/* Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* This file is a container for general functionality related to partitioning. It contains functionality used by all handlers that support partitioning, such as the partitioning handler itself and the NDB handler. (Much of the code in this file has been split into partition_info.cc and the header files partition_info.h + partition_element.h + sql_partition.h) The first version supports RANGE partitioning, LIST partitioning, HASH partitioning and composite partitioning (hereafter called subpartitioning) where each RANGE/LIST partitioning is HASH partitioned. The hash function can either be supplied by the user or by only a list of fields (also called KEY partitioning), where the MySQL server will use an internal hash function. There are quite a few defaults that can be used as well. The second version introduces a new variant of RANGE and LIST partitioning which is often referred to as column lists in the code variables. This enables a user to specify a set of columns and their concatenated value as the partition value. By comparing the concatenation of these values the proper partition can be choosen. */ #include "sql/sql_partition.h" #include #include #include #include #include "field_types.h" // enum_field_types #include "m_string.h" #include "my_bitmap.h" #include "my_byteorder.h" #include "my_compiler.h" #include "my_dbug.h" #include "my_io.h" #include "my_sqlcommand.h" #include "my_sys.h" #include "mysql/components/services/psi_statement_bits.h" #include "mysql/plugin.h" #include "mysql/psi/mysql_file.h" #include "mysql/service_mysql_alloc.h" #include "mysql/udf_registration_types.h" #include "mysql_com.h" #include "mysql_time.h" #include "mysqld_error.h" #include "sql/create_field.h" #include "sql/current_thd.h" #include "sql/debug_sync.h" // DEBUG_SYNC #include "sql/derror.h" // ER_THD #include "sql/enum_query_type.h" #include "sql/field.h" #include "sql/handler.h" #include "sql/item.h" // enum_monotoncity_info #include "sql/item_func.h" // Item_func #include "sql/key.h" #include "sql/mdl.h" #include "sql/mysqld.h" // mysql_tmpdir #include "sql/opt_range.h" // store_key_image_to_rec #include "sql/parse_tree_node_base.h" #include "sql/partition_info.h" // partition_info #include "sql/partitioning/partition_handler.h" // Partition_handler #include "sql/psi_memory_key.h" #include "sql/query_options.h" #include "sql/sql_alter.h" #include "sql/sql_base.h" // wait_while_table_is_used #include "sql/sql_class.h" // THD #include "sql/sql_const.h" #include "sql/sql_digest_stream.h" #include "sql/sql_error.h" #include "sql/sql_lex.h" #include "sql/sql_list.h" #include "sql/sql_parse.h" // parse_sql #include "sql/sql_show.h" #include "sql/sql_table.h" // build_table_filename #include "sql/system_variables.h" #include "sql/table.h" #include "sql/thd_raii.h" #include "sql_string.h" struct MEM_ROOT; using std::max; using std::min; /* Partition related functions declarations and some static constants; */ const LEX_CSTRING partition_keywords[] = {{STRING_WITH_LEN("HASH")}, {STRING_WITH_LEN("RANGE")}, {STRING_WITH_LEN("LIST")}, {STRING_WITH_LEN("KEY")}, {STRING_WITH_LEN("MAXVALUE")}, {STRING_WITH_LEN("LINEAR ")}, {STRING_WITH_LEN(" COLUMNS")}, {STRING_WITH_LEN("ALGORITHM")} }; static const char *part_str = "PARTITION"; static const char *sub_str = "SUB"; static const char *by_str = "BY"; static const char *space_str = " "; static const char *equal_str = "="; static const char *end_paren_str = ")"; static const char *begin_paren_str = "("; static const char *comma_str = ","; static int get_partition_id_list_col(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_list(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_range_col(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_range(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_part_id_charset_func_part(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_part_id_charset_func_subpart(partition_info *part_info, uint32 *part_id); static int get_partition_id_hash_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_key_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_linear_hash_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_linear_key_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_with_sub(partition_info *part_info, uint32 *part_id, longlong *func_value); static int get_partition_id_hash_sub(partition_info *part_info, uint32 *part_id); static int get_partition_id_key_sub(partition_info *part_info, uint32 *part_id); static int get_partition_id_linear_hash_sub(partition_info *part_info, uint32 *part_id); static int get_partition_id_linear_key_sub(partition_info *part_info, uint32 *part_id); static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *); static void set_up_range_analysis_info(partition_info *part_info); static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *); static uint32 get_partition_id_range_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint); static uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter); static int get_part_iter_for_interval_via_mapping( partition_info *part_info, bool is_subpart, uint32 *store_length_array, uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags, PARTITION_ITERATOR *part_iter); static int get_part_iter_for_interval_cols_via_map( partition_info *part_info, bool is_subpart, uint32 *store_length_array, uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags, PARTITION_ITERATOR *part_iter); static int get_part_iter_for_interval_via_walking( partition_info *part_info, bool is_subpart, uint32 *store_length_array, uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags, PARTITION_ITERATOR *part_iter); static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec); static int cmp_rec_and_tuple_prune(part_column_list_val *val, uint32 n_vals_in_rec, bool is_left_endpoint, bool include_endpoint); static void set_field_ptr(Field **ptr, const uchar *new_buf, const uchar *old_buf); static uint32 get_list_array_idx_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint); /* Convert constants in VALUES definition to the character set the corresponding field uses. SYNOPSIS convert_charset_partition_constant() item Item to convert cs Character set to convert to RETURN VALUE NULL Error item New converted item */ Item *convert_charset_partition_constant(Item *item, const CHARSET_INFO *cs) { THD *thd = current_thd; Name_resolution_context *context = &thd->lex->current_select()->context; TABLE_LIST *save_list = context->table_list; const char *save_where = thd->where; item = item->safe_charset_converter(thd, cs); context->table_list = NULL; thd->where = "convert character set partition constant"; if (!item || item->fix_fields(thd, (Item **)NULL)) item = NULL; thd->where = save_where; context->table_list = save_list; return item; } /** A support function to check if a name is in a list of strings. @param name String searched for @param list_names A list of names searched in @return True if if the name is in the list. @retval true String found @retval false String not found */ static bool is_name_in_list(const char *name, List list_names) { List_iterator names_it(list_names); uint num_names = list_names.elements; uint i = 0; do { String *list_name = names_it++; if (!(my_strcasecmp(system_charset_info, name, list_name->c_ptr()))) return true; } while (++i < num_names); return false; } /* Set-up defaults for partitions. SYNOPSIS partition_default_handling() table Table object part_info Partition info to set up is_create_table_ind Is this part of a table creation normalized_path Normalized path name of table and database RETURN VALUES true Error false Success */ static bool partition_default_handling(TABLE *table, partition_info *part_info, bool is_create_table_ind, const char *normalized_path) { Partition_handler *part_handler = table->file->get_partition_handler(); DBUG_TRACE; if (!part_handler) { DBUG_ASSERT(0); my_error(ER_PARTITION_CLAUSE_ON_NONPARTITIONED, MYF(0)); return true; } if (!is_create_table_ind) { if (part_info->use_default_num_partitions) { if (part_handler->get_num_parts(normalized_path, &part_info->num_parts)) { return true; } } else if (part_info->is_sub_partitioned() && part_info->use_default_num_subpartitions) { uint num_parts; if (part_handler->get_num_parts(normalized_path, &num_parts)) { return true; } DBUG_ASSERT(part_info->num_parts > 0); DBUG_ASSERT((num_parts % part_info->num_parts) == 0); part_info->num_subparts = num_parts / part_info->num_parts; } } part_info->set_up_defaults_for_partitioning(part_handler, NULL, 0U); return false; } /* A useful routine used by update_row for partition handlers to calculate the partition ids of the old and the new record. SYNOPSIS get_parts_for_update() old_data Buffer of old record new_data Buffer of new record rec0 Reference to table->record[0] part_info Reference to partition information out:old_part_id The returned partition id of old record out:new_part_id The returned partition id of new record RETURN VALUE 0 Success > 0 Error code */ int get_parts_for_update(const uchar *old_data, const uchar *new_data MY_ATTRIBUTE((unused)), const uchar *rec0, partition_info *part_info, uint32 *old_part_id, uint32 *new_part_id, longlong *new_func_value) { Field **part_field_array = part_info->full_part_field_array; int error; longlong old_func_value; DBUG_TRACE; DBUG_ASSERT(new_data == rec0); // table->record[0] set_field_ptr(part_field_array, old_data, rec0); error = part_info->get_partition_id(part_info, old_part_id, &old_func_value); set_field_ptr(part_field_array, rec0, old_data); if (unlikely(error)) { part_info->err_value = old_func_value; return error; } if (unlikely((error = part_info->get_partition_id(part_info, new_part_id, new_func_value)))) { part_info->err_value = *new_func_value; return error; } return 0; } /* A useful routine used by delete_row for partition handlers to calculate the partition id. SYNOPSIS get_part_for_delete() buf Buffer of old record rec0 Reference to table->record[0] part_info Reference to partition information out:part_id The returned partition id to delete from RETURN VALUE 0 Success > 0 Error code DESCRIPTION Dependent on whether buf is not record[0] we need to prepare the fields. Then we call the function pointer get_partition_id to calculate the partition id. */ int get_part_for_delete(const uchar *buf, const uchar *rec0, partition_info *part_info, uint32 *part_id) { int error; longlong func_value; DBUG_TRACE; if (likely(buf == rec0)) { if (unlikely((error = part_info->get_partition_id(part_info, part_id, &func_value)))) { part_info->err_value = func_value; return error; } DBUG_PRINT("info", ("Delete from partition %d", *part_id)); } else { Field **part_field_array = part_info->full_part_field_array; set_field_ptr(part_field_array, buf, rec0); error = part_info->get_partition_id(part_info, part_id, &func_value); set_field_ptr(part_field_array, rec0, buf); if (unlikely(error)) { part_info->err_value = func_value; return error; } DBUG_PRINT("info", ("Delete from partition %d (path2)", *part_id)); } return 0; } /* This method is used to set-up both partition and subpartitioning field array and used for all types of partitioning. It is part of the logic around fix_partition_func. SYNOPSIS set_up_field_array() table TABLE object for which partition fields are set-up sub_part Is the table subpartitioned as well RETURN VALUE true Error, some field didn't meet requirements false Ok, partition field array set-up DESCRIPTION A great number of functions below here is part of the fix_partition_func method. It is used to set up the partition structures for execution from openfrm. It is called at the end of the openfrm when the table struct has been set-up apart from the partition information. It involves: 1) Setting arrays of fields for the partition functions. 2) Setting up binary search array for LIST partitioning 3) Setting up array for binary search for RANGE partitioning 4) Setting up key_map's to assist in quick evaluation whether one can deduce anything from a given index of what partition to use 5) Checking whether a set of partitions can be derived from a range on a field in the partition function. As part of doing this there is also a great number of error controls. This is actually the place where most of the things are checked for partition information when creating a table. Things that are checked includes 1) All fields of partition function in Primary keys and unique indexes (if not supported) Create an array of partition fields (NULL terminated). Before this method is called fix_fields or find_table_in_sef has been called to set GET_FIXED_FIELDS_FLAG on all fields that are part of the partition function. */ static bool set_up_field_array(TABLE *table, bool is_sub_part) { Field **ptr, *field, **field_array; uint num_fields = 0; uint size_field_array; uint i = 0; uint inx; partition_info *part_info = table->part_info; int result = false; DBUG_TRACE; ptr = table->field; while ((field = *(ptr++))) { if (field->flags & GET_FIXED_FIELDS_FLAG) num_fields++; } if (num_fields > MAX_REF_PARTS) { const char *err_str; if (is_sub_part) err_str = "subpartition function"; else err_str = "partition function"; my_error(ER_TOO_MANY_PARTITION_FUNC_FIELDS_ERROR, MYF(0), err_str); return true; } if (num_fields == 0) { /* We are using hidden key as partitioning field */ DBUG_ASSERT(!is_sub_part); return result; } size_field_array = (num_fields + 1) * sizeof(Field *); field_array = (Field **)sql_calloc(size_field_array); if (unlikely(!field_array)) { mem_alloc_error(size_field_array); result = true; } ptr = table->field; while ((field = *(ptr++))) { if (field->flags & GET_FIXED_FIELDS_FLAG) { field->flags &= ~GET_FIXED_FIELDS_FLAG; field->flags |= FIELD_IN_PART_FUNC_FLAG; if (likely(!result)) { if (!is_sub_part && part_info->column_list) { List_iterator it(part_info->part_field_list); char *field_name; DBUG_ASSERT(num_fields == part_info->part_field_list.elements); inx = 0; do { field_name = it++; if (!my_strcasecmp(system_charset_info, field_name, field->field_name)) break; } while (++inx < num_fields); if (inx == num_fields) { /* Should not occur since it should already been checked in either add_column_list_values, handle_list_of_fields, check_partition_info etc. */ DBUG_ASSERT(0); my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); result = true; continue; } } else inx = i; field_array[inx] = field; i++; /* We check that the fields are proper. It is required for each field in a partition function to: 1) Not be a BLOB of any type A BLOB takes too long time to evaluate so we don't want it for performance reasons. */ if (unlikely(field->flags & BLOB_FLAG)) { my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0)); result = true; } } } } field_array[num_fields] = 0; if (!is_sub_part) { part_info->part_field_array = field_array; part_info->num_part_fields = num_fields; } else { part_info->subpart_field_array = field_array; part_info->num_subpart_fields = num_fields; } return result; } /* Create a field array including all fields of both the partitioning and the subpartitioning functions. SYNOPSIS create_full_part_field_array() thd Thread handle table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure RETURN VALUE true Memory allocation of field array failed false Ok DESCRIPTION If there is no subpartitioning then the same array is used as for the partitioning. Otherwise a new array is built up using the flag FIELD_IN_PART_FUNC in the field object. This function is called from fix_partition_func */ static bool create_full_part_field_array(THD *thd, TABLE *table, partition_info *part_info) { bool result = false; Field **ptr; my_bitmap_map *bitmap_buf; DBUG_TRACE; if (!part_info->is_sub_partitioned()) { part_info->full_part_field_array = part_info->part_field_array; part_info->num_full_part_fields = part_info->num_part_fields; } else { Field *field, **field_array; uint num_part_fields = 0, size_field_array; ptr = table->field; while ((field = *(ptr++))) { if (field->flags & FIELD_IN_PART_FUNC_FLAG) num_part_fields++; } size_field_array = (num_part_fields + 1) * sizeof(Field *); field_array = (Field **)sql_calloc(size_field_array); if (unlikely(!field_array)) { mem_alloc_error(size_field_array); result = true; goto end; } num_part_fields = 0; ptr = table->field; while ((field = *(ptr++))) { if (field->flags & FIELD_IN_PART_FUNC_FLAG) field_array[num_part_fields++] = field; } field_array[num_part_fields] = 0; part_info->full_part_field_array = field_array; part_info->num_full_part_fields = num_part_fields; } /* Initialize the set of all fields used in partition and subpartition expression. Required for testing of partition fields in write_set when updating. We need to set all bits in read_set because the row may need to be inserted in a different [sub]partition. */ if (!(bitmap_buf = (my_bitmap_map *)thd->alloc( bitmap_buffer_size(table->s->fields)))) { mem_alloc_error(bitmap_buffer_size(table->s->fields)); result = true; goto end; } if (bitmap_init(&part_info->full_part_field_set, bitmap_buf, table->s->fields, false)) { mem_alloc_error(table->s->fields); result = true; goto end; } /* full_part_field_array may be NULL if storage engine supports native partitioning. */ if ((ptr = part_info->full_part_field_array)) for (; *ptr; ptr++) bitmap_set_bit(&part_info->full_part_field_set, (*ptr)->field_index); end: return result; } /* Clear flag GET_FIXED_FIELDS_FLAG in all fields of a key previously set by set_indicator_in_key_fields (always used in pairs). SYNOPSIS clear_indicator_in_key_fields() key_info Reference to find the key fields RETURN VALUE NONE DESCRIPTION These support routines is used to set/reset an indicator of all fields in a certain key. It is used in conjunction with another support routine that traverse all fields in the PF to find if all or some fields in the PF is part of the key. This is used to check primary keys and unique keys involve all fields in PF (unless supported) and to derive the key_map's used to quickly decide whether the index can be used to derive which partitions are needed to scan. */ static void clear_indicator_in_key_fields(KEY *key_info) { KEY_PART_INFO *key_part; uint key_parts = key_info->user_defined_key_parts, i; for (i = 0, key_part = key_info->key_part; i < key_parts; i++, key_part++) key_part->field->flags &= (~GET_FIXED_FIELDS_FLAG); } /* Set flag GET_FIXED_FIELDS_FLAG in all fields of a key. SYNOPSIS set_indicator_in_key_fields key_info Reference to find the key fields RETURN VALUE NONE */ static void set_indicator_in_key_fields(KEY *key_info) { KEY_PART_INFO *key_part; uint key_parts = key_info->user_defined_key_parts, i; for (i = 0, key_part = key_info->key_part; i < key_parts; i++, key_part++) key_part->field->flags |= GET_FIXED_FIELDS_FLAG; } /* Check if all or some fields in partition field array is part of a key previously used to tag key fields. SYNOPSIS check_fields_in_PF() ptr Partition field array out:all_fields Is all fields of partition field array used in key out:some_fields Is some fields of partition field array used in key RETURN VALUE all_fields, some_fields */ static void check_fields_in_PF(Field **ptr, bool *all_fields, bool *some_fields) { DBUG_TRACE; *all_fields = true; *some_fields = false; if ((!ptr) || !