in_first_row += end - start; m_first_row = true; return err; } template int TimingIterator::Read() { steady_clock::time_point start = now(); int err = m_iterator.Read(); steady_clock::time_point end = now(); if (m_first_row) { m_time_spent_in_first_row += end - start; m_first_row = false; } else { m_time_spent_in_other_rows += end - start; } if (err == 0) { ++m_num_rows; } return err; } template std::string TimingIterator::TimingString() const { double first_row_ms = duration(m_time_spent_in_first_row).count() * 1e3; double last_row_ms = duration(m_time_spent_in_first_row + m_time_spent_in_other_rows) .count() * 1e3; char buf[1024]; if (m_num_init_calls == 0) { snprintf(buf, sizeof(buf), "(never executed)"); } else { snprintf(buf, sizeof(buf), "(actual time=%.3f..%.3f rows=%lld loops=%" PRIu64 ")", first_row_ms / m_num_init_calls, last_row_ms / m_num_init_calls, llrintf(static_cast(m_num_rows) / m_num_init_calls), m_num_init_calls); } return buf; } // Allocates a new iterator on the given THD's MEM_ROOT. The MEM_ROOT must live // for at least as long as the iterator does. // // If we are in EXPLAIN ANALYZE, the iterator is wrapped in a TimingIterator, // so that it collects timing information. For this reason, nearly all // instantiations of iterators should go through this function. template unique_ptr_destroy_only NewIterator(THD *thd, Args &&... args) { if (thd->lex->is_explain_analyze) { return unique_ptr_destroy_only( new (thd->mem_root) TimingIterator(thd, std::forward(args)...)); } else { return unique_ptr_destroy_only( new (thd->mem_root) RealIterator(thd, std::forward(args)...)); } } #endif // SQL_TIMING_ITERATOR_H_