(*ptr)) { *all_fields = false; return; } do { /* Check if the field of the PF is part of the current key investigated */ if ((*ptr)->flags & GET_FIXED_FIELDS_FLAG) *some_fields = true; else *all_fields = false; } while (*(++ptr)); } /* Clear flag GET_FIXED_FIELDS_FLAG in all fields of the table. This routine is used for error handling purposes. SYNOPSIS clear_field_flag() table TABLE object for which partition fields are set-up RETURN VALUE NONE */ static void clear_field_flag(TABLE *table) { Field **ptr; DBUG_TRACE; for (ptr = table->field; *ptr; ptr++) (*ptr)->flags &= (~GET_FIXED_FIELDS_FLAG); } /* find_field_in_table_sef finds the field given its name. All fields get GET_FIXED_FIELDS_FLAG set. SYNOPSIS handle_list_of_fields() it A list of field names for the partition function table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure sub_part Is the table subpartitioned as well RETURN VALUE true Fields in list of fields not part of table false All fields ok and array created DESCRIPTION This routine sets-up the partition field array for KEY partitioning, it also verifies that all fields in the list of fields is actually a part of the table. */ static bool handle_list_of_fields(List_iterator it, TABLE *table, partition_info *part_info, bool is_sub_part) { Field *field; bool result; char *field_name; bool is_list_empty = true; DBUG_TRACE; while ((field_name = it++)) { is_list_empty = false; field = find_field_in_table_sef(table, field_name); if (likely(field != 0)) field->flags |= GET_FIXED_FIELDS_FLAG; else { my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); clear_field_flag(table); result = true; goto end; } } if (is_list_empty && part_info->part_type == partition_type::HASH) { uint primary_key = table->s->primary_key; if (primary_key != MAX_KEY) { uint num_key_parts = table->key_info[primary_key].user_defined_key_parts, i; /* In the case of an empty list we use primary key as partition key. */ for (i = 0; i < num_key_parts; i++) { Field *field = table->key_info[primary_key].key_part[i].field; field->flags |= GET_FIXED_FIELDS_FLAG; } } else { if (table->s->db_type()->partition_flags && (table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)) { /* This engine can handle automatic partitioning and there is no primary key. In this case we rely on that the engine handles partitioning based on a hidden key. Thus we allocate no array for partitioning fields. */ return false; } else { my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); return true; } } } result = set_up_field_array(table, is_sub_part); end: return result; } /* Support function to check if all VALUES * (expression) is of the right sign (no signed constants when unsigned partition function) SYNOPSIS check_signed_flag() part_info Partition info object RETURN VALUES 0 No errors due to sign errors >0 Sign error */ static int check_signed_flag(partition_info *part_info) { int error = 0; uint i = 0; if (part_info->part_type != partition_type::HASH && part_info->part_expr->unsigned_flag) { List_iterator part_it(part_info->partitions); do { partition_element *part_elem = part_it++; if (part_elem->signed_flag) { my_error(ER_PARTITION_CONST_DOMAIN_ERROR, MYF(0)); error = ER_PARTITION_CONST_DOMAIN_ERROR; break; } } while (++i < part_info->num_parts); } return error; } /** Initialize lex object for use in fix_fields and parsing. @param thd The thread object @param table The table object @param lex The LEX object, must be initialized and contain select_lex. @returns false if success, true if error @details This function is used to set up a lex object on the stack for resolving of fields from a single table. */ static bool init_lex_with_single_table(THD *thd, TABLE *table, LEX *lex) { SELECT_LEX *select_lex = lex->select_lex; Name_resolution_context *context = &select_lex->context; /* We will call the parser to create a part_info struct based on the partition string stored in the frm file. We will use a local lex object for this purpose. However we also need to set the Name_resolution_object for this lex object. We do this by using add_table_to_list where we add the table that we're working with to the Name_resolution_context. */ thd->lex = lex; auto table_ident = new (thd->mem_root) Table_ident( thd->get_protocol(), table->s->db, table->s->table_name, true); if (table_ident == nullptr) return true; TABLE_LIST *table_list = select_lex->add_table_to_list(thd, table_ident, nullptr, 0); if (table_list == nullptr) return true; context->resolve_in_table_list_only(table_list); lex->use_only_table_context = true; table->get_fields_in_item_tree = true; table_list->table = table; table_list->cacheable_table = false; return false; } /** End use of local lex with single table SYNOPSIS end_lex_with_single_table() @param thd The thread object @param table The table object @param old_lex The real lex object connected to THD DESCRIPTION This function restores the real lex object after calling init_lex_with_single_table and also restores some table variables temporarily set. */ static void end_lex_with_single_table(THD *thd, TABLE *table, LEX *old_lex) { LEX *lex = thd->lex; table->get_fields_in_item_tree = false; lex_end(lex); thd->lex = old_lex; } /* The function uses a new feature in fix_fields where the flag GET_FIXED_FIELDS_FLAG is set for all fields in the item tree. This field must always be reset before returning from the function since it is used for other purposes as well. SYNOPSIS fix_fields_part_func() thd The thread object func_expr The item tree reference of the partition function table The table object part_info Reference to partitioning data structure is_sub_part Is the table subpartitioned as well is_create_table_ind Indicator of whether openfrm was called as part of CREATE or ALTER TABLE RETURN VALUE true An error occurred, something was wrong with the partition function. false Ok, a partition field array was created DESCRIPTION This function is used to build an array of partition fields for the partitioning function and subpartitioning function. The partitioning function is an item tree that must reference at least one field in the table. This is checked first in the parser that the function doesn't contain non-cacheable parts (like a random function) and by checking here that the function isn't a constant function. Calculate the number of fields in the partition function. Use it allocate memory for array of Field pointers. Initialise array of field pointers. Use information set when calling fix_fields and reset it immediately after. The get_fields_in_item_tree activates setting of bit in flags on the field object. */ static bool fix_fields_part_func(THD *thd, Item *func_expr, TABLE *table, bool is_sub_part, bool is_create_table_ind) { partition_info *part_info = table->part_info; bool result = true; int error; LEX *old_lex = thd->lex; LEX lex; SELECT_LEX_UNIT unit(CTX_NONE); SELECT_LEX select(nullptr, nullptr); lex.new_static_query(&unit, &select); DBUG_TRACE; if (init_lex_with_single_table(thd, table, &lex)) goto end; func_expr->walk(&Item::change_context_processor, enum_walk::POSTFIX, (uchar *)&lex.select_lex->context); thd->where = "partition function"; /* In execution we must avoid the use of thd->change_item_tree since we might release memory before statement is completed. We do this by temporarily setting the stmt_arena->mem_root to be the mem_root of the table object, this also ensures that any memory allocated during fix_fields will not be released at end of execution of this statement. Thus the item tree will remain valid also in subsequent executions of this table object. We do however not at the moment support allocations during execution of val_int so any item class that does this during val_int must be disallowed as partition function. SEE Bug #21658 This is a tricky call to prepare for since it can have a large number of interesting side effects, both desirable and undesirable. */ { const bool save_agg_func = thd->lex->current_select()->agg_func_used(); error = func_expr->fix_fields(thd, &func_expr); /* Restore agg_func. fix_fields should not affect the optimizer later, see Bug#46923. */ thd->lex->current_select()->set_agg_func_used(save_agg_func); } if (unlikely(error)) { DBUG_PRINT("info", ("Field in partition function not part of table")); clear_field_flag(table); goto end; } if (unlikely(func_expr->const_item())) { my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0)); clear_field_flag(table); goto end; } /* We don't allow creating partitions with expressions with non matching arguments as a (sub)partitioning function, but we want to allow such expressions when opening existing tables for easier maintenance. This exception should be deprecated at some point in future so that we always throw an error. */ if (func_expr->walk(&Item::check_valid_arguments_processor, enum_walk::POSTFIX, NULL)) { if (is_create_table_ind) { my_error(ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, MYF(0)); goto end; } else push_warning(thd, Sql_condition::SL_WARNING, ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR, ER_THD(thd, ER_WRONG_EXPR_IN_PARTITION_FUNC_ERROR)); } if ((!is_sub_part) && (error = check_signed_flag(part_info))) goto end; result = set_up_field_array(table, is_sub_part); end: end_lex_with_single_table(thd, table, old_lex); #if !defined(DBUG_OFF) func_expr->walk(&Item::change_context_processor, enum_walk::POSTFIX, NULL); #endif return result; } /* Check that the primary key contains all partition fields if defined SYNOPSIS check_primary_key() table TABLE object for which partition fields are set-up RETURN VALUES true Not all fields in partitioning function was part of primary key false Ok, all fields of partitioning function were part of primary key DESCRIPTION This function verifies that if there is a primary key that it contains all the fields of the partition function. This is a temporary limitation that will hopefully be removed after a while. */ static bool check_primary_key(TABLE *table) { uint primary_key = table->s->primary_key; bool all_fields, some_fields; bool result = false; DBUG_TRACE; if (primary_key < MAX_KEY) { set_indicator_in_key_fields(table->key_info + primary_key); check_fields_in_PF(table->part_info->full_part_field_array, &all_fields, &some_fields); clear_indicator_in_key_fields(table->key_info + primary_key); if (unlikely(!all_fields)) { my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF, MYF(0), "PRIMARY KEY"); result = true; } } return result; } /* Check that unique keys contains all partition fields SYNOPSIS check_unique_keys() table TABLE object for which partition fields are set-up RETURN VALUES true Not all fields in partitioning function was part of all unique keys false Ok, all fields of partitioning function were part of unique keys DESCRIPTION This function verifies that if there is a unique index that it contains all the fields of the partition function. This is a temporary limitation that will hopefully be removed after a while. */ static bool check_unique_keys(TABLE *table) { bool all_fields, some_fields; bool result = false; uint keys = table->s->keys; uint i; DBUG_TRACE; for (i = 0; i < keys; i++) { if (table->key_info[i].flags & HA_NOSAME) // Unique index { set_indicator_in_key_fields(table->key_info + i); check_fields_in_PF(table->part_info->full_part_field_array, &all_fields, &some_fields); clear_indicator_in_key_fields(table->key_info + i); if (unlikely(!all_fields)) { my_error(ER_UNIQUE_KEY_NEED_ALL_FIELDS_IN_PF, MYF(0), "UNIQUE INDEX"); result = true; break; } } } return result; } /* An important optimisation is whether a range on a field can select a subset of the partitions. A prerequisite for this to happen is that the PF is a growing function OR a shrinking function. This can never happen for a multi-dimensional PF. Thus this can only happen with PF with at most one field involved in the PF. The idea is that if the function is a growing function and you know that the field of the PF is 4 <= A <= 6 then we can convert this to a range in the PF instead by setting the range to PF(4) <= PF(A) <= PF(6). In the case of RANGE PARTITIONING and LIST PARTITIONING this can be used to calculate a set of partitions rather than scanning all of them. Thus the following prerequisites are there to check if sets of partitions can be found. 1) Only possible for RANGE and LIST partitioning (not for subpartitioning) 2) Only possible if PF only contains 1 field 3) Possible if PF is a growing function of the field 4) Possible if PF is a shrinking function of the field OBSERVATION: 1) IF f1(A) is a growing function AND f2(A) is a growing function THEN f1(A) + f2(A) is a growing function f1(A) * f2(A) is a growing function if f1(A) >= 0 and f2(A) >= 0 2) IF f1(A) is a growing function and f2(A) is a shrinking function THEN f1(A) / f2(A) is a growing function if f1(A) >= 0 and f2(A) > 0 3) IF A is a growing function then a function f(A) that removes the least significant portion of A is a growing function E.g. DATE(datetime) is a growing function MONTH(datetime) is not a growing/shrinking function 4) IF f1(A) is a growing function and f2(A) is a growing function THEN f1(f2(A)) and f2(f1(A)) are also growing functions 5) IF f1(A) is a shrinking function and f2(A) is a growing function THEN f1(f2(A)) is a shrinking function and f2(f1(A)) is a shrinking function 6) f1(A) = A is a growing function 7) f1(A) = A*a + b (where a and b are constants) is a growing function By analysing the item tree of the PF we can use these deducements and derive whether the PF is a growing function or a shrinking function or neither of it. If the PF is range capable then a flag is set on the table object indicating this to notify that we can use also ranges on the field of the PF to deduce a set of partitions if the fields of the PF were not all fully bound. SYNOPSIS check_range_capable_PF() DESCRIPTION Support for this is not implemented yet. */ static void check_range_capable_PF(TABLE *) { DBUG_TRACE; } /** Set up partition bitmaps @param part_info Reference to partitioning data structure @return Operation status @retval true Memory allocation failure @retval false Success Allocate memory for bitmaps of the partitioned table and initialise it. */ static bool set_up_partition_bitmaps(partition_info *part_info) { DBUG_TRACE; DBUG_ASSERT(!part_info->bitmaps_are_initialized); if (part_info->init_partition_bitmap(&part_info->read_partitions, &part_info->table->mem_root)) return true; if (part_info->init_partition_bitmap(&part_info->lock_partitions, &part_info->table->mem_root)) return true; part_info->bitmaps_are_initialized = true; part_info->set_partition_bitmaps(NULL); return false; } /* Set up partition key maps SYNOPSIS set_up_partition_key_maps() table TABLE object for which partition fields are set-up part_info Reference to partitioning data structure RETURN VALUES None DESCRIPTION This function sets up a couple of key maps to be able to quickly check if an index ever can be used to deduce the partition fields or even a part of the fields of the partition function. We set up the following key_map's. PF = Partition Function 1) All fields of the PF is set even by equal on the first fields in the key 2) All fields of the PF is set if all fields of the key is set 3) At least one field in the PF is set if all fields is set 4) At least one field in the PF is part of the key */ static void set_up_partition_key_maps(TABLE *table, partition_info *part_info) { uint keys = table->s->keys; uint i; bool all_fields, some_fields; DBUG_TRACE; part_info->all_fields_in_PF.clear_all(); part_info->all_fields_in_PPF.clear_all(); part_info->all_fields_in_SPF.clear_all(); part_info->some_fields_in_PF.clear_all(); for (i = 0; i < keys; i++) { set_indicator_in_key_fields(table->key_info + i); check_fields_in_PF(part_info->full_part_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_PF.set_bit(i); if (some_fields) part_info->some_fields_in_PF.set_bit(i); if (part_info->is_sub_partitioned()) { check_fields_in_PF(part_info->part_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_PPF.set_bit(i); check_fields_in_PF(part_info->subpart_field_array, &all_fields, &some_fields); if (all_fields) part_info->all_fields_in_SPF.set_bit(i); } clear_indicator_in_key_fields(table->key_info + i); } } /* Set up function pointers for partition function SYNOPSIS set_up_partition_func_pointers() part_info Reference to partitioning data structure RETURN VALUE NONE DESCRIPTION Set-up all function pointers for calculation of partition id, subpartition id and the upper part in subpartitioning. This is to speed up execution of get_partition_id which is executed once every record to be written and deleted and twice for updates. */ static void set_up_partition_func_pointers(partition_info *part_info) { DBUG_TRACE; if (part_info->is_sub_partitioned()) { part_info->get_partition_id = get_partition_id_with_sub; if (part_info->part_type == partition_type::RANGE) { if (part_info->column_list) part_info->get_part_partition_id = get_partition_id_range_col; else part_info->get_part_partition_id = get_partition_id_range; if (part_info->list_of_subpart_fields) { if (part_info->linear_hash_ind) part_info->get_subpartition_id = get_partition_id_linear_key_sub; else part_info->get_subpartition_id = get_partition_id_key_sub; } else { if (part_info->linear_hash_ind) part_info->get_subpartition_id = get_partition_id_linear_hash_sub; else part_info->get_subpartition_id = get_partition_id_hash_sub; } } else /* LIST Partitioning */ { if (part_info->column_list) part_info->get_part_partition_id = get_partition_id_list_col; else part_info->get_part_partition_id = get_partition_id_list; if (part_info->list_of_subpart_fields) { if (part_info->linear_hash_ind) part_info->get_subpartition_id = get_partition_id_linear_key_sub; else part_info->get_subpartition_id = get_partition_id_key_sub; } else { if (part_info->linear_hash_ind) part_info->get_subpartition_id = get_partition_id_linear_hash_sub; else part_info->get_subpartition_id = get_partition_id_hash_sub; } } } else /* No subpartitioning */ { part_info->get_part_partition_id = NULL; part_info->get_subpartition_id = NULL; if (part_info->part_type == partition_type::RANGE) { if (part_info->column_list) part_info->get_partition_id = get_partition_id_range_col; else part_info->get_partition_id = get_partition_id_range; } else if (part_info->part_type == partition_type::LIST) { if (part_info->column_list) part_info->get_partition_id = get_partition_id_list_col; else part_info->get_partition_id = get_partition_id_list; } else /* HASH partitioning */ { if (part_info->list_of_part_fields) { if (part_info->linear_hash_ind) part_info->get_partition_id = get_partition_id_linear_key_nosub; else part_info->get_partition_id = get_partition_id_key_nosub; } else { if (part_info->linear_hash_ind) part_info->get_partition_id = get_partition_id_linear_hash_nosub; else part_info->get_partition_id = get_partition_id_hash_nosub; } } } /* We need special functions to handle character sets since they require copy of field pointers and restore afterwards. For subpartitioned tables we do the copy and restore individually on the part and subpart parts. For non- subpartitioned tables we use the same functions as used for the parts part of subpartioning. Thus for subpartitioned tables the get_partition_id is always get_partition_id_with_sub, even when character sets exists. */ if (part_info->part_charset_field_array) { if (part_info->is_sub_partitioned()) { DBUG_ASSERT(part_info->get_part_partition_id); if (!part_info->column_list) { part_info->get_part_partition_id_charset = part_info->get_part_partition_id; part_info->get_part_partition_id = get_part_id_charset_func_part; } } else { DBUG_ASSERT(part_info->get_partition_id); if (!part_info->column_list) { part_info->get_part_partition_id_charset = part_info->get_partition_id; part_info->get_part_partition_id = get_part_id_charset_func_part; } } } if (part_info->subpart_charset_field_array) { DBUG_ASSERT(part_info->get_subpartition_id); part_info->get_subpartition_id_charset = part_info->get_subpartition_id; part_info->get_subpartition_id = get_part_id_charset_func_subpart; } } /* For linear hashing we need a mask which is on the form 2**n - 1 where 2**n >= num_parts. Thus if num_parts is 6 then mask is 2**3 - 1 = 8 - 1 = 7. SYNOPSIS set_linear_hash_mask() part_info Reference to partitioning data structure num_parts Number of parts in linear hash partitioning RETURN VALUE NONE */ void set_linear_hash_mask(partition_info *part_info, uint num_parts) { uint mask; for (mask = 1; mask < num_parts; mask <<= 1) ; part_info->linear_hash_mask = mask - 1; } /* This function calculates the partition id provided the result of the hash function using linear hashing parameters, mask and number of partitions. SYNOPSIS get_part_id_from_linear_hash() hash_value Hash value calculated by HASH function or KEY function mask Mask calculated previously by set_linear_hash_mask num_parts Number of partitions in HASH partitioned part RETURN VALUE part_id The calculated partition identity (starting at 0) DESCRIPTION The partition is calculated according to the theory of linear hashing. See e.g. Linear hashing: a new tool for file and table addressing, Reprinted from VLDB-80 in Readings Database Systems, 2nd ed, M. Stonebraker (ed.), Morgan Kaufmann 1994. */ static uint32 get_part_id_from_linear_hash(longlong hash_value, uint mask, uint num_parts) { uint32 part_id = (uint32)(hash_value & mask); if (part_id >= num_parts) { uint new_mask = ((mask + 1) >> 1) - 1; part_id = (uint32)(hash_value & new_mask); } return part_id; } /* Check if a particular field is in need of character set handling for partition functions. SYNOPSIS field_is_partition_charset() field The field to check RETURN VALUES false Not in need of character set handling true In need of character set handling */ bool field_is_partition_charset(Field *field) { if (!(field->type() == MYSQL_TYPE_STRING) && !(field->type() == MYSQL_TYPE_VARCHAR)) return false; { const CHARSET_INFO *cs = field->charset(); if (!(field->type() == MYSQL_TYPE_STRING) || !(cs->state & MY_CS_BINSORT)) return true; return false; } } /* Check that partition function doesn't contain any forbidden character sets and collations. SYNOPSIS check_part_func_fields() ptr Array of Field pointers ok_with_charsets Will we report allowed charset fields as ok RETURN VALUES false Success true Error DESCRIPTION We will check in this routine that the fields of the partition functions do not contain unallowed parts. It can also be used to check if there are fields that require special care by calling my_strnxfrm before calling the functions to calculate partition id. */ bool check_part_func_fields(Field **ptr, bool ok_with_charsets) { Field *field; DBUG_TRACE; while ((field = *(ptr++))) { /* For CHAR/VARCHAR fields we need to take special precautions. Binary collation with CHAR is automatically supported. Other types need some kind of standardisation function handling */ if (field_is_partition_charset(field)) { const CHARSET_INFO *cs = field->charset(); if (!ok_with_charsets || cs->mbmaxlen > 1 || cs->strxfrm_multiply > 1) { return true; } } } return false; } /* fix partition functions SYNOPSIS fix_partition_func() thd The thread object table TABLE object for which partition fields are set-up is_create_table_ind Indicator of whether openfrm was called as part of CREATE or ALTER TABLE RETURN VALUE true Error false Success DESCRIPTION The name parameter contains the full table name and is used to get the database name of the table which is used to set-up a correct TABLE_LIST object for use in fix_fields. NOTES This function is called as part of opening the table by opening the .frm file. It is a part of CREATE TABLE to do this so it is quite permissible that errors due to erroneus syntax isn't found until we come here. If the user has used a non-existing field in the table is one such example of an error that is not discovered until here. */ bool fix_partition_func(THD *thd, TABLE *table, bool is_create_table_ind) { bool result = true; partition_info *part_info = table->part_info; enum_mark_columns save_mark_used_columns = thd->mark_used_columns; Partition_handler *part_handler; const ulong save_want_privilege = thd->want_privilege; DBUG_TRACE; if (part_info->fixed) { return false; } thd->mark_used_columns = MARK_COLUMNS_NONE; thd->want_privilege = 0; if (!is_create_table_ind || thd->lex->sql_command != SQLCOM_CREATE_TABLE) { if (partition_default_handling(table, part_info, is_create_table_ind, table->s->normalized_path.str)) { return true; } } if (part_info->is_sub_partitioned()) { DBUG_ASSERT(part_info->subpart_type == partition_type::HASH); /* Subpartition is defined. We need to verify that subpartitioning function is correct. */ if (part_info->linear_hash_ind) set_linear_hash_mask(part_info, part_info->num_subparts); if (part_info->list_of_subpart_fields) { List_iterator it(part_info->subpart_field_list); if (unlikely(handle_list_of_fields(it, table, part_info, true))) goto end; } else { if (unlikely(fix_fields_part_func(thd, part_info->subpart_expr, table, true, is_create_table_ind))) goto end; if (unlikely(part_info->subpart_expr->result_type() != INT_RESULT)) { part_info->report_part_expr_error(true); goto end; } } } DBUG_ASSERT(part_info->part_type != partition_type::NONE); /* Partition is defined. We need to verify that partitioning function is correct. */ if (part_info->part_type == partition_type::HASH) { if (part_info->linear_hash_ind) set_linear_hash_mask(part_info, part_info->num_parts); if (part_info->list_of_part_fields) { List_iterator it(part_info->part_field_list); if (unlikely(handle_list_of_fields(it, table, part_info, false))) goto end; } else { if (unlikely(fix_fields_part_func(thd, part_info->part_expr, table, false, is_create_table_ind))) goto end; if (unlikely(part_info->part_expr->result_type() != INT_RESULT)) { part_info->report_part_expr_error(false); goto end; } } part_info->fixed = true; } else { const char *error_str; if (part_info->column_list) { List_iterator it(part_info->part_field_list); if (unlikely(handle_list_of_fields(it, table, part_info, false))) goto end; } else { if (unlikely(fix_fields_part_func(thd, part_info->part_expr, table, false, is_create_table_ind))) goto end; } part_info->fixed = true; if (part_info->part_type == partition_type::RANGE) { error_str = partition_keywords[PKW_RANGE].str; if (unlikely(part_info->check_range_constants(thd))) goto end; } else if (part_info->part_type == partition_type::LIST) { error_str = partition_keywords[PKW_LIST].str; if (unlikely(part_info->check_list_constants(thd))) goto end; } else { DBUG_ASSERT(0); my_error(ER_INCONSISTENT_PARTITION_INFO_ERROR, MYF(0)); goto end; } if (unlikely(part_info->num_parts < 1)) { my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), error_str); goto end; } if (unlikely(!part_info->column_list && part_info->part_expr->result_type() != INT_RESULT)) { part_info->report_part_expr_error(false); goto end; } } if (((part_info->part_type != partition_type::HASH || part_info->list_of_part_fields == false) && !part_info->column_list && check_part_func_fields(part_info->part_field_array, true)) || (part_info->list_of_subpart_fields == false && part_info->is_sub_partitioned() && check_part_func_fields(part_info->subpart_field_array, true))) { /* Range/List/HASH (but not KEY) and not COLUMNS or HASH subpartitioning with columns in the partitioning expression using unallowed charset. */ my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); goto end; } if (unlikely(create_full_part_field_array(thd, table, part_info))) goto end; if (unlikely(check_primary_key(table))) goto end; if (unlikely((!(table->s->db_type()->partition_flags && (table->s->db_type()->partition_flags() & HA_CAN_PARTITION_UNIQUE))) && check_unique_keys(table))) goto end; if (unlikely(set_up_partition_bitmaps(part_info))) goto end; if (unlikely(part_info->set_up_charset_field_preps())) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); goto end; } if (unlikely(part_info->check_partition_field_length())) { my_error(ER_PARTITION_FIELDS_TOO_LONG, MYF(0)); goto end; } check_range_capable_PF(table); set_up_partition_key_maps(table, part_info); set_up_partition_func_pointers(part_info); set_up_range_analysis_info(part_info); part_handler = table->file->get_partition_handler(); if (part_handler) { part_handler->set_part_info(part_info, false); result = false; } else { DBUG_ASSERT(0); my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); } end: thd->mark_used_columns = save_mark_used_columns; thd->want_privilege = save_want_privilege; DBUG_PRINT("info", ("thd->mark_used_columns: %d", thd->mark_used_columns)); return result; } // TODO: Change this to use streams instead, to make it possible to skip // temporary files etc. and write directly to a string if wanted. /* The code below is support routines for the reverse parsing of the partitioning syntax. This feature is very useful to generate syntax for all default values to avoid all default checking when opening the frm file. It is also used when altering the partitioning by use of various ALTER TABLE commands. Finally it is used for SHOW CREATE TABLES. */ static int add_write(File fptr, const char *buf, size_t len) { size_t ret_code = mysql_file_write(fptr, (const uchar *)buf, len, MYF(MY_FNABP)); if (likely(ret_code == 0)) return 0; else return 1; } static int add_string_object(File fptr, String *string) { return add_write(fptr, string->ptr(), string->length()); } static int add_string(File fptr, const char *string) { return add_write(fptr, string, strlen(string)); } static int add_string_len(File fptr, const char *string, size_t len) { return add_write(fptr, string, len); } static int add_space(File fptr) { return add_string(fptr, space_str); } static int add_comma(File fptr) { return add_string(fptr, comma_str); } static int add_equal(File fptr) { return add_string(fptr, equal_str); } static int add_end_parenthesis(File fptr) { return add_string(fptr, end_paren_str); } static int add_begin_parenthesis(File fptr) { return add_string(fptr, begin_paren_str); } static int add_part_key_word(File fptr, const char *key_string) { int err = add_string(fptr, key_string); err += add_space(fptr); return err; } static int add_partition(File fptr) { char buff[22]; strxmov(buff, part_str, space_str, NullS); return add_string(fptr, buff); } static int add_subpartition(File fptr) { int err = add_string(fptr, sub_str); return err + add_partition(fptr); } static int add_partition_by(File fptr) { char buff[22]; strxmov(buff, part_str, space_str, by_str, space_str, NullS); return add_string(fptr, buff); } static int add_subpartition_by(File fptr) { int err = add_string(fptr, sub_str); return err + add_partition_by(fptr); } /** Append field list to string. Used by KEY and COLUMNS partitioning. @param[in] thd Thread handle. @param[in,out] str String to append. @param[in] field_list List of field names to append. @return false if success, else true. */ static bool append_field_list(THD *thd, String *str, List field_list) { uint i, num_fields; List_iterator part_it(field_list); num_fields = field_list.elements; i = 0; ulonglong save_options = thd->variables.option_bits; thd->variables.option_bits &= ~OPTION_QUOTE_SHOW_CREATE; while (i < num_fields) { const char *field_str = part_it++; append_identifier(thd, str, field_str, strlen(field_str)); if (i != (num_fields - 1)) { if (str->append(',')) { thd->variables.option_bits = save_options; return true; } } i++; } thd->variables.option_bits = save_options; return false; } static int add_part_field_list(File fptr, List field_list) { int err = 0; THD *thd = current_thd; String str("", 0, system_charset_info); err += add_begin_parenthesis(fptr); if (append_field_list(thd, &str, field_list)) { err++; } err += add_string_object(fptr, &str); err += add_end_parenthesis(fptr); return err; } static int add_ident_string(File fptr, const char *name) { String name_string("", 0, system_charset_info); append_identifier(current_thd, &name_string, name, strlen(name)); return add_string_object(fptr, &name_string); } static int add_name_string(File fptr, const char *name) { int err; THD *thd = current_thd; ulonglong save_options = thd->variables.option_bits; thd->variables.option_bits &= ~OPTION_QUOTE_SHOW_CREATE; err = add_ident_string(fptr, name); thd->variables.option_bits = save_options; return err; } static int add_int(File fptr, longlong number) { char buff[32]; llstr(number, buff); return add_string(fptr, buff); } static int add_uint(File fptr, ulonglong number) { char buff[32]; longlong2str(number, buff, 10); return add_string(fptr, buff); } /* Must escape strings in partitioned tables frm-files, parsing it later with mysql_unpack_partition will fail otherwise. */ static int add_quoted_string(File fptr, const char *quotestr) { String orgstr(quotestr, system_charset_info); String escapedstr; int err = add_string(fptr, "'"); err += append_escaped(&escapedstr, &orgstr); err += add_string(fptr, escapedstr.c_ptr_safe()); return err + add_string(fptr, "'"); } /** Truncate the partition file name from a path if it exists. A partition file name will contain one or more '#' characters. One of the occurrences of '#' will be either "#P#" or "#p#" depending on whether the storage engine has converted the filename to lower case. If we need to truncate the name, we will allocate a new string and replace with, in case the original string was owned by something else. @param[in] root MEM_ROOT to allocate from. If NULL alter the string directly. @param[in,out] path Pointer to string to check and truncate. */ void truncate_partition_filename(MEM_ROOT *root, const char **path) { if (*path) { const char *last_slash = strrchr(*path, FN_LIBCHAR); #ifdef _WIN32 if (!last_slash) last_slash = strrchr(*path, FN_LIBCHAR2); #endif if (last_slash) { /* Look for a partition-type filename */ for (const char *pound = strchr(last_slash, '#'); pound; pound = strchr(pound + 1, '#')) { if ((pound[1] == 'P' || pound[1] == 'p') && pound[2] == '#') { if (root == NULL) { char *p = const_cast(last_slash); *p = '\0'; } else { *path = strmake_root(root, *path, last_slash - *path); } break; } } } } } /** @brief Output a filepath. Similar to add_keyword_string except it also converts \ to / on Windows and skips the partition file name at the end if found. @note When Mysql sends a DATA DIRECTORY from SQL for partitions it does not use a file name, but it does for DATA DIRECTORY on a non-partitioned table. So when the storage engine is asked for the DATA DIRECTORY string after a restart through Handler::update_create_options(), the storage engine may include the filename. */ static int add_keyword_path(File fptr, const char *keyword, const char *path) { if (strlen(path) >= FN_REFLEN) { my_error(ER_PATH_LENGTH, MYF(0), keyword); return 1; } int err = add_string(fptr, keyword); err += add_space(fptr); err += add_equal(fptr); err += add_space(fptr); char temp_path[FN_REFLEN]; const char *temp_path_p[1]; temp_path_p[0] = temp_path; strncpy(temp_path, path, FN_REFLEN - 1); temp_path[FN_REFLEN - 1] = '\0'; #ifdef _WIN32 /* Convert \ to / to be able to create table on unix */ char *pos, *end; size_t length = strlen(temp_path); for (pos = temp_path, end = pos + length; pos < end; pos++) { if (*pos == '\\') *pos = '/'; } #endif /* If the partition file name with its "#P#" identifier is found after the last slash, truncate that filename. */ truncate_partition_filename(NULL, temp_path_p); err += add_quoted_string(fptr, temp_path); return err + add_space(fptr); } static int add_keyword_string(File fptr, const char *keyword, bool should_use_quotes, const char *keystr) { int err = add_string(fptr, keyword); err += add_space(fptr); err += add_equal(fptr); err += add_space(fptr); if (should_use_quotes) err += add_quoted_string(fptr, keystr); else err += add_string(fptr, keystr); return err + add_space(fptr); } static int add_keyword_int(File fptr, const char *keyword, longlong num) { int err = add_string(fptr, keyword); err += add_space(fptr); err += add_equal(fptr); err += add_space(fptr); err += add_int(fptr, num); return err + add_space(fptr); } static int add_engine(File fptr, handlerton *engine_type) { const char *engine_str = ha_resolve_storage_engine_name(engine_type); DBUG_ASSERT(engine_type != NULL); DBUG_PRINT("info", ("ENGINE: %s", engine_str)); int err = add_string(fptr, "ENGINE = "); return err + add_string(fptr, engine_str); } static int add_partition_options(File fptr, partition_element *p_elem) { int err = 0; err += add_space(fptr); if (p_elem->tablespace_name) { err += add_string(fptr, "TABLESPACE = "); err += add_ident_string(fptr, p_elem->tablespace_name); err += add_space(fptr); } if (p_elem->nodegroup_id != UNDEF_NODEGROUP) err += add_keyword_int(fptr, "NODEGROUP", (longlong)p_elem->nodegroup_id); if (p_elem->part_max_rows) err += add_keyword_int(fptr, "MAX_ROWS", (longlong)p_elem->part_max_rows); if (p_elem->part_min_rows) err += add_keyword_int(fptr, "MIN_ROWS", (longlong)p_elem->part_min_rows); if (!(current_thd->variables.sql_mode & MODE_NO_DIR_IN_CREATE)) { if (p_elem->data_file_name) err += add_keyword_path(fptr, "DATA DIRECTORY", p_elem->data_file_name); if (p_elem->index_file_name) err += add_keyword_path(fptr, "INDEX DIRECTORY", p_elem->index_file_name); } if (p_elem->part_comment) err += add_keyword_string(fptr, "COMMENT", true, p_elem->part_comment); return err + add_engine(fptr, p_elem->engine_type); } /* Check partition fields for result type and if they need to check the character set. SYNOPSIS check_part_field() sql_type Type provided by user field_name Name of field, used for error handling result_type Out value: Result type of field need_cs_check Out value: Do we need character set check RETURN VALUES true Error false Ok */ static int check_part_field(enum_field_types sql_type, const char *field_name, Item_result *result_type, bool *need_cs_check) { if (sql_type >= MYSQL_TYPE_TINY_BLOB && sql_type <= MYSQL_TYPE_BLOB) { my_error(ER_BLOB_FIELD_IN_PART_FUNC_ERROR, MYF(0)); return true; } switch (sql_type) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: case MYSQL_TYPE_INT24: *result_type = INT_RESULT; *need_cs_check = false; return false; case MYSQL_TYPE_NEWDATE: case MYSQL_TYPE_DATE: case MYSQL_TYPE_TIME: case MYSQL_TYPE_DATETIME: case MYSQL_TYPE_TIME2: case MYSQL_TYPE_DATETIME2: *result_type = STRING_RESULT; *need_cs_check = true; return false; case MYSQL_TYPE_VARCHAR: case MYSQL_TYPE_STRING: case MYSQL_TYPE_VAR_STRING: *result_type = STRING_RESULT; *need_cs_check = true; return false; case MYSQL_TYPE_NEWDECIMAL: case MYSQL_TYPE_DECIMAL: case MYSQL_TYPE_TIMESTAMP: case MYSQL_TYPE_TIMESTAMP2: case MYSQL_TYPE_NULL: case MYSQL_TYPE_FLOAT: case MYSQL_TYPE_DOUBLE: case MYSQL_TYPE_BIT: case MYSQL_TYPE_ENUM: case MYSQL_TYPE_SET: case MYSQL_TYPE_GEOMETRY: goto error; default: goto error; } error: my_error(ER_FIELD_TYPE_NOT_ALLOWED_AS_PARTITION_FIELD, MYF(0), field_name); return true; } /* Find the given field's Create_field object using name of field SYNOPSIS get_sql_field() field_name Field name create_fields Info from ALTER TABLE/CREATE TABLE RETURN VALUE sql_field Object filled in by parser about field NULL No field found */ static Create_field *get_sql_field(const char *field_name, List *create_fields) { List_iterator it(*create_fields); Create_field *sql_field; DBUG_TRACE; while ((sql_field = it++)) { if (!(my_strcasecmp(system_charset_info, sql_field->field_name, field_name))) { return sql_field; } } return NULL; } int expr_to_string(String *val_conv, Item *item_expr, Field *field, const char *field_name, const HA_CREATE_INFO *create_info, List *create_fields) { char buffer[MAX_KEY_LENGTH]; String str(buffer, sizeof(buffer), &my_charset_bin); String *res; const CHARSET_INFO *field_cs; bool need_cs_check = false; Item_result result_type = STRING_RESULT; /* This function is called at a very early stage, even before we have prepared the sql_field objects. Thus we have to find the proper sql_field object and get the character set from that object. */ if (create_info) { Create_field *sql_field; if (!(sql_field = get_sql_field(field_name, create_fields))) { my_error(ER_FIELD_NOT_FOUND_PART_ERROR, MYF(0)); return 1; } if (check_part_field(sql_field->sql_type, sql_field->field_name, &result_type, &need_cs_check)) return 1; if (need_cs_check) field_cs = get_sql_field_charset(sql_field, create_info); else field_cs = NULL; } else { result_type = field->result_type(); if (check_part_field(field->real_type(), field->field_name, &result_type, &need_cs_check)) return 1; DBUG_ASSERT(result_type == field->result_type()); if (need_cs_check) field_cs = field->charset(); else field_cs = NULL; } if (result_type != item_expr->result_type()) { my_error(ER_WRONG_TYPE_COLUMN_VALUE_ERROR, MYF(0)); return 1; } if (field_cs && field_cs != item_expr->collation.collation) { if (!(item_expr = convert_charset_partition_constant(item_expr, field_cs))) { my_error(ER_PARTITION_FUNCTION_IS_NOT_ALLOWED, MYF(0)); return 1; } } val_conv->set_charset(system_charset_info); res = item_expr->val_str(&str); if (get_cs_converted_part_value_from_string(current_thd, item_expr, res, val_conv, field_cs, false)) { return 1; } return 0; } static int add_column_list_values(File fptr, partition_info *part_info, part_elem_value *list_value) { int err = 0; uint i; uint num_elements = part_info->part_field_list.elements; bool use_parenthesis = (part_info->part_type == partition_type::LIST && part_info->num_columns > 1U); if (use_parenthesis) err += add_begin_parenthesis(fptr); for (i = 0; i < num_elements; i++) { part_column_list_val *col_val = &list_value->col_val_array[i]; if (col_val->max_value) err += add_string(fptr, partition_keywords[PKW_MAXVALUE].str); else if (col_val->null_value) err += add_string(fptr, "NULL"); else { char buffer[MAX_KEY_LENGTH]; String str(buffer, sizeof(buffer), &my_charset_bin); Item *item_expr = col_val->item_expression; if (!item_expr) { /* The values are not from the parser, but from the dd::Partition_values table. See fill_partitioning_from_dd(). */ DBUG_ASSERT(col_val->column_value.value_str); err += add_string(fptr, col_val->column_value.value_str); } else if (item_expr->null_value) { err += add_string(fptr, "NULL"); } else { String val_conv; err += expr_to_string(&val_conv, item_expr, part_info->part_field_array[i], NULL, NULL, NULL); err += add_string_object(fptr, &val_conv); } } if (i != (num_elements - 1)) err += add_string(fptr, comma_str); } if (use_parenthesis) err += add_end_parenthesis(fptr); return err; } static int add_partition_values(File fptr, partition_info *part_info, partition_element *p_elem) { int err = 0; if (part_info->part_type == partition_type::RANGE) { err += add_string(fptr, " VALUES LESS THAN "); if (part_info->column_list) { List_iterator list_val_it(p_elem->list_val_list); part_elem_value *list_value = list_val_it++; err += add_begin_parenthesis(fptr); err += add_column_list_values(fptr, part_info, list_value); err += add_end_parenthesis(fptr); } else { if (!p_elem->max_value) { err += add_begin_parenthesis(fptr); if (p_elem->signed_flag) err += add_int(fptr, p_elem->range_value); else err += add_uint(fptr, p_elem->range_value); err += add_end_parenthesis(fptr); } else err += add_string(fptr, partition_keywords[PKW_MAXVALUE].str); } } else if (part_info->part_type == partition_type::LIST) { uint i; List_iterator list_val_it(p_elem->list_val_list); err += add_string(fptr, " VALUES IN "); uint num_items = p_elem->list_val_list.elements; err += add_begin_parenthesis(fptr); if (p_elem->has_null_value) { err += add_string(fptr, "NULL"); if (num_items == 0) { err += add_end_parenthesis(fptr); goto end; } err += add_comma(fptr); } i = 0; do { part_elem_value *list_value = list_val_it++; if (part_info->column_list) err += add_column_list_values(fptr, part_info, list_value); else { if (!list_value->unsigned_flag) err += add_int(fptr, list_value->value); else err += add_uint(fptr, list_value->value); } if (i != (num_items - 1)) err += add_comma(fptr); } while (++i < num_items); err += add_end_parenthesis(fptr); } end: return err; } /** Add 'KEY' word, with optional 'ALGORTIHM = N'. @param fptr File to write to. @param part_info partition_info holding the used key_algorithm @param current_comment_start NULL, or comment string encapsulating the PARTITION BY clause. @return Operation status. @retval 0 Success @retval != 0 Failure */ static int add_key_with_algorithm(File fptr, partition_info *part_info, const char *current_comment_start) { int err = 0; err += add_part_key_word(fptr, partition_keywords[PKW_KEY].str); /* current_comment_start is given when called from SHOW CREATE TABLE, Then only add ALGORITHM = 1, not the default 2 or non-set 0! For .frm current_comment_start is NULL, then add ALGORITHM if != 0. */ if (part_info->key_algorithm == enum_key_algorithm::KEY_ALGORITHM_51 || // SHOW (!current_comment_start && // .frm (part_info->key_algorithm != enum_key_algorithm::KEY_ALGORITHM_NONE))) { /* If we already are within a comment, end that comment first. */ if (current_comment_start) err += add_string(fptr, "*/ "); err += add_string(fptr, "/*!50611 "); err += add_part_key_word(fptr, partition_keywords[PKW_ALGORITHM].str); err += add_equal(fptr); err += add_space(fptr); err += add_int(fptr, static_cast(part_info->key_algorithm)); err += add_space(fptr); err += add_string(fptr, "*/ "); if (current_comment_start) { /* Skip new line. */ if (current_comment_start[0] == '\n') current_comment_start++; err += add_string(fptr, current_comment_start); err += add_space(fptr); } } return err; } static char *get_file_content(File fptr, uint *buf_length, bool use_sql_alloc) { my_off_t buffer_length; char *buf; buffer_length = mysql_file_seek(fptr, 0L, MY_SEEK_END, MYF(0)); if (unlikely(buffer_length == MY_FILEPOS_ERROR)) return NULL; if (unlikely(mysql_file_seek(fptr, 0L, MY_SEEK_SET, MYF(0)) == MY_FILEPOS_ERROR)) return NULL; *buf_length = (uint)buffer_length; if (use_sql_alloc) buf = (char *)(*THR_MALLOC)->Alloc(*buf_length + 1); else buf = (char *)my_malloc(key_memory_partition_syntax_buffer, *buf_length + 1, MYF(MY_WME)); if (!buf) return NULL; if (unlikely( mysql_file_read(fptr, (uchar *)buf, *buf_length, MYF(MY_FNABP)))) { if (!use_sql_alloc) my_free(buf); buf = NULL; } else buf[*buf_length] = 0; return buf; } /** Generate the partition syntax from the partition data structure. Useful for support of generating defaults, SHOW CREATE TABLES and easy partition management. @param part_info The partitioning data structure @param buf_length A pointer to the returned buffer length @param use_sql_alloc Allocate buffer from sql_alloc if true otherwise use my_malloc @param show_partition_options Should we display partition options @param print_expr Indicates whether partitioning expressions should be re-printed to get quoting according to current sql_mode. @param current_comment_start NULL, or comment string encapsulating the PARTITION BY clause. @retval NULL - error @note Here we will generate the full syntax for the given command where all defaults have been expanded. By so doing the it is also possible to make lots of checks of correctness while at it. This could will also be reused for SHOW CREATE TABLES and also for all type ALTER TABLE commands focusing on changing the PARTITION structure in any fashion. The implementation writes the syntax to a temporary file (essentially an abstraction of a dynamic array) and if all writes goes well it allocates a buffer and writes the syntax into this one and returns it. As a security precaution the file is deleted before writing into it. This means that no other processes on the machine can open and read the file while this processing is ongoing. The code is optimised for minimal code size since it is not used in any common queries. */ char *generate_partition_syntax(partition_info *part_info, uint *buf_length, bool use_sql_alloc, bool show_partition_options, bool print_expr, const char *current_comment_start) { uint i, j, tot_num_parts, num_subparts; partition_element *part_elem; int err = 0; List_iterator part_it(part_info->partitions); File fptr; char *buf = NULL; // Return buffer DBUG_TRACE; if (!(fptr = mysql_tmpfile("psy"))) { return NULL; } err += add_space(fptr); err += add_partition_by(fptr); switch (part_info->part_type) { case partition_type::RANGE: err += add_part_key_word(fptr, partition_keywords[PKW_RANGE].str); break; case partition_type::LIST: err += add_part_key_word(fptr, partition_keywords[PKW_LIST].str); break; case partition_type::HASH: if (part_info->linear_hash_ind) err += add_string(fptr, partition_keywords[PKW_LINEAR].str); if (part_info->list_of_part_fields) { err += add_key_with_algorithm(fptr, part_info, current_comment_start); err += add_part_field_list(fptr, part_info->part_field_list); } else err += add_part_key_word(fptr, partition_keywords[PKW_HASH].str); break; default: DBUG_ASSERT(0); /* We really shouldn't get here, no use in continuing from here */ my_error(ER_OUT_OF_RESOURCES, MYF(ME_FATALERROR)); return NULL; } if (part_info->part_func_len) { err += add_begin_parenthesis(fptr); if (print_expr) { // Default on-stack buffer which allows to avoid malloc() in most cases. char expr_buff[256]; String tmp(expr_buff, sizeof(expr_buff), system_charset_info); tmp.length(0); // No point in including schema and table name for identifiers // since any columns must be in this table. part_info->part_expr->print( current_thd, &tmp, enum_query_type(QT_TO_SYSTEM_CHARSET | QT_NO_DB | QT_NO_TABLE)); err += add_string_len(fptr, tmp.ptr(), tmp.length()); } else { err += add_string_len(fptr, part_info->part_func_string, part_info->part_func_len); } err += add_end_parenthesis(fptr); } else if (part_info->column_list) { err += add_string(fptr, partition_keywords[PKW_COLUMNS].str); err += add_part_field_list(fptr, part_info->part_field_list); } if ((!part_info->use_default_num_partitions) && part_info->use_default_partitions) { err += add_string(fptr, "\n"); err += add_string(fptr, "PARTITIONS "); err += add_int(fptr, part_info->num_parts); } if (part_info->is_sub_partitioned()) { err += add_string(fptr, "\n"); err += add_subpartition_by(fptr); /* Must be hash partitioning for subpartitioning */ if (part_info->linear_hash_ind) err += add_string(fptr, partition_keywords[PKW_LINEAR].str); if (part_info->list_of_subpart_fields) { err += add_key_with_algorithm(fptr, part_info, current_comment_start); err += add_part_field_list(fptr, part_info->subpart_field_list); } else err += add_part_key_word(fptr, partition_keywords[PKW_HASH].str); if (part_info->subpart_func_len) { err += add_begin_parenthesis(fptr); if (print_expr) { // Default on-stack buffer which allows to avoid malloc() in most cases. char expr_buff[256]; String tmp(expr_buff, sizeof(expr_buff), system_charset_info); tmp.length(0); // No point in including schema and table name for identifiers // since any columns must be in this table. part_info->subpart_expr->print( current_thd, &tmp, enum_query_type(QT_TO_SYSTEM_CHARSET | QT_NO_DB | QT_NO_TABLE)); err += add_string_len(fptr, tmp.ptr(), tmp.length()); } else { err += add_string_len(fptr, part_info->subpart_func_string, part_info->subpart_func_len); } err += add_end_parenthesis(fptr); } if ((!part_info->use_default_num_subpartitions) && part_info->use_default_subpartitions) { err += add_string(fptr, "\n"); err += add_string(fptr, "SUBPARTITIONS "); err += add_int(fptr, part_info->num_subparts); } } tot_num_parts = part_info->partitions.elements; num_subparts = part_info->num_subparts; if (!part_info->use_default_partitions) { bool first = true; err += add_string(fptr, "\n"); err += add_begin_parenthesis(fptr); i = 0; do { part_elem = part_it++; if (part_elem->part_state != PART_TO_BE_DROPPED && part_elem->part_state != PART_REORGED_DROPPED) { if (!first) { err += add_comma(fptr); err += add_string(fptr, "\n"); err += add_space(fptr); } first = false; err += add_partition(fptr); err += add_name_string(fptr, part_elem->partition_name); err += add_partition_values(fptr, part_info, part_elem); if (!part_info->is_sub_partitioned() || part_info->use_default_subpartitions) { if (show_partition_options) err += add_partition_options(fptr, part_elem); } else { err += add_string(fptr, "\n"); err += add_space(fptr); err += add_begin_parenthesis(fptr); List_iterator sub_it(part_elem->subpartitions); partition_element *sub_elem; j = 0; do { sub_elem = sub_it++; err += add_subpartition(fptr); err += add_name_string(fptr, sub_elem->partition_name); if (show_partition_options) err += add_partition_options(fptr, sub_elem); if (j != (num_subparts - 1)) { err += add_comma(fptr); err += add_string(fptr, "\n"); err += add_space(fptr); err += add_space(fptr); } else err += add_end_parenthesis(fptr); } while (++j < num_subparts); } } if (i == (tot_num_parts - 1)) err += add_end_parenthesis(fptr); } while (++i < tot_num_parts); } if (err) goto close_file; buf = get_file_content(fptr, buf_length, use_sql_alloc); close_file: if (buf == NULL) { my_error(ER_INTERNAL_ERROR, MYF(0), "Failed to generate partition syntax"); } mysql_file_close(fptr, MYF(0)); return buf; } /* Check if partition key fields are modified and if it can be handled by the underlying storage engine. SYNOPSIS partition_key_modified table TABLE object for which partition fields are set-up fields Bitmap representing fields to be modified RETURN VALUES true Need special handling of UPDATE false Normal UPDATE handling is ok */ bool partition_key_modified(TABLE *table, const MY_BITMAP *fields) { Field **fld; partition_info *part_info = table->part_info; DBUG_TRACE; if (!part_info) return false; if (table->s->db_type()->partition_flags && (table->s->db_type()->partition_flags() & HA_CAN_UPDATE_PARTITION_KEY)) return false; for (fld = part_info->full_part_field_array; *fld; fld++) if (bitmap_is_set(fields, (*fld)->field_index)) return true; return false; } /* A function to handle correct handling of NULL values in partition functions. SYNOPSIS part_val_int() item_expr The item expression to evaluate out:result The value of the partition function, LLONG_MIN if any null value in function RETURN VALUES true Error in val_int() false ok */ static inline int part_val_int(Item *item_expr, longlong *result) { *result = item_expr->val_int(); if (item_expr->null_value) { if (current_thd->is_error()) return true; else *result = LLONG_MIN; } return false; } /* The next set of functions are used to calculate the partition identity. A handler sets up a variable that corresponds to one of these functions to be able to quickly call it whenever the partition id needs to calculated based on the record in table->record[0] (or set up to fake that). There are 4 functions for hash partitioning and 2 for RANGE/LIST partitions. In addition there are 4 variants for RANGE subpartitioning and 4 variants for LIST subpartitioning thus in total there are 14 variants of this function. We have a set of support functions for these 14 variants. There are 4 variants of hash functions and there is a function for each. The KEY partitioning uses the function calculate_key_hash_value to calculate the hash value based on an array of fields. The linear hash variants uses the method get_part_id_from_linear_hash to get the partition id using the hash value and some parameters calculated from the number of partitions. */ /* A simple support function to calculate part_id given local part and sub part. SYNOPSIS get_part_id_for_sub() loc_part_id Local partition id sub_part_id Subpartition id num_subparts Number of subparts */ inline static uint32 get_part_id_for_sub(uint32 loc_part_id, uint32 sub_part_id, uint num_subparts) { return (uint32)((loc_part_id * num_subparts) + sub_part_id); } /* Calculate part_id for (SUB)PARTITION BY HASH SYNOPSIS get_part_id_hash() num_parts Number of hash partitions part_expr Item tree of hash function out:part_id The returned partition id out:func_value Value of hash function RETURN VALUE != 0 Error code false Success */ static int get_part_id_hash(uint num_parts, Item *part_expr, uint32 *part_id, longlong *func_value) { longlong int_hash_id; DBUG_TRACE; if (part_val_int(part_expr, func_value)) return HA_ERR_NO_PARTITION_FOUND; int_hash_id = *func_value % num_parts; *part_id = int_hash_id < 0 ? (uint32)-int_hash_id : (uint32)int_hash_id; return false; } /* Calculate part_id for (SUB)PARTITION BY LINEAR HASH SYNOPSIS get_part_id_linear_hash() part_info A reference to the partition_info struct where all the desired information is given num_parts Number of hash partitions part_expr Item tree of hash function out:part_id The returned partition id out:func_value Value of hash function RETURN VALUE != 0 Error code 0 OK */ static int get_part_id_linear_hash(partition_info *part_info, uint num_parts, Item *part_expr, uint32 *part_id, longlong *func_value) { DBUG_TRACE; if (part_val_int(part_expr, func_value)) return HA_ERR_NO_PARTITION_FOUND; *part_id = get_part_id_from_linear_hash( *func_value, part_info->linear_hash_mask, num_parts); return false; } /** Calculate part_id for (SUB)PARTITION BY KEY @param file Handler to storage engine @param field_array Array of fields for PARTTION KEY @param num_parts Number of KEY partitions @param [out] func_value Returns calculated hash value @return Calculated partition id */ inline static uint32 get_part_id_key(handler *file, Field **field_array, uint num_parts, longlong *func_value) { DBUG_TRACE; *func_value = file->calculate_key_hash_value(field_array); return (uint32)(*func_value % num_parts); } /* Calculate part_id for (SUB)PARTITION BY LINEAR KEY SYNOPSIS get_part_id_linear_key() part_info A reference to the partition_info struct where all the desired information is given field_array Array of fields for PARTTION KEY num_parts Number of KEY partitions RETURN VALUE Calculated partition id */ inline static uint32 get_part_id_linear_key(partition_info *part_info, Field **field_array, uint num_parts, longlong *func_value) { DBUG_TRACE; *func_value = part_info->table->file->calculate_key_hash_value(field_array); return get_part_id_from_linear_hash(*func_value, part_info->linear_hash_mask, num_parts); } /* Copy to field buffers and set up field pointers SYNOPSIS copy_to_part_field_buffers() ptr Array of fields to copy field_bufs Array of field buffers to copy to restore_ptr Array of pointers to restore to RETURN VALUES NONE DESCRIPTION This routine is used to take the data from field pointer, convert it to a standard format and store this format in a field buffer allocated for this purpose. Next the field pointers are moved to point to the field buffers. There is a separate to restore the field pointers after this call. */ static void copy_to_part_field_buffers(Field **ptr, uchar **field_bufs, uchar **restore_ptr) { Field *field; while ((field = *(ptr++))) { *restore_ptr = field->ptr; restore_ptr++; if (!field->maybe_null() || !field->is_null()) { const CHARSET_INFO *cs = field->charset(); uint max_len = field->pack_length(); uint data_len = field->data_length(); uchar *field_buf = *field_bufs; /* We only use the field buffer for VARCHAR and CHAR strings which isn't of a binary collation. We also only use the field buffer for fields which are not currently NULL. The field buffer will store a normalised string. We use the strnxfrm method to normalise the string. */ if (field->type() == MYSQL_TYPE_VARCHAR) { uint len_bytes = ((Field_varstring *)field)->length_bytes; my_strnxfrm(cs, field_buf + len_bytes, max_len, field->ptr + len_bytes, data_len); if (len_bytes == 1) *field_buf = (uchar)data_len; else int2store(field_buf, data_len); } else { my_strnxfrm(cs, field_buf, max_len, field->ptr, max_len); } field->ptr = field_buf; } field_bufs++; } return; } /* Restore field pointers SYNOPSIS restore_part_field_pointers() ptr Array of fields to restore restore_ptr Array of field pointers to restore to RETURN VALUES */ static void restore_part_field_pointers(Field **ptr, uchar **restore_ptr) { Field *field; while ((field = *(ptr++))) { field->ptr = *restore_ptr; restore_ptr++; } return; } /* This function is used to calculate the partition id where all partition fields have been prepared to point to a record where the partition field values are bound. SYNOPSIS get_partition_id() part_info A reference to the partition_info struct where all the desired information is given out:part_id The partition id is returned through this pointer out:func_value Value of partition function (longlong) RETURN VALUE part_id Partition id of partition that would contain row with given values of PF-fields HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't fit into any partition and thus the values of the PF-fields are not allowed. DESCRIPTION A routine used from write_row, update_row and delete_row from any handler supporting partitioning. It is also a support routine for get_partition_set used to find the set of partitions needed to scan for a certain index scan or full table scan. It is actually 9 different variants of this function which are called through a function pointer. get_partition_id_list get_partition_id_list_col get_partition_id_range get_partition_id_range_col get_partition_id_hash_nosub get_partition_id_key_nosub get_partition_id_linear_hash_nosub get_partition_id_linear_key_nosub get_partition_id_with_sub */ /* This function is used to calculate the main partition to use in the case of subpartitioning and we don't know enough to get the partition identity in total. SYNOPSIS get_part_partition_id() part_info A reference to the partition_info struct where all the desired information is given out:part_id The partition id is returned through this pointer out:func_value The value calculated by partition function RETURN VALUE HA_ERR_NO_PARTITION_FOUND The fields of the partition function didn't fit into any partition and thus the values of the PF-fields are not allowed. 0 OK DESCRIPTION It is actually 8 different variants of this function which are called through a function pointer. get_partition_id_list get_partition_id_list_col get_partition_id_range get_partition_id_range_col get_partition_id_hash_nosub get_partition_id_key_nosub get_partition_id_linear_hash_nosub get_partition_id_linear_key_nosub */ static int get_part_id_charset_func_part(partition_info *part_info, uint32 *part_id, longlong *func_value) { int res; DBUG_TRACE; copy_to_part_field_buffers(part_info->part_charset_field_array, part_info->part_field_buffers, part_info->restore_part_field_ptrs); res = part_info->get_part_partition_id_charset(part_info, part_id, func_value); restore_part_field_pointers(part_info->part_charset_field_array, part_info->restore_part_field_ptrs); return res; } static int get_part_id_charset_func_subpart(partition_info *part_info, uint32 *part_id) { int res; DBUG_TRACE; copy_to_part_field_buffers(part_info->subpart_charset_field_array, part_info->subpart_field_buffers, part_info->restore_subpart_field_ptrs); res = part_info->get_subpartition_id_charset(part_info, part_id); restore_part_field_pointers(part_info->subpart_charset_field_array, part_info->restore_subpart_field_ptrs); return res; } static int get_partition_id_list_col(partition_info *part_info, uint32 *part_id, longlong *) { part_column_list_val *list_col_array = part_info->list_col_array; uint num_columns = part_info->part_field_list.elements; int list_index, cmp; int min_list_index = 0; int max_list_index = part_info->num_list_values - 1; DBUG_TRACE; while (max_list_index >= min_list_index) { list_index = (max_list_index + min_list_index) >> 1; cmp = cmp_rec_and_tuple(list_col_array + list_index * num_columns, num_columns); if (cmp > 0) min_list_index = list_index + 1; else if (cmp < 0) { if (!list_index) goto notfound; max_list_index = list_index - 1; } else { *part_id = (uint32)list_col_array[list_index * num_columns].partition_id; return 0; } } notfound: *part_id = 0; return HA_ERR_NO_PARTITION_FOUND; } static int get_partition_id_list(partition_info *part_info, uint32 *part_id, longlong *func_value) { LIST_PART_ENTRY *list_array = part_info->list_array; int list_index; int min_list_index = 0; int max_list_index = part_info->num_list_values - 1; longlong part_func_value; int error = part_val_int(part_info->part_expr, &part_func_value); longlong list_value; bool unsigned_flag = part_info->part_expr->unsigned_flag; DBUG_TRACE; if (error) goto notfound; if (part_info->part_expr->null_value) { if (part_info->has_null_value) { *part_id = part_info->has_null_part_id; return 0; } goto notfound; } *func_value = part_func_value; if (unsigned_flag) part_func_value -= 0x8000000000000000ULL; while (max_list_index >= min_list_index) { list_index = (max_list_index + min_list_index) >> 1; list_value = list_array[list_index].list_value; if (list_value < part_func_value) min_list_index = list_index + 1; else if (list_value > part_func_value) { if (!list_index) goto notfound; max_list_index = list_index - 1; } else { *part_id = (uint32)list_array[list_index].partition_id; return 0; } } notfound: *part_id = 0; return HA_ERR_NO_PARTITION_FOUND; } static uint32 get_partition_id_cols_list_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint, uint32 nparts) { part_column_list_val *list_col_array = part_info->list_col_array; uint num_columns = part_info->part_field_list.elements; uint list_index; uint min_list_index = 0; int cmp; /* Notice that max_list_index = last_index + 1 here! */ uint max_list_index = part_info->num_list_values; DBUG_TRACE; /* Find the matching partition (including taking endpoint into account). */ do { /* Midpoint, adjusted down, so it can never be >= max_list_index. */ list_index = (max_list_index + min_list_index) >> 1; cmp = cmp_rec_and_tuple_prune(list_col_array + list_index * num_columns, nparts, left_endpoint, include_endpoint); if (cmp > 0) { min_list_index = list_index + 1; } else { max_list_index = list_index; if (cmp == 0) break; } } while (max_list_index > min_list_index); list_index = max_list_index; /* Given value must be LESS THAN or EQUAL to the found partition. */ DBUG_ASSERT( list_index == part_info->num_list_values || (0 >= cmp_rec_and_tuple_prune(list_col_array + list_index * num_columns, nparts, left_endpoint, include_endpoint))); /* Given value must be GREATER THAN the previous partition. */ DBUG_ASSERT(list_index == 0 || (0 < cmp_rec_and_tuple_prune( list_col_array + (list_index - 1) * num_columns, nparts, left_endpoint, include_endpoint))); /* Include the right endpoint if not already passed end of array. */ if (!left_endpoint && include_endpoint && cmp == 0 && list_index < part_info->num_list_values) list_index++; return list_index; } /** Find the sub-array part_info->list_array that corresponds to given interval. @param part_info Partitioning info (partitioning type must be LIST) @param left_endpoint true - the interval is [a; +inf) or (a; +inf) false - the interval is (-inf; a] or (-inf; a) @param include_endpoint true iff the interval includes the endpoint This function finds the sub-array of part_info->list_array where values of list_array[idx].list_value are contained within the specifed interval. list_array is ordered by list_value, so 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==true), the sought sub-array starts at some index idx and continues till array end. The function returns first number idx, such that list_array[idx].list_value is contained within the passed interval. 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==false), the sought sub-array starts at array start and continues till some last index idx. The function returns first number idx, such that list_array[idx].list_value is NOT contained within the passed interval. If all array elements are contained, part_info->num_list_values is returned. @note The caller will call this function and then will run along the sub-array of list_array to collect partition ids. If the number of list values is significantly higher then number of partitions, this could be slow and we could invent some other approach. The "run over list array" part is already wrapped in a get_next()-like function. @return The index of corresponding sub-array of part_info->list_array. */ static uint32 get_list_array_idx_for_endpoint_charset(partition_info *part_info, bool left_endpoint, bool include_endpoint) { uint32 res; copy_to_part_field_buffers(part_info->part_field_array, part_info->part_field_buffers, part_info->restore_part_field_ptrs); res = get_list_array_idx_for_endpoint(part_info, left_endpoint, include_endpoint); restore_part_field_pointers(part_info->part_field_array, part_info->restore_part_field_ptrs); return res; } static uint32 get_list_array_idx_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint) { LIST_PART_ENTRY *list_array = part_info->list_array; uint list_index; uint min_list_index = 0, max_list_index = part_info->num_list_values - 1; longlong list_value; /* Get the partitioning function value for the endpoint */ longlong part_func_value = part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint); bool unsigned_flag = part_info->part_expr->unsigned_flag; DBUG_TRACE; if (part_info->part_expr->null_value) { /* Special handling for MONOTONIC functions that can return NULL for values that are comparable. I.e. '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00') returns NULL which cannot be compared used <, >, <=, >= etc. Otherwise, just return the the first index (lowest value). */ enum_monotonicity_info monotonic; monotonic = part_info->part_expr->get_monotonicity_info(); if (monotonic != MONOTONIC_INCREASING_NOT_NULL && monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) { /* F(col) can not return NULL, return index with lowest value */ return 0; } } if (unsigned_flag) part_func_value -= 0x8000000000000000ULL; DBUG_ASSERT(part_info->num_list_values); do { list_index = (max_list_index + min_list_index) >> 1; list_value = list_array[list_index].list_value; if (list_value < part_func_value) min_list_index = list_index + 1; else if (list_value > part_func_value) { if (!list_index) goto notfound; max_list_index = list_index - 1; } else { return list_index + ((left_endpoint ^ include_endpoint) ? 1 : 0); } } while (max_list_index >= min_list_index); notfound: if (list_value < part_func_value) list_index++; return list_index; } static int get_partition_id_range_col(partition_info *part_info, uint32 *part_id, longlong *) { part_column_list_val *range_col_array = part_info->range_col_array; uint num_columns = part_info->part_field_list.elements; uint max_partition = part_info->num_parts - 1; uint min_part_id = 0; uint max_part_id = max_partition; uint loc_part_id; DBUG_TRACE; while (max_part_id > min_part_id) { loc_part_id = (max_part_id + min_part_id + 1) >> 1; if (cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns, num_columns) >= 0) min_part_id = loc_part_id + 1; else max_part_id = loc_part_id - 1; } loc_part_id = max_part_id; if (loc_part_id != max_partition) if (cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns, num_columns) >= 0) loc_part_id++; *part_id = (uint32)loc_part_id; if (loc_part_id == max_partition && (cmp_rec_and_tuple(range_col_array + loc_part_id * num_columns, num_columns) >= 0)) return HA_ERR_NO_PARTITION_FOUND; DBUG_PRINT("exit", ("partition: %d", *part_id)); return 0; } int get_partition_id_range(partition_info *part_info, uint32 *part_id, longlong *func_value) { longlong *range_array = part_info->range_int_array; uint max_partition = part_info->num_parts - 1; uint min_part_id = 0; uint max_part_id = max_partition; uint loc_part_id; longlong part_func_value; int error = part_val_int(part_info->part_expr, &part_func_value); bool unsigned_flag = part_info->part_expr->unsigned_flag; DBUG_TRACE; if (error) return HA_ERR_NO_PARTITION_FOUND; if (part_info->part_expr->null_value) { *part_id = 0; return 0; } *func_value = part_func_value; if (unsigned_flag) part_func_value -= 0x8000000000000000ULL; /* Search for the partition containing part_func_value */ while (max_part_id > min_part_id) { loc_part_id = (max_part_id + min_part_id) / 2; if (range_array[loc_part_id] <= part_func_value) min_part_id = loc_part_id + 1; else max_part_id = loc_part_id; } loc_part_id = max_part_id; *part_id = (uint32)loc_part_id; if (loc_part_id == max_partition && part_func_value >= range_array[loc_part_id] && !part_info->defined_max_value) return HA_ERR_NO_PARTITION_FOUND; DBUG_PRINT("exit", ("partition: %d", *part_id)); return 0; } /* Find the sub-array of part_info->range_int_array that covers given interval SYNOPSIS get_partition_id_range_for_endpoint() part_info Partitioning info (partitioning type must be RANGE) left_endpoint true - the interval is [a; +inf) or (a; +inf) false - the interval is (-inf; a] or (-inf; a). include_endpoint true <=> the endpoint itself is included in the interval DESCRIPTION This function finds the sub-array of part_info->range_int_array where the elements have non-empty intersections with the given interval. A range_int_array element at index idx represents the interval [range_int_array[idx-1], range_int_array[idx]), intervals are disjoint and ordered by their right bound, so 1. For [a; +inf) or (a; +inf)-type intervals (left_endpoint==true), the sought sub-array starts at some index idx and continues till array end. The function returns first number idx, such that the interval represented by range_int_array[idx] has non empty intersection with the passed interval. 2. For (-inf; a] or (-inf; a)-type intervals (left_endpoint==false), the sought sub-array starts at array start and continues till some last index idx. The function returns first number idx, such that the interval represented by range_int_array[idx] has EMPTY intersection with the passed interval. If the interval represented by the last array element has non-empty intersection with the passed interval, part_info->num_parts is returned. RETURN The edge of corresponding part_info->range_int_array sub-array. */ static uint32 get_partition_id_range_for_endpoint_charset( partition_info *part_info, bool left_endpoint, bool include_endpoint) { uint32 res; copy_to_part_field_buffers(part_info->part_field_array, part_info->part_field_buffers, part_info->restore_part_field_ptrs); res = get_partition_id_range_for_endpoint(part_info, left_endpoint, include_endpoint); restore_part_field_pointers(part_info->part_field_array, part_info->restore_part_field_ptrs); return res; } static uint32 get_partition_id_range_for_endpoint(partition_info *part_info, bool left_endpoint, bool include_endpoint) { longlong *range_array = part_info->range_int_array; longlong part_end_val; uint max_partition = part_info->num_parts - 1; uint min_part_id = 0, max_part_id = max_partition, loc_part_id; /* Get the partitioning function value for the endpoint */ longlong part_func_value = part_info->part_expr->val_int_endpoint(left_endpoint, &include_endpoint); bool unsigned_flag = part_info->part_expr->unsigned_flag; DBUG_TRACE; if (part_info->part_expr->null_value) { /* Special handling for MONOTONIC functions that can return NULL for values that are comparable. I.e. '2000-00-00' can be compared to '2000-01-01' but TO_DAYS('2000-00-00') returns NULL which cannot be compared used <, >, <=, >= etc. Otherwise, just return the first partition (may be included if not left endpoint) */ enum_monotonicity_info monotonic; monotonic = part_info->part_expr->get_monotonicity_info(); if (monotonic != MONOTONIC_INCREASING_NOT_NULL && monotonic != MONOTONIC_STRICT_INCREASING_NOT_NULL) { /* F(col) can not return NULL, return partition with lowest value */ if (!left_endpoint && include_endpoint) return 1; return 0; } } if (unsigned_flag) part_func_value -= 0x8000000000000000ULL; if (left_endpoint && !include_endpoint) part_func_value++; /* Search for the partition containing part_func_value (including the right endpoint). */ while (max_part_id > min_part_id) { loc_part_id = (max_part_id + min_part_id) / 2; if (range_array[loc_part_id] < part_func_value) min_part_id = loc_part_id + 1; else max_part_id = loc_part_id; } loc_part_id = max_part_id; /* Adjust for endpoints */ part_end_val = range_array[loc_part_id]; if (left_endpoint) { DBUG_ASSERT( part_func_value > part_end_val ? (loc_part_id == max_partition && !part_info->defined_max_value) : 1); /* In case of PARTITION p VALUES LESS THAN MAXVALUE the maximum value is in the current (last) partition. If value is equal or greater than the endpoint, the range starts from the next partition. */ if (part_func_value >= part_end_val && (loc_part_id < max_partition || !part_info->defined_max_value)) loc_part_id++; } else { /* if 'WHERE <= X' and partition is LESS THAN (X) include next partition */ if (include_endpoint && loc_part_id < max_partition && part_func_value == part_end_val) loc_part_id++; /* Right endpoint, set end after correct partition */ loc_part_id++; } return loc_part_id; } static int get_partition_id_hash_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value) { return get_part_id_hash(part_info->num_parts, part_info->part_expr, part_id, func_value); } static int get_partition_id_linear_hash_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value) { return get_part_id_linear_hash(part_info, part_info->num_parts, part_info->part_expr, part_id, func_value); } static int get_partition_id_key_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value) { *part_id = get_part_id_key(part_info->table->file, part_info->part_field_array, part_info->num_parts, func_value); return 0; } static int get_partition_id_linear_key_nosub(partition_info *part_info, uint32 *part_id, longlong *func_value) { *part_id = get_part_id_linear_key(part_info, part_info->part_field_array, part_info->num_parts, func_value); return 0; } static int get_partition_id_with_sub(partition_info *part_info, uint32 *part_id, longlong *func_value) { uint32 loc_part_id, sub_part_id; uint num_subparts; int error; DBUG_TRACE; if (unlikely((error = part_info->get_part_partition_id( part_info, &loc_part_id, func_value)))) { return error; } num_subparts = part_info->num_subparts; if (unlikely( (error = part_info->get_subpartition_id(part_info, &sub_part_id)))) { return error; } *part_id = get_part_id_for_sub(loc_part_id, sub_part_id, num_subparts); return 0; } /* This function is used to calculate the subpartition id SYNOPSIS get_subpartition_id() part_info A reference to the partition_info struct where all the desired information is given RETURN VALUE part_id The subpartition identity DESCRIPTION A routine used in some SELECT's when only partial knowledge of the partitions is known. It is actually 4 different variants of this function which are called through a function pointer. get_partition_id_hash_sub get_partition_id_key_sub get_partition_id_linear_hash_sub get_partition_id_linear_key_sub */ static int get_partition_id_hash_sub(partition_info *part_info, uint32 *part_id) { longlong func_value; return get_part_id_hash(part_info->num_subparts, part_info->subpart_expr, part_id, &func_value); } static int get_partition_id_linear_hash_sub(partition_info *part_info, uint32 *part_id) { longlong func_value; return get_part_id_linear_hash(part_info, part_info->num_subparts, part_info->subpart_expr, part_id, &func_value); } static int get_partition_id_key_sub(partition_info *part_info, uint32 *part_id) { longlong func_value; *part_id = get_part_id_key(part_info->table->file, part_info->subpart_field_array, part_info->num_subparts, &func_value); return false; } static int get_partition_id_linear_key_sub(partition_info *part_info, uint32 *part_id) { longlong func_value; *part_id = get_part_id_linear_key(part_info, part_info->subpart_field_array, part_info->num_subparts, &func_value); return false; } /* Set an indicator on all partition fields that are set by the key SYNOPSIS set_PF_fields_in_key() key_info Information about the index key_length Length of key RETURN VALUE true Found partition field set by key false No partition field set by key */ static bool set_PF_fields_in_key(KEY *key_info, uint key_length) { KEY_PART_INFO *key_part; bool found_part_field = false; DBUG_TRACE; for (key_part = key_info->key_part; (int)key_length > 0; key_part++) { if (key_part->null_bit) key_length--; if (key_part->type == HA_KEYTYPE_BIT) { if (((Field_bit *)key_part->field)->bit_len) key_length--; } if (key_part->key_part_flag & (HA_BLOB_PART + HA_VAR_LENGTH_PART)) { key_length -= HA_KEY_BLOB_LENGTH; } if (key_length < key_part->length) break; key_length -= key_part->length; if (key_part->field->flags & FIELD_IN_PART_FUNC_FLAG) { found_part_field = true; key_part->field->flags |= GET_FIXED_FIELDS_FLAG; } } return found_part_field; } /* We have found that at least one partition field was set by a key, now check if a partition function has all its fields bound or not. SYNOPSIS check_part_func_bound() ptr Array of fields NULL terminated (partition fields) RETURN VALUE true All fields in partition function are set false Not all fields in partition function are set */ static bool check_part_func_bound(Field **ptr) { bool result = true; DBUG_TRACE; for (; *ptr; ptr++) { if (!((*ptr)->flags & GET_FIXED_FIELDS_FLAG)) { result = false; break; } } return result; } /* Get the id of the subpartitioning part by using the key buffer of the index scan. SYNOPSIS get_sub_part_id_from_key() table The table object buf A buffer that can be used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length out:part_id The returned partition id RETURN VALUES true All fields in partition function are set false Not all fields in partition function are set DESCRIPTION Use key buffer to set-up record in buf, move field pointers and get the partition identity and restore field pointers afterwards. */ static int get_sub_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info, const key_range *key_spec, uint32 *part_id) { uchar *rec0 = table->record[0]; partition_info *part_info = table->part_info; int res; DBUG_TRACE; key_restore(buf, key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) { res = part_info->get_subpartition_id(part_info, part_id); } else { Field **part_field_array = part_info->subpart_field_array; set_field_ptr(part_field_array, buf, rec0); res = part_info->get_subpartition_id(part_info, part_id); set_field_ptr(part_field_array, rec0, buf); } return res; } /* Get the id of the partitioning part by using the key buffer of the index scan. SYNOPSIS get_part_id_from_key() table The table object buf A buffer that can be used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length out:part_id Partition to use RETURN VALUES true Partition to use not found false Ok, part_id indicates partition to use DESCRIPTION Use key buffer to set-up record in buf, move field pointers and get the partition identity and restore field pointers afterwards. */ static bool get_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info, const key_range *key_spec, uint32 *part_id) { bool result; uchar *rec0 = table->record[0]; partition_info *part_info = table->part_info; longlong func_value; DBUG_TRACE; key_restore(buf, key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) { result = part_info->get_part_partition_id(part_info, part_id, &func_value); } else { Field **part_field_array = part_info->part_field_array; set_field_ptr(part_field_array, buf, rec0); result = part_info->get_part_partition_id(part_info, part_id, &func_value); set_field_ptr(part_field_array, rec0, buf); } return result; } /* Get the partitioning id of the full PF by using the key buffer of the index scan. SYNOPSIS get_full_part_id_from_key() table The table object buf A buffer that is used to evaluate the partition function key_info The index object key_spec A key_range containing key and key length out:part_spec A partition id containing start part and end part RETURN VALUES part_spec No partitions to scan is indicated by end_part > start_part when returning DESCRIPTION Use key buffer to set-up record in buf, move field pointers if needed and get the partition identity and restore field pointers afterwards. */ void get_full_part_id_from_key(const TABLE *table, uchar *buf, KEY *key_info, const key_range *key_spec, part_id_range *part_spec) { bool result; partition_info *part_info = table->part_info; uchar *rec0 = table->record[0]; longlong func_value; DBUG_TRACE; key_restore(buf, key_spec->key, key_info, key_spec->length); if (likely(rec0 == buf)) { result = part_info->get_partition_id(part_info, &part_spec->start_part, &func_value); } else { Field **part_field_array = part_info->full_part_field_array; set_field_ptr(part_field_array, buf, rec0); result = part_info->get_partition_id(part_info, &part_spec->start_part, &func_value); set_field_ptr(part_field_array, rec0, buf); } part_spec->end_part = part_spec->start_part; if (unlikely(result)) part_spec->start_part++; } /** @brief Verify that all rows in a table is in the given partition @param table Table which contains the data that will be checked if it is matching the partition definition. @param part_table Partitioned table containing the partition to check. @param part_id Which partition to match with. @return Operation status @retval true Not all rows match the given partition @retval false OK */ bool verify_data_with_partition(TABLE *table, TABLE *part_table, uint32 part_id) { uint32 found_part_id; longlong func_value; /* Unused */ handler *file; int error; uchar *old_rec; partition_info *part_info; DBUG_TRACE; DBUG_ASSERT(table && table->file && part_table && part_table->part_info && part_table->file); /* Verify all table rows. First implementation uses full scan + evaluates partition functions for every row. TODO: add optimization to use index if possible, see WL#5397. 1) Open both tables (already done) and set the row buffers to use the same buffer (to avoid copy). 2) Init rnd on table. 3) loop over all rows. 3.1) verify that partition_id on the row is correct. Break if error. */ file = table->file; part_info = part_table->part_info; bitmap_union(table->read_set, &part_info->full_part_field_set); old_rec = part_table->record[0]; part_table->record[0] = table->record[0]; set_field_ptr(part_info->full_part_field_array, table->record[0], old_rec); if ((error = file->ha_rnd_init(true))) { file->print_error(error, MYF(0)); goto err; } do { if ((error = file->ha_rnd_next(table->record[0]))) { if (error == HA_ERR_RECORD_DELETED) continue; if (error == HA_ERR_END_OF_FILE) error = 0; else file->print_error(error, MYF(0)); break; } if ((error = part_info->get_partition_id(part_info, &found_part_id, &func_value))) { part_info->err_value = func_value; part_table->file->print_error(error, MYF(0)); break; } DEBUG_SYNC(current_thd, "swap_partition_first_row_read"); if (found_part_id != part_id) { my_error(ER_ROW_DOES_NOT_MATCH_PARTITION, MYF(0)); error = 1; break; } } while (true); (void)file->ha_rnd_end(); err: set_field_ptr(part_info->full_part_field_array, old_rec, table->record[0]); part_table->record[0] = old_rec; if (error) return true; return false; } /* Prune the set of partitions to use in query SYNOPSIS prune_partition_set() table The table object out:part_spec Contains start part, end part DESCRIPTION This function is called to prune the range of partitions to scan by checking the read_partitions bitmap. If start_part > end_part at return it means no partition needs to be scanned. If start_part == end_part it always means a single partition needs to be scanned. RETURN VALUE part_spec */ void prune_partition_set(const TABLE *table, part_id_range *part_spec) { int last_partition = -1; uint i = part_spec->start_part; partition_info *part_info = table->part_info; DBUG_TRACE; if (i) i = bitmap_get_next_set(&part_info->read_partitions, i - 1); else i = bitmap_get_first_set(&part_info->read_partitions); part_spec->start_part = i; /* TODO: Only check next bit, no need to prune end if >= 2 partitions. */ for (; i <= part_spec->end_part; i = bitmap_get_next_set(&part_info->read_partitions, i)) { DBUG_PRINT("info", ("Partition %d is set", i)); if (last_partition == -1) /* First partition found in set and pruned bitmap */ part_spec->start_part = i; last_partition = i; } if (last_partition == -1) /* No partition found in pruned bitmap */ part_spec->start_part = part_spec->end_part + 1; else // if (last_partition != -1) part_spec->end_part = last_partition; } /* Get the set of partitions to use in query. SYNOPSIS get_partition_set() table The table object buf A buffer that can be used to evaluate the partition function index The index of the key used, if MAX_KEY no index used key_spec A key_range containing key and key length out:part_spec Contains start part, end part and indicator if bitmap is used for which partitions to scan DESCRIPTION This function is called to discover which partitions to use in an index scan or a full table scan. It returns a range of partitions to scan. If there are holes in this range with partitions that are not needed to scan a bit array is used to signal which partitions to use and which not to use. If start_part > end_part at return it means no partition needs to be scanned. If start_part == end_part it always means a single partition needs to be scanned. RETURN VALUE part_spec */ void get_partition_set(const TABLE *table, uchar *buf, const uint index, const key_range *key_spec, part_id_range *part_spec) { partition_info *part_info = table->part_info; uint num_parts = part_info->get_tot_partitions(); uint i, part_id; uint sub_part = num_parts; uint32 part_part = num_parts; KEY *key_info = NULL; bool found_part_field = false; DBUG_TRACE; part_spec->start_part = 0; part_spec->end_part = num_parts - 1; if ((index < MAX_KEY) && key_spec && key_spec->flag == (uint)HA_READ_KEY_EXACT && part_info->some_fields_in_PF.is_set(index)) { key_info = table->key_info + index; /* The index can potentially provide at least one PF-field (field in the partition function). Thus it is interesting to continue our probe. */ if (key_spec->length == key_info->key_length) { /* The entire key is set so we can check whether we can immediately derive either the complete PF or if we can derive either the top PF or the subpartitioning PF. This can be established by checking precalculated bits on each index. */ if (part_info->all_fields_in_PF.is_set(index)) { /* We can derive the exact partition to use, no more than this one is needed. */ get_full_part_id_from_key(table, buf, key_info, key_spec, part_spec); /* Check if range can be adjusted by looking in read_partitions */ prune_partition_set(table, part_spec); return; } else if (part_info->is_sub_partitioned()) { if (part_info->all_fields_in_SPF.is_set(index)) { if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part)) { part_spec->start_part = num_parts; return; } } else if (part_info->all_fields_in_PPF.is_set(index)) { if (get_part_id_from_key(table, buf, key_info, key_spec, &part_part)) { /* The value of the RANGE or LIST partitioning was outside of allowed values. Thus it is certain that the result of this scan will be empty. */ part_spec->start_part = num_parts; return; } } } } else { /* Set an indicator on all partition fields that are bound. If at least one PF-field was bound it pays off to check whether the PF or PPF or SPF has been bound. (PF = Partition Function, SPF = Subpartition Function and PPF = Partition Function part of subpartitioning) */ if ((found_part_field = set_PF_fields_in_key(key_info, key_spec->length))) { if (check_part_func_bound(part_info->full_part_field_array)) { /* We were able to bind all fields in the partition function even by using only a part of the key. Calculate the partition to use. */ get_full_part_id_from_key(table, buf, key_info, key_spec, part_spec); clear_indicator_in_key_fields(key_info); /* Check if range can be adjusted by looking in read_partitions */ prune_partition_set(table, part_spec); return; } else if (part_info->is_sub_partitioned()) { if (check_part_func_bound(part_info->subpart_field_array)) { if (get_sub_part_id_from_key(table, buf, key_info, key_spec, &sub_part)) { part_spec->start_part = num_parts; clear_indicator_in_key_fields(key_info); return; } } else if (check_part_func_bound(part_info->part_field_array)) { if (get_part_id_from_key(table, buf, key_info, key_spec, &part_part)) { part_spec->start_part = num_parts; clear_indicator_in_key_fields(key_info); return; } } } } } } { /* The next step is to analyse the table condition to see whether any information about which partitions to scan can be derived from there. Currently not implemented. */ } /* If we come here we have found a range of sorts we have either discovered nothing or we have discovered a range of partitions with possible holes in it. We need a bitvector to further the work here. */ if (!(part_part == num_parts && sub_part == num_parts)) { /* We can only arrive here if we are using subpartitioning. */ if (part_part != num_parts) { /* We know the top partition and need to scan all underlying subpartitions. This is a range without holes. */ DBUG_ASSERT(sub_part == num_parts); part_spec->start_part = part_part * part_info->num_subparts; part_spec->end_part = part_spec->start_part + part_info->num_subparts - 1; } else { DBUG_ASSERT(sub_part != num_parts); part_spec->start_part = sub_part; part_spec->end_part = sub_part + (part_info->num_subparts * (part_info->num_parts - 1)); for (i = 0, part_id = sub_part; i < part_info->num_parts; i++, part_id += part_info->num_subparts) ; // Set bit part_id in bit array } } if (found_part_field) clear_indicator_in_key_fields(key_info); /* Check if range can be adjusted by looking in read_partitions */ prune_partition_set(table, part_spec); } /* If the table is partitioned we will read the partition info into the .frm file here. ------------------------------- | Fileinfo 64 bytes | ------------------------------- | Formnames 7 bytes | ------------------------------- | Not used 4021 bytes | ------------------------------- | Keyinfo + record | ------------------------------- | Padded to next multiple | | of IO_SIZE | ------------------------------- | Forminfo 288 bytes | ------------------------------- | Screen buffer, to make | |field names readable | ------------------------------- | Packed field info | |17 + 1 + strlen(field_name) | | + 1 end of file character | ------------------------------- | Partition info | ------------------------------- We provide the length of partition length in Fileinfo[55-58]. Read the partition syntax from the frm file and parse it to get the data structures of the partitioning. SYNOPSIS mysql_unpack_partition() thd Thread object part_buf Partition info from frm file part_info_len Length of partition syntax table Table object of partitioned table create_table_ind Is it called from CREATE TABLE default_db_type What is the default engine of the table work_part_info_used Flag is raised if we don't create new part_info, but used thd->work_part_info RETURN VALUE true Error false Sucess DESCRIPTION Read the partition syntax from the current position in the frm file. Initiate a LEX object, save the list of item tree objects to free after the query is done. Set-up partition info object such that parser knows it is called from internally. Call parser to create data structures (best possible recreation of item trees and so forth since there is no serialisation of these objects other than in parseable text format). We need to save the text of the partition functions since it is not possible to retrace this given an item tree. */ bool mysql_unpack_partition(THD *thd, char *part_buf, uint part_info_len, TABLE *table, bool is_create_table_ind, handlerton *default_db_type, bool *work_part_info_used) { bool result = true; partition_info *part_info; const CHARSET_INFO *old_character_set_client = thd->variables.character_set_client; LEX *old_lex = thd->lex; LEX lex; SELECT_LEX_UNIT unit(CTX_NONE); SELECT_LEX select(nullptr, nullptr); lex.new_static_query(&unit, &select); sql_digest_state *parent_digest = thd->m_digest; PSI_statement_locker *parent_locker = thd->m_statement_psi; Partition_handler *part_handler; DBUG_TRACE; thd->variables.character_set_client = system_charset_info; // This isn't strictly needed, but here for consistency. Sql_mode_parse_guard parse_guard(thd); Partition_expr_parser_state parser_state; if (parser_state.init(thd, part_buf, part_info_len)) goto end; if (init_lex_with_single_table(thd, table, &lex)) goto end; /* All Items created is put into a free list on the THD object. This list is used to free all Item objects after completing a query. We don't want that to happen with the Item tree created as part of the partition info. This should be attached to the table object and remain so until the table object is released. Thus we move away the current list temporarily and start a new list that we then save in the partition info structure. */ *work_part_info_used = false; DBUG_PRINT("info", ("Parse: %s", part_buf)); thd->m_digest = NULL; thd->m_statement_psi = NULL; if (parse_sql(thd, &parser_state, NULL) || parser_state.result->fix_parser_data(thd)) { thd->free_items(); thd->m_digest = parent_digest; thd->m_statement_psi = parent_locker; goto end; } part_info = parser_state.result; thd->m_digest = parent_digest; thd->m_statement_psi = parent_locker; /* The parsed syntax residing in the frm file can still contain defaults. The reason is that the frm file is sometimes saved outside of this MySQL Server and used in backup and restore of clusters or partitioned tables. It is not certain that the restore will restore exactly the same default partitioning. The easiest manner of handling this is to simply continue using the part_info we already built up during mysql_create_table if we are in the process of creating a table. If the table already exists we need to discover the number of partitions for the default parts. Since the handler object hasn't been created here yet we need to postpone this to the fix_partition_func method. */ DBUG_PRINT("info", ("Successful parse")); DBUG_PRINT("info", ("default engine = %s, default_db_type = %s", ha_resolve_storage_engine_name(part_info->default_engine_type), ha_resolve_storage_engine_name(default_db_type))); if (is_create_table_ind && old_lex->sql_command == SQLCOM_CREATE_TABLE) { /* When we come here we are doing a create table. In this case we have already done some preparatory work on the old part_info object. We don't really need this new partition_info object. Thus we go back to the old partition info object. We need to free any memory objects allocated on item_free_list by the parser since we are keeping the old info from the first parser call in CREATE TABLE. This table object can not be used any more. However, since this is CREATE TABLE, we know that it will be destroyed by the caller, and rely on that. */ thd->free_items(); part_info = thd->work_part_info; *work_part_info_used = true; } table->part_info = part_info; part_info->table = table; part_handler = table->file->get_partition_handler(); DBUG_ASSERT(part_handler != NULL); part_handler->set_part_info(part_info, true); if (!part_info->default_engine_type) part_info->default_engine_type = default_db_type; DBUG_ASSERT(part_info->default_engine_type == default_db_type); DBUG_ASSERT(part_info->default_engine_type->db_type != DB_TYPE_UNKNOWN); { /* This code part allocates memory for the serialised item information for the partition functions. In most cases this is not needed but if the table is used for SHOW CREATE TABLES or ALTER TABLE that modifies partition information it is needed and the info is lost if we don't save it here so unfortunately we have to do it here even if in most cases it is not needed. This is a consequence of that item trees are not serialisable. */ size_t part_func_len = part_info->part_func_len; size_t subpart_func_len = part_info->subpart_func_len; char *part_func_string = NULL; char *subpart_func_string = NULL; /* TODO: Verify that it really should be allocated on the thd? Or simply remove it and use part_expr->print() instead? */ if ((part_func_len && !((part_func_string = (char *)thd->alloc(part_func_len)))) || (subpart_func_len && !((subpart_func_string = (char *)thd->alloc(subpart_func_len))))) { mem_alloc_error(part_func_len); thd->free_items(); goto end; } if (part_func_len) memcpy(part_func_string, part_info->part_func_string, part_func_len); if (subpart_func_len) memcpy(subpart_func_string, part_info->subpart_func_string, subpart_func_len); part_info->part_func_string = part_func_string; part_info->subpart_func_string = subpart_func_string; } result = false; end: end_lex_with_single_table(thd, table, old_lex); thd->variables.character_set_client = old_character_set_client; return result; } /* Set engine type on all partition element objects SYNOPSIS set_engine_all_partitions() part_info Partition info engine_type Handlerton reference of engine RETURN VALUES NONE */ static void set_engine_all_partitions(partition_info *part_info, handlerton *engine_type) { uint i = 0; List_iterator part_it(part_info->partitions); do { partition_element *part_elem = part_it++; part_elem->engine_type = engine_type; if (part_info->is_sub_partitioned()) { List_iterator sub_it(part_elem->subpartitions); uint j = 0; do { partition_element *sub_elem = sub_it++; sub_elem->engine_type = engine_type; } while (++j < part_info->num_subparts); } } while (++i < part_info->num_parts); } /* We need to check if engine used by all partitions can handle partitioning natively. SYNOPSIS check_native_partitioned() create_info Create info in CREATE TABLE out:ret_val Return value part_info Partition info thd Thread object RETURN VALUES Value returned in bool ret_value true Native partitioning supported by engine false Need to use partition handler Return value from function true Error false Success */ static bool check_native_partitioned(HA_CREATE_INFO *create_info, bool *ret_val, partition_info *part_info, THD *thd) { bool table_engine_set; handlerton *engine_type = part_info->default_engine_type; handlerton *old_engine_type = engine_type; DBUG_TRACE; if (create_info->used_fields & HA_CREATE_USED_ENGINE) { table_engine_set = true; engine_type = create_info->db_type; } else { table_engine_set = false; if (thd->lex->sql_command != SQLCOM_CREATE_TABLE) { table_engine_set = true; } } DBUG_PRINT("info", ("engine_type = %s, table_engine_set = %u", ha_resolve_storage_engine_name(engine_type), table_engine_set)); if (part_info->check_engine_mix(engine_type, table_engine_set)) goto error; /* All engines are of the same type. Check if this engine supports native partitioning. */ if (!engine_type) engine_type = old_engine_type; DBUG_PRINT("info", ("engine_type = %s", ha_resolve_storage_engine_name(engine_type))); if (engine_type->partition_flags) { create_info->db_type = engine_type; DBUG_PRINT("info", ("Changed to native partitioning")); *ret_val = true; } return false; error: /* Mixed engines not yet supported but when supported it will need the partition handler */ my_error(ER_MIX_HANDLER_ERROR, MYF(0)); *ret_val = false; return true; } /** Set part_state for all partitions to given state. @param tab_part_info partition_info holding all partitions. @param part_state Which state to set for the named partitions. */ void set_all_part_state(partition_info *tab_part_info, enum partition_state part_state) { uint part_count = 0; List_iterator part_it(tab_part_info->partitions); do { partition_element *part_elem = part_it++; part_elem->part_state = part_state; if (tab_part_info->is_sub_partitioned()) { List_iterator sub_it(part_elem->subpartitions); partition_element *sub_elem; while ((sub_elem = sub_it++)) { sub_elem->part_state = part_state; } } } while (++part_count < tab_part_info->num_parts); } /** Sets which partitions to be used in the command. @param alter_info Alter_info pointer holding partition names and flags. @param tab_part_info partition_info holding all partitions. @param part_state Which state to set for the named partitions. @param include_subpartitions Also include subpartitions in the search. @return Operation status @retval false Success @retval true Failure */ bool set_part_state(Alter_info *alter_info, partition_info *tab_part_info, enum partition_state part_state, bool include_subpartitions) { uint part_count = 0; uint num_parts_found = 0; List_iterator part_it(tab_part_info->partitions); do { partition_element *part_elem = part_it++; if ((alter_info->flags & Alter_info::ALTER_ALL_PARTITION) || (is_name_in_list(part_elem->partition_name, alter_info->partition_names))) { /* Mark the partition. I.e mark the partition as a partition to be "changed" by analyzing/optimizing/rebuilding/checking/repairing/... */ num_parts_found++; part_elem->part_state = part_state; DBUG_PRINT("info", ("Setting part_state to %u for partition %s", part_state, part_elem->partition_name)); } else if (include_subpartitions && tab_part_info->is_sub_partitioned()) { List_iterator sub_it(part_elem->subpartitions); partition_element *sub_elem; while ((sub_elem = sub_it++)) { if (is_name_in_list(sub_elem->partition_name, alter_info->partition_names)) { num_parts_found++; sub_elem->part_state = part_state; DBUG_PRINT("info", ("Setting part_state to %u for subpartition %s", part_state, sub_elem->partition_name)); } else sub_elem->part_state = PART_NORMAL; } part_elem->part_state = PART_NORMAL; } else part_elem->part_state = PART_NORMAL; } while (++part_count < tab_part_info->num_parts); if (num_parts_found != alter_info->partition_names.elements && !(alter_info->flags & Alter_info::ALTER_ALL_PARTITION)) { /* Not all given partitions found, revert and return failure */ set_all_part_state(tab_part_info, PART_NORMAL); return true; } return false; } /** @brief Check if partition is exchangable with table by checking table options @param table_create_info Table options from table. @param part_elem All the info of the partition. @retval false if they are equal, otherwise true. @note Any differens that would cause a change in the frm file is prohibited. Such options as data_file_name, index_file_name, min_rows, max_rows etc. are not allowed to differ. But comment is allowed to differ. */ bool compare_partition_options(HA_CREATE_INFO *table_create_info, partition_element *part_elem) { #define MAX_COMPARE_PARTITION_OPTION_ERRORS 5 const char *option_diffs[MAX_COMPARE_PARTITION_OPTION_ERRORS + 1]; int i, errors = 0; DBUG_TRACE; // TODO: Add test for EXCHANGE PARTITION with TABLESPACES! // Then if all works, simply remove the check for TABLESPACE (and eventually // DATA/INDEX DIRECTORY too). /* Note that there are not yet any engine supporting tablespace together with partitioning. TODO: when there are, add compare. */ if (part_elem->tablespace_name || table_create_info->tablespace) option_diffs[errors++] = "TABLESPACE"; if (part_elem->part_max_rows != table_create_info->max_rows) option_diffs[errors++] = "MAX_ROWS"; if (part_elem->part_min_rows != table_create_info->min_rows) option_diffs[errors++] = "MIN_ROWS"; if (part_elem->index_file_name || table_create_info->index_file_name) option_diffs[errors++] = "INDEX DIRECTORY"; for (i = 0; i < errors; i++) my_error(ER_PARTITION_EXCHANGE_DIFFERENT_OPTION, MYF(0), option_diffs[i]); return errors != 0; } /* Prepare for ALTER TABLE of partition structure @param[in] thd Thread object @param[in] table Table object @param[in,out] alter_info Alter information @param[in,out] create_info Create info for CREATE TABLE @param[in] alter_ctx ALTER TABLE runtime context @param[out] partition_changed Boolean indicating whether partition changed @param[out] new_part_info New partition_info object if in-place alter which requires mark-up in partition_info is possible. @return Operation status @retval true Error @retval false Success @note This method handles all preparations for ALTER TABLE for partitioned tables. We need to handle both partition management command such as Add Partition and others here as well as an ALTER TABLE that completely changes the partitioning and yet others that don't change anything at all. We start by checking the partition management variants and then check the general change patterns. */ uint prep_alter_part_table(THD *thd, TABLE *table, Alter_info *alter_info, HA_CREATE_INFO *create_info, Alter_table_ctx *alter_ctx MY_ATTRIBUTE((unused)), bool *partition_changed, partition_info **new_part_info) { DBUG_TRACE; DBUG_ASSERT(new_part_info); /* Remove partitioning on a not partitioned table is not possible */ if (!table->part_info && (alter_info->flags & Alter_info::ALTER_REMOVE_PARTITIONING)) { my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); return true; } if (thd->work_part_info && !(thd->work_part_info = thd->lex->part_info->get_clone(thd, true))) return true; /* ALTER_ADMIN_PARTITION is handled in mysql_admin_table */ DBUG_ASSERT(!(alter_info->flags & Alter_info::ALTER_ADMIN_PARTITION)); if (alter_info->flags & (Alter_info::ALTER_ADD_PARTITION | Alter_info::ALTER_DROP_PARTITION | Alter_info::ALTER_COALESCE_PARTITION | Alter_info::ALTER_REORGANIZE_PARTITION | Alter_info::ALTER_TABLE_REORG | Alter_info::ALTER_REBUILD_PARTITION)) { partition_info *tab_part_info; partition_info *alt_part_info = thd->work_part_info; uint flags = 0; bool is_last_partition_reorged = false; part_elem_value *tab_max_elem_val = NULL; part_elem_value *alt_max_elem_val = NULL; longlong tab_max_range = 0, alt_max_range = 0; Partition_handler *part_handler = table->file->get_partition_handler(); if (!table->part_info) { my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); return true; } if (!part_handler) { DBUG_ASSERT(0); my_error(ER_PARTITION_MGMT_ON_NONPARTITIONED, MYF(0)); return true; } /* Open our intermediate table, we will operate on a temporary instance of the original table, to be able to skip copying all partitions. Open it as a copy of the original table, and modify its partition_info object to allow in-place ALTER implementation to perform the changes. */ DBUG_ASSERT(thd->mdl_context.owns_equal_or_stronger_lock( MDL_key::TABLE, alter_ctx->db, alter_ctx->table_name, MDL_INTENTION_EXCLUSIVE)); /* We will operate on a cached instance of the original table, to be able to skip copying all non-changed partitions while allowing concurrent access. We create a new partition_info object which will carry the new state of the partitions. It will only be temporary attached to the handler when needed and then detached afterwards (through handler::set_part_info()). That way it will not get reused by next statement, even if the table object is reused due to LOCK TABLE. */ tab_part_info = table->part_info->get_full_clone(thd); if (!tab_part_info) { mem_alloc_error(sizeof(partition_info)); return true; } if (alter_info->flags & Alter_info::ALTER_TABLE_REORG) { uint new_part_no, curr_part_no; /* 'ALTER TABLE t REORG PARTITION' only allowed with auto partition if default partitioning is used. */ if (tab_part_info->part_type != partition_type::HASH || ((table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION) && !tab_part_info->use_default_num_partitions) || ((!(table->s->db_type()->partition_flags() & HA_USE_AUTO_PARTITION)) && tab_part_info->use_default_num_partitions)) { my_error(ER_REORG_NO_PARAM_ERROR, MYF(0)); goto err; } new_part_no = part_handler->get_default_num_partitions(create_info); curr_part_no = tab_part_info->num_parts; if (new_part_no == curr_part_no) { /* No change is needed, we will have the same number of partitions after the change as before. Thus we can reply ok immediately without any changes at all. */ flags = part_handler->alter_flags(alter_info->flags); if (flags & HA_INPLACE_CHANGE_PARTITION) { *new_part_info = tab_part_info; /* Force table re-open for consistency with the main case. */ table->m_needs_reopen = true; } thd->work_part_info = tab_part_info; return false; } else if (new_part_no > curr_part_no) { /* We will add more partitions, we use the ADD PARTITION without setting the flag for no default number of partitions */ alter_info->flags |= Alter_info::ALTER_ADD_PARTITION; thd->work_part_info->num_parts = new_part_no - curr_part_no; } else { /* We will remove hash partitions, we use the COALESCE PARTITION without setting the flag for no default number of partitions */ alter_info->flags |= Alter_info::ALTER_COALESCE_PARTITION; alter_info->num_parts = curr_part_no - new_part_no; } } if (!(flags = part_handler->alter_flags(alter_info->flags))) { my_error(ER_PARTITION_FUNCTION_FAILURE, MYF(0)); goto err; } if (flags & HA_INPLACE_CHANGE_PARTITION) { /* "Inplace" change of partitioning is supported in this case. We will change TABLE::part_info (as this is how we pass information to storage engine in this case), so the table must be reopened. */ *new_part_info = tab_part_info; table->m_needs_reopen = true; } DBUG_PRINT("info", ("*fast_alter_table flags: 0x%x", flags)); if ((alter_info->flags & Alter_info::ALTER_ADD_PARTITION) || (alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION)) { if (thd->work_part_info->part_type != tab_part_info->part_type) { if (thd->work_part_info->part_type == partition_type::NONE) { if (tab_part_info->part_type == partition_type::RANGE) { my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "RANGE"); goto err; } else if (tab_part_info->part_type == partition_type::LIST) { my_error(ER_PARTITIONS_MUST_BE_DEFINED_ERROR, MYF(0), "LIST"); goto err; } /* Hash partitions can be altered without parser finds out about that it is HASH partitioned. So no error here. */ } else { if (thd->work_part_info->part_type == partition_type::RANGE) { my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), "RANGE", "LESS THAN"); } else if (thd->work_part_info->part_type == partition_type::LIST) { DBUG_ASSERT(thd->work_part_info->part_type == partition_type::LIST); my_error(ER_PARTITION_WRONG_VALUES_ERROR, MYF(0), "LIST", "IN"); } else if (tab_part_info->part_type == partition_type::RANGE) { my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "RANGE", "LESS THAN"); } else { DBUG_ASSERT(tab_part_info->part_type == partition_type::LIST); my_error(ER_PARTITION_REQUIRES_VALUES_ERROR, MYF(0), "LIST", "IN"); } goto err; } } if ((tab_part_info->column_list && alt_part_info->num_columns != tab_part_info->num_columns) || (!tab_part_info->column_list && (tab_part_info->part_type == partition_type::RANGE || tab_part_info->part_type == partition_type::LIST) && alt_part_info->num_columns != 1U) || (!tab_part_info->column_list && tab_part_info->part_type == partition_type::HASH && alt_part_info->num_columns != 0)) { my_error(ER_PARTITION_COLUMN_LIST_ERROR, MYF(0)); goto err; } alt_part_info->column_list = tab_part_info->column_list; if (alt_part_info->fix_parser_data(thd)) { goto err; } } if (alter_info->flags & Alter_info::ALTER_ADD_PARTITION) { /* We start by moving the new partitions to the list of temporary partitions. We will then check that the new partitions fit in the partitioning scheme as currently set-up. Partitions are always added at the end in ADD PARTITION. */ uint num_new_partitions = alt_part_info->num_parts; uint num_orig_partitions = tab_part_info->num_parts; uint check_total_partitions = num_new_partitions + num_orig_partitions; uint new_total_partitions = check_total_partitions; /* We allow quite a lot of values to be supplied by defaults, however we must know the number of new partitions in this case. */ if (thd->lex->no_write_to_binlog && tab_part_info->part_type != partition_type::HASH) { my_error(ER_NO_BINLOG_ERROR, MYF(0)); goto err; } if (tab_part_info->defined_max_value) { my_error(ER_PARTITION_MAXVALUE_ERROR, MYF(0)); goto err; } if (num_new_partitions == 0) { my_error(ER_ADD_PARTITION_NO_NEW_PARTITION, MYF(0)); goto err; } if (tab_part_info->is_sub_partitioned()) { if (alt_part_info->num_subparts == 0) alt_part_info->num_subparts = tab_part_info->num_subparts; else if (alt_part_info->num_subparts != tab_part_info->num_subparts) { my_error(ER_ADD_PARTITION_SUBPART_ERROR, MYF(0)); goto err; } check_total_partitions = new_total_partitions * alt_part_info->num_subparts; } if (check_total_partitions > MAX_PARTITIONS) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto err; } alt_part_info->part_type = tab_part_info->part_type; alt_part_info->subpart_type = tab_part_info->subpart_type; if (alt_part_info->set_up_defaults_for_partitioning( part_handler, 0ULL, tab_part_info->num_parts)) { goto err; } /* Handling of on-line cases: ADD PARTITION for RANGE/LIST PARTITIONING: ------------------------------------------ For range and list partitions add partition is simply adding a new empty partition to the table. If the handler support this we will use the simple method of doing this. The figure below shows an example of this and the states involved in making this change. Existing partitions New added partitions ------ ------ ------ ------ | ------ ------ | | | | | | | | | | | | | | p0 | | p1 | | p2 | | p3 | | | p4 | | p5 | ------ ------ ------ ------ | ------ ------ PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_TO_BE_ADDED*2 PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED*2 The first line is the states before adding the new partitions and the second line is after the new partitions are added. All the partitions are in the partitions list, no partitions are placed in the temp_partitions list. ADD PARTITION for HASH PARTITIONING ----------------------------------- This little figure tries to show the various partitions involved when adding two new partitions to a linear hash based partitioned table with four partitions to start with, which lists are used and the states they pass through. Adding partitions to a normal hash based is similar except that it is always all the existing partitions that are reorganised not only a subset of them. Existing partitions New added partitions ------ ------ ------ ------ | ------ ------ | | | | | | | | | | | | | | p0 | | p1 | | p2 | | p3 | | | p4 | | p5 | ------ ------ ------ ------ | ------ ------ PART_CHANGED PART_CHANGED PART_NORMAL PART_NORMAL PART_TO_BE_ADDED PART_IS_CHANGED*2 PART_NORMAL PART_NORMAL PART_IS_ADDED PART_NORMAL PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_ADDED Reorganised existing partitions ------ ------ | | | | | p0'| | p1'| ------ ------ p0 - p5 will be in the partitions list of partitions. p0' and p1' will actually not exist as separate objects, there presence can be deduced from the state of the partition and also the names of those partitions can be deduced this way. After adding the partitions and copying the partition data to p0', p1', p4 and p5 from p0 and p1 the states change to adapt for the new situation where p0 and p1 is dropped and replaced by p0' and p1' and the new p4 and p5 are in the table again. The first line above shows the states of the partitions before we start adding and copying partitions, the second after completing the adding and copying and finally the third line after also dropping the partitions that are reorganised. */ if (*new_part_info && tab_part_info->part_type == partition_type::HASH) { uint part_no = 0, start_part = 1, start_sec_part = 1; uint end_part = 0, end_sec_part = 0; uint upper_2n = tab_part_info->linear_hash_mask + 1; uint lower_2n = upper_2n >> 1; bool all_parts = true; if (tab_part_info->linear_hash_ind && num_new_partitions < upper_2n) { /* An analysis of which parts needs reorganisation shows that it is divided into two intervals. The first interval is those parts that are reorganised up until upper_2n - 1. From upper_2n and onwards it starts again from partition 0 and goes on until it reaches p(upper_2n - 1). If the last new partition reaches beyond upper_2n - 1 then the first interval will end with p(lower_2n - 1) and start with p(num_orig_partitions - lower_2n). If lower_2n partitions are added then p0 to p(lower_2n - 1) will be reorganised which means that the two interval becomes one interval at this point. Thus only when adding less than lower_2n partitions and going beyond a total of upper_2n we actually get two intervals. To exemplify this assume we have 6 partitions to start with and add 1, 2, 3, 5, 6, 7, 8, 9 partitions. The first to add after p5 is p6 = 110 in bit numbers. Thus we can see that 10 = p2 will be partition to reorganise if only one partition. If 2 partitions are added we reorganise [p2, p3]. Those two cases are covered by the second if part below. If 3 partitions are added we reorganise [p2, p3] U [p0,p0]. This part is covered by the else part below. If 5 partitions are added we get [p2,p3] U [p0, p2] = [p0, p3]. This is covered by the first if part where we need the max check to here use lower_2n - 1. If 7 partitions are added we get [p2,p3] U [p0, p4] = [p0, p4]. This is covered by the first if part but here we use the first calculated end_part. Finally with 9 new partitions we would also reorganise p6 if we used the method below but we cannot reorganise more partitions than what we had from the start and thus we simply set all_parts to true. In this case we don't get into this if-part at all. */ all_parts = false; if (num_new_partitions >= lower_2n) { /* In this case there is only one interval since the two intervals overlap and this starts from zero to last_part_no - upper_2n */ start_part = 0; end_part = new_total_partitions - (upper_2n + 1); end_part = max(lower_2n - 1, end_part); } else if (new_total_partitions <= upper_2n) { /* Also in this case there is only one interval since we are not going over a 2**n boundary */ start_part = num_orig_partitions - lower_2n; end_part = start_part + (num_new_partitions - 1); } else { /* We have two non-overlapping intervals since we are not passing a 2**n border and we have not at least lower_2n new parts that would ensure that the intervals become overlapping. */ start_part = num_orig_partitions - lower_2n; end_part = upper_2n - 1; start_sec_part = 0; end_sec_part = new_total_partitions - (upper_2n + 1); } } List_iterator tab_it(tab_part_info->partitions); part_no = 0; do { partition_element *p_elem = tab_it++; if (all_parts || (part_no >= start_part && part_no <= end_part) || (part_no >= start_sec_part && part_no <= end_sec_part)) { p_elem->part_state = PART_CHANGED; } } while (++part_no < num_orig_partitions); } /* Need to concatenate the lists here to make it possible to check the partition info for correctness using check_partition_info. For on-line add partition we set the state of this partition to PART_TO_BE_ADDED to ensure that it is known that it is not yet usable (becomes usable when partition is created and the switch of partition configuration is made. */ { List_iterator alt_it(alt_part_info->partitions); uint part_count = 0; do { partition_element *part_elem = alt_it++; if (*new_part_info) part_elem->part_state = PART_TO_BE_ADDED; if (tab_part_info->partitions.push_back(part_elem)) { mem_alloc_error(1); goto err; } } while (++part_count < num_new_partitions); tab_part_info->num_parts += num_new_partitions; } /* If we specify partitions explicitly we don't use defaults anymore. Using ADD PARTITION also means that we don't have the default number of partitions anymore. We use this code also for Table reorganisations and here we don't set any default flags to false. */ if (!(alter_info->flags & Alter_info::ALTER_TABLE_REORG)) { if (!alt_part_info->use_default_partitions) { DBUG_PRINT("info", ("part_info: %p", tab_part_info)); tab_part_info->use_default_partitions = false; } tab_part_info->use_default_num_partitions = false; tab_part_info->is_auto_partitioned = false; } } else if (alter_info->flags & Alter_info::ALTER_DROP_PARTITION) { /* Drop a partition from a range partition and list partitioning is always safe and can be made more or less immediate. It is necessary however to ensure that the partition to be removed is safely removed and that REPAIR TABLE can remove the partition if for some reason the command to drop the partition failed in the middle. */ uint part_count = 0; uint num_parts_dropped = alter_info->partition_names.elements; uint num_parts_found = 0; List_iterator part_it(tab_part_info->partitions); tab_part_info->is_auto_partitioned = false; if (!(tab_part_info->part_type == partition_type::RANGE || tab_part_info->part_type == partition_type::LIST)) { my_error(ER_ONLY_ON_RANGE_LIST_PARTITION, MYF(0), "DROP"); goto err; } if (num_parts_dropped >= tab_part_info->num_parts) { my_error(ER_DROP_LAST_PARTITION, MYF(0)); goto err; } do { partition_element *part_elem = part_it++; if (is_name_in_list(part_elem->partition_name, alter_info->partition_names)) { /* Set state to indicate that the partition is to be dropped. */ num_parts_found++; part_elem->part_state = PART_TO_BE_DROPPED; } } while (++part_count < tab_part_info->num_parts); if (num_parts_found != num_parts_dropped) { my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "DROP"); goto err; } if (table->file->is_fk_defined_on_table_or_index(MAX_KEY)) { my_error(ER_ROW_IS_REFERENCED, MYF(0)); goto err; } tab_part_info->num_parts -= num_parts_dropped; } else if (alter_info->flags & Alter_info::ALTER_REBUILD_PARTITION) { set_engine_all_partitions(tab_part_info, tab_part_info->default_engine_type); if (set_part_state(alter_info, tab_part_info, PART_CHANGED, false)) { my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REBUILD"); goto err; } if (!(*new_part_info)) { table->file->print_error(HA_ERR_WRONG_COMMAND, MYF(0)); goto err; } } else if (alter_info->flags & Alter_info::ALTER_COALESCE_PARTITION) { uint num_parts_coalesced = alter_info->num_parts; uint num_parts_remain = tab_part_info->num_parts - num_parts_coalesced; List_iterator part_it(tab_part_info->partitions); if (tab_part_info->part_type != partition_type::HASH) { my_error(ER_COALESCE_ONLY_ON_HASH_PARTITION, MYF(0)); goto err; } if (num_parts_coalesced == 0) { my_error(ER_COALESCE_PARTITION_NO_PARTITION, MYF(0)); goto err; } if (num_parts_coalesced >= tab_part_info->num_parts) { my_error(ER_DROP_LAST_PARTITION, MYF(0)); goto err; } /* Online handling: COALESCE PARTITION: ------------------- The figure below shows the manner in which partitions are handled when performing an on-line coalesce partition and which states they go through at start, after adding and copying partitions and finally after dropping the partitions to drop. The figure shows an example using four partitions to start with, using linear hash and coalescing one partition (always the last partition). Using linear hash then all remaining partitions will have a new reorganised part. Existing partitions Coalesced partition ------ ------ ------ | ------ | | | | | | | | | | p0 | | p1 | | p2 | | | p3 | ------ ------ ------ | ------ PART_NORMAL PART_CHANGED PART_NORMAL PART_REORGED_DROPPED PART_NORMAL PART_IS_CHANGED PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL PART_NORMAL PART_NORMAL PART_IS_DROPPED Reorganised existing partitions ------ | | | p1'| ------ p0 - p3 is in the partitions list. The p1' partition will actually not be in any list it is deduced from the state of p1. */ { uint part_count = 0, start_part = 1, start_sec_part = 1; uint end_part = 0, end_sec_part = 0; bool all_parts = true; if (*new_part_info && tab_part_info->linear_hash_ind) { uint upper_2n = tab_part_info->linear_hash_mask + 1; uint lower_2n = upper_2n >> 1; all_parts = false; if (num_parts_coalesced >= lower_2n) { all_parts = true; } else if (num_parts_remain >= lower_2n) { end_part = tab_part_info->num_parts - (lower_2n + 1); start_part = num_parts_remain - lower_2n; } else { start_part = 0; end_part = tab_part_info->num_parts - (lower_2n + 1); end_sec_part = (lower_2n >> 1) - 1; start_sec_part = end_sec_part - (lower_2n - (num_parts_remain + 1)); } } do { partition_element *p_elem = part_it++; if (*new_part_info && (all_parts || (part_count >= start_part && part_count <= end_part) || (part_count >= start_sec_part && part_count <= end_sec_part))) p_elem->part_state = PART_CHANGED; if (++part_count > num_parts_remain) { if (*new_part_info) p_elem->part_state = PART_REORGED_DROPPED; else part_it.remove(); } } while (part_count < tab_part_info->num_parts); tab_part_info->num_parts = num_parts_remain; } if (!(alter_info->flags & Alter_info::ALTER_TABLE_REORG)) { tab_part_info->use_default_num_partitions = false; tab_part_info->is_auto_partitioned = false; } } else if (alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION) { /* Reorganise partitions takes a number of partitions that are next to each other (at least for RANGE PARTITIONS) and then uses those to create a set of new partitions. So data is copied from those partitions into the new set of partitions. Those new partitions can have more values in the LIST value specifications or less both are allowed. The ranges can be different but since they are changing a set of consecutive partitions they must cover the same range as those changed from. This command can be used on RANGE and LIST partitions. */ uint num_parts_reorged = alter_info->partition_names.elements; uint num_parts_new = thd->work_part_info->partitions.elements; uint check_total_partitions; tab_part_info->is_auto_partitioned = false; if (num_parts_reorged > tab_part_info->num_parts) { my_error(ER_REORG_PARTITION_NOT_EXIST, MYF(0)); goto err; } if (!(tab_part_info->part_type == partition_type::RANGE || tab_part_info->part_type == partition_type::LIST) && (num_parts_new != num_parts_reorged)) { my_error(ER_REORG_HASH_ONLY_ON_SAME_NO, MYF(0)); goto err; } if (tab_part_info->is_sub_partitioned() && alt_part_info->num_subparts && alt_part_info->num_subparts != tab_part_info->num_subparts) { my_error(ER_PARTITION_WRONG_NO_SUBPART_ERROR, MYF(0)); goto err; } check_total_partitions = tab_part_info->num_parts + num_parts_new; check_total_partitions -= num_parts_reorged; if (check_total_partitions > MAX_PARTITIONS) { my_error(ER_TOO_MANY_PARTITIONS_ERROR, MYF(0)); goto err; } alt_part_info->part_type = tab_part_info->part_type; alt_part_info->subpart_type = tab_part_info->subpart_type; alt_part_info->num_subparts = tab_part_info->num_subparts; DBUG_ASSERT(!alt_part_info->use_default_partitions); /* We specified partitions explicitly so don't use defaults anymore. */ tab_part_info->use_default_partitions = false; if (alt_part_info->set_up_defaults_for_partitioning(part_handler, 0ULL, 0)) { goto err; } /* Online handling: REORGANIZE PARTITION: --------------------- The figure exemplifies the handling of partitions, their state changes and how they are organised. It exemplifies four partitions where two of the partitions are reorganised (p1 and p2) into two new partitions (p4 and p5). The reason of this change could be to change range limits, change list values or for hash partitions simply reorganise the partition which could also involve moving them to new disks or new node groups (MySQL Cluster). Existing partitions ------ ------ ------ ------ | | | | | | | | | p0 | | p1 | | p2 | | p3 | ------ ------ ------ ------ PART_NORMAL PART_TO_BE_REORGED PART_NORMAL PART_NORMAL PART_TO_BE_DROPPED PART_NORMAL PART_NORMAL PART_IS_DROPPED PART_NORMAL Reorganised new partitions (replacing p1 and p2) ------ ------ | | | | | p4 | | p5 | ------ ------ PART_TO_BE_ADDED PART_IS_ADDED PART_IS_ADDED All unchanged partitions and the new partitions are in the partitions list in the order they will have when the change is completed. The reorganised partitions are placed in the temp_partitions list. PART_IS_ADDED is only a temporary state not written in the frm file. It is used to ensure we write the generated partition syntax in a correct manner. */ { List_iterator tab_it(tab_part_info->partitions); uint part_count = 0; bool found_first = false; bool found_last = false; uint drop_count = 0; do { partition_element *part_elem = tab_it++; is_last_partition_reorged = false; if (is_name_in_list(part_elem->partition_name, alter_info->partition_names)) { is_last_partition_reorged = true; drop_count++; if (tab_part_info->column_list) { List_iterator p(part_elem->list_val_list); tab_max_elem_val = p++; } else tab_max_range = part_elem->range_value; if (*new_part_info && tab_part_info->temp_partitions.push_back(part_elem)) { mem_alloc_error(1); goto err; } if (*new_part_info) part_elem->part_state = PART_TO_BE_REORGED; if (!found_first) { uint alt_part_count = 0; partition_element *alt_part_elem; List_iterator alt_it( alt_part_info->partitions); found_first = true; do { alt_part_elem = alt_it++; if (tab_part_info->column_list) { List_iterator p( alt_part_elem->list_val_list); alt_max_elem_val = p++; } else alt_max_range = alt_part_elem->range_value; if (*new_part_info) alt_part_elem->part_state = PART_TO_BE_ADDED; if (alt_part_count == 0) tab_it.replace(alt_part_elem); else tab_it.after(alt_part_elem); } while (++alt_part_count < num_parts_new); } else if (found_last) { my_error(ER_CONSECUTIVE_REORG_PARTITIONS, MYF(0)); goto err; } else tab_it.remove(); } else { if (found_first) found_last = true; } } while (++part_count < tab_part_info->num_parts); if (drop_count != num_parts_reorged) { my_error(ER_DROP_PARTITION_NON_EXISTENT, MYF(0), "REORGANIZE"); goto err; } tab_part_info->num_parts = check_total_partitions; } } else { DBUG_ASSERT(false); } *partition_changed = true; thd->work_part_info = tab_part_info; if (alter_info->flags & Alter_info::ALTER_ADD_PARTITION || alter_info->flags & Alter_info::ALTER_REORGANIZE_PARTITION) { if (tab_part_info->use_default_subpartitions && !alt_part_info->use_default_subpartitions) { tab_part_info->use_default_subpartitions = false; tab_part_info->use_default_num_subpartitions = false; } if (tab_part_info->check_partition_info(thd, (handlerton **)NULL, table->file, 0ULL, true)) { goto err; } /* The check below needs to be performed after check_partition_info since this function "fixes" the item trees of the new partitions to reorganize into */ if (alter_info->flags == Alter_info::ALTER_REORGANIZE_PARTITION && tab_part_info->part_type == partition_type::RANGE) { bool is_error; if (is_last_partition_reorged) { if (tab_part_info->column_list) { is_error = tab_part_info->compare_column_values( alt_max_elem_val->col_val_array, tab_max_elem_val->col_val_array); // a < b. } else { is_error = alt_max_range < tab_max_range; } } else { if (tab_part_info->column_list) { is_error = tab_part_info->compare_column_values( alt_max_elem_val->col_val_array, tab_max_elem_val->col_val_array) || tab_part_info->compare_column_values( tab_max_elem_val->col_val_array, alt_max_elem_val->col_val_array); // a != b. } else { is_error = alt_max_range != tab_max_range; } } if (is_error) { /* For range partitioning the total resulting range before and after the change must be the same except in one case. This is when the last partition is reorganised, in this case it is acceptable to increase the total range. The reason is that it is not allowed to have "holes" in the middle of the ranges and thus we should not allow to reorganise to create "holes". */ my_error(ER_REORG_OUTSIDE_RANGE, MYF(0)); goto err; } } } } else { /* When thd->lex->part_info has a reference to a partition_info the ALTER TABLE contained a definition of a partitioning. Case I: If there was a partition before and there is a new one defined. We use the new partitioning. The new partitioning is already defined in the correct variable so no work is needed to accomplish this. We do however need to update partition_changed to ensure that not only the frm file is changed in the ALTER TABLE command. Case IIa: There was a partitioning before and there is no new one defined. Also the user has not specified to remove partitioning explicitly. We use the old partitioning also for the new table. We do this by assigning the partition_info from the table loaded in open_table to the partition_info struct used by mysql_create_table later in this method. Case IIb: There was a partitioning before and there is no new one defined. The user has specified explicitly to remove partitioning Since the user has specified explicitly to remove partitioning we override the old partitioning info and create a new table using the specified engine. In this case the partition also is changed. Case III: There was no partitioning before altering the table, there is partitioning defined in the altered table. Use the new partitioning. No work needed since the partitioning info is already in the correct variable. In this case we discover one case where the new partitioning is using the same partition function as the default (PARTITION BY KEY or PARTITION BY LINEAR KEY with the list of fields equal to the primary key fields OR PARTITION BY [LINEAR] KEY() for tables without primary key) Also here partition has changed and thus a new table must be created. Case IV: There was no partitioning before and no partitioning defined. Obviously no work needed. */ partition_info *tab_part_info = table->part_info; if (tab_part_info) { /* The table must be reopened, this is necessary to avoid situations where a failing ALTER leaves behind a TABLE object which has its partitioning information updated by the SE, as InnoDB is doing in update_create_info(). */ table->m_needs_reopen = true; if (alter_info->flags & Alter_info::ALTER_REMOVE_PARTITIONING) { DBUG_PRINT("info", ("Remove partitioning")); if (!(create_info->used_fields & HA_CREATE_USED_ENGINE)) { DBUG_PRINT("info", ("No explicit engine used")); create_info->db_type = tab_part_info->default_engine_type; } DBUG_PRINT("info", ("New engine type: %s", ha_resolve_storage_engine_name(create_info->db_type))); thd->work_part_info = NULL; *partition_changed = true; } else if (!thd->work_part_info) { /* Retain partitioning but possibly with a new storage engine beneath. Create a copy of TABLE::part_info to be able to modify it freely. */ if (!(tab_part_info = tab_part_info->get_clone(thd))) return true; thd->work_part_info = tab_part_info; if (create_info->used_fields & HA_CREATE_USED_ENGINE && create_info->db_type != tab_part_info->default_engine_type) { /* Make sure change of engine happens to all partitions. */ DBUG_PRINT("info", ("partition changed")); if (tab_part_info->is_auto_partitioned) { /* If the user originally didn't specify partitioning to be used we can remove it now. */ thd->work_part_info = NULL; } else { /* Ensure that all partitions have the proper engine set-up */ set_engine_all_partitions(thd->work_part_info, create_info->db_type); } *partition_changed = true; } } } if (thd->work_part_info) { partition_info *part_info = thd->work_part_info; bool is_native_partitioned = false; /* Need to cater for engine types that can handle partition without using the partition handler. */ if (part_info != tab_part_info) { if (part_info->fix_parser_data(thd)) { goto err; } /* Compare the old and new part_info. If only key_algorithm change is done, don't consider it as changed partitioning (to avoid rebuild). This is to handle KEY (numeric_cols) partitioned tables created in 5.1. For more info, see bug#14521864. */ if (alter_info->flags != Alter_info::ALTER_PARTITION || !table->part_info || alter_info->requested_algorithm != Alter_info::ALTER_TABLE_ALGORITHM_INPLACE || !table->part_info->has_same_partitioning(part_info)) { DBUG_PRINT("info", ("partition changed")); *partition_changed = true; } } /* Set up partition default_engine_type either from the create_info or from the previus table */ if (create_info->used_fields & HA_CREATE_USED_ENGINE) part_info->default_engine_type = create_info->db_type; else { if (tab_part_info) part_info->default_engine_type = tab_part_info->default_engine_type; else part_info->default_engine_type = create_info->db_type; } if (check_native_partitioned(create_info, &is_native_partitioned, part_info, thd)) { goto err; } if (!is_native_partitioned) { my_error(ER_CHECK_NOT_IMPLEMENTED, MYF(0), "native partitioning"); goto err; } } } return false; err: *new_part_info = NULL; return true; } /* Prepare for calling val_int on partition function by setting fields to point to the record where the values of the PF-fields are stored. SYNOPSIS set_field_ptr() ptr Array of fields to change ptr new_buf New record pointer old_buf Old record pointer DESCRIPTION Set ptr in field objects of field array to refer to new_buf record instead of previously old_buf. Used before calling val_int and after it is used to restore pointers to table->record[0]. This routine is placed outside of partition code since it can be useful also for other programs. */ static void set_field_ptr(Field **ptr, const uchar *new_buf, const uchar *old_buf) { ptrdiff_t diff = (new_buf - old_buf); DBUG_TRACE; do { (*ptr)->move_field_offset(diff); } while (*(++ptr)); } /** Append all fields in read_set to string @param[in,out] str String to append to. @param[in] row Row to append. @param[in] table Table containing read_set and fields for the row. */ void append_row_to_str(String &str, const uchar *row, TABLE *table) { Field **fields, **field_ptr; const uchar *rec; uint num_fields = bitmap_bits_set(table->read_set); uint curr_field_index = 0; bool is_rec0 = !row || row == table->record[0]; if (!row) rec = table->record[0]; else rec = row; /* Create a new array of all read fields. */ fields = (Field **)my_malloc(key_memory_handler_errmsgs, sizeof(void *) * (num_fields + 1), MYF(0)); if (!fields) return; fields[num_fields] = NULL; for (field_ptr = table->field; *field_ptr; field_ptr++) { if (!bitmap_is_set(table->read_set, (*field_ptr)->field_index)) continue; fields[curr_field_index++] = *field_ptr; } if (!is_rec0) set_field_ptr(fields, rec, table->record[0]); for (field_ptr = fields; *field_ptr; field_ptr++) { Field *field = *field_ptr; str.append(" "); str.append(field->field_name); str.append(":"); field_unpack(&str, field, 0, false); } if (!is_rec0) set_field_ptr(fields, table->record[0], rec); my_free(fields); } /* SYNOPSIS mem_alloc_error() size Size of memory attempted to allocate None RETURN VALUES None DESCRIPTION A routine to use for all the many places in the code where memory allocation error can happen, a tremendous amount of them, needs simple routine that signals this error. */ void mem_alloc_error(size_t size) { my_error(ER_OUTOFMEMORY, MYF(ME_FATALERROR), static_cast(size)); } /** Return comma-separated list of used partitions in the provided given string. @param part_info Partitioning info @param[out] parts The resulting list of string to fill Generate a list of used partitions (from bits in part_info->read_partitions bitmap), and store it into the provided String object. @note The produced string must not be longer then MAX_PARTITIONS * (1 + FN_LEN). In case of UPDATE, only the partitions read is given, not the partitions that was written or locked. */ bool make_used_partitions_str(partition_info *part_info, List *parts) { parts->empty(); partition_element *pe; uint partition_id = 0; List_iterator it(part_info->partitions); StringBuffer part_str(system_charset_info); if (part_info->is_sub_partitioned()) { partition_element *head_pe; while ((head_pe = it++)) { List_iterator it2(head_pe->subpartitions); while ((pe = it2++)) { if (bitmap_is_set(&part_info->read_partitions, partition_id)) { part_str.length(0); if ((part_str.append(head_pe->partition_name, strlen(head_pe->partition_name), system_charset_info)) || part_str.append('_') || part_str.append(pe->partition_name, strlen(pe->partition_name), system_charset_info) || parts->push_back(part_str.dup(current_thd->mem_root))) return true; } partition_id++; } } } else { while ((pe = it++)) { if (bitmap_is_set(&part_info->read_partitions, partition_id)) { part_str.length(0); if (part_str.append(pe->partition_name, strlen(pe->partition_name), system_charset_info) || parts->push_back(part_str.dup(current_thd->mem_root))) return true; } partition_id++; } } return false; } /**************************************************************************** * Partition interval analysis support ***************************************************************************/ /* Setup partition_info::* members related to partitioning range analysis SYNOPSIS set_up_partition_func_pointers() part_info Partitioning info structure DESCRIPTION Assuming that passed partition_info structure already has correct values for members that specify [sub]partitioning type, table fields, and functions, set up partition_info::* members that are related to Partitioning Interval Analysis (see get_partitions_in_range_iter for its definition) IMPLEMENTATION There are three available interval analyzer functions: (1) get_part_iter_for_interval_via_mapping (2) get_part_iter_for_interval_cols_via_map (3) get_part_iter_for_interval_via_walking They all have limited applicability: (1) is applicable for "PARTITION BY (func(t.field))", where func is a monotonic function. (2) is applicable for "PARTITION BY COLUMNS (field_list) (3) is applicable for "[SUB]PARTITION BY (any_func(t.integer_field))" If both (1) and (3) are applicable, (1) is preferred over (3). This function sets part_info::get_part_iter_for_interval according to this criteria, and also sets some auxilary fields that the function uses. */ static void set_up_range_analysis_info(partition_info *part_info) { /* Set the catch-all default */ part_info->get_part_iter_for_interval = NULL; part_info->get_subpart_iter_for_interval = NULL; /* Check if get_part_iter_for_interval_via_mapping() can be used for partitioning */ switch (part_info->part_type) { case partition_type::RANGE: case partition_type::LIST: if (!part_info->column_list) { if (part_info->part_expr->get_monotonicity_info() != NON_MONOTONIC) { part_info->get_part_iter_for_interval = get_part_iter_for_interval_via_mapping; goto setup_subparts; } } else { part_info->get_part_iter_for_interval = get_part_iter_for_interval_cols_via_map; goto setup_subparts; } default:; } /* Check if get_part_iter_for_interval_via_walking() can be used for partitioning */ if (part_info->num_part_fields == 1) { Field *field = part_info->part_field_array[0]; switch (field->type()) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_INT24: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: part_info->get_part_iter_for_interval = get_part_iter_for_interval_via_walking; break; default:; } } setup_subparts: /* Check if get_part_iter_for_interval_via_walking() can be used for subpartitioning */ if (part_info->num_subpart_fields == 1) { Field *field = part_info->subpart_field_array[0]; switch (field->type()) { case MYSQL_TYPE_TINY: case MYSQL_TYPE_SHORT: case MYSQL_TYPE_LONG: case MYSQL_TYPE_LONGLONG: part_info->get_subpart_iter_for_interval = get_part_iter_for_interval_via_walking; break; default:; } } } /* This function takes a memory of packed fields in opt-range format and stores it in record format. To avoid having to worry about how the length of fields are calculated in opt-range format we send an array of lengths used for each field in store_length_array. SYNOPSIS store_tuple_to_record() pfield Field array store_length_array Array of field lengths value Memory where fields are stored value_end End of memory RETURN VALUE nparts Number of fields assigned */ static uint32 store_tuple_to_record(Field **pfield, uint32 *store_length_array, uchar *value, uchar *value_end) { /* This function is inspired by store_key_image_rec. */ uint32 nparts = 0; uchar *loc_value; while (value < value_end) { loc_value = value; if ((*pfield)->real_maybe_null()) { if (*loc_value) (*pfield)->set_null(); else (*pfield)->set_notnull(); loc_value++; } uint len = (*pfield)->pack_length(); (*pfield)->set_key_image(loc_value, len); value += *store_length_array; store_length_array++; nparts++; pfield++; } return nparts; } /** RANGE(columns) partitioning: compare partition value bound and probe tuple. @param val Partition column values. @param nvals_in_rec Number of (prefix) fields to compare. @return Less than/Equal to/Greater than 0 if the record is L/E/G than val. @note The partition value bound is always a full tuple (but may include the MAXVALUE special value). The probe tuple may be a prefix of partitioning tuple. */ static int cmp_rec_and_tuple(part_column_list_val *val, uint32 nvals_in_rec) { partition_info *part_info = val->part_info; Field **field = part_info->part_field_array; Field **fields_end = field + nvals_in_rec; int res; for (; field != fields_end; field++, val++) { if (val->max_value) return -1; if ((*field)->is_null()) { if (val->null_value) continue; return -1; } if (val->null_value) return +1; res = (*field)->cmp(val->column_value.field_image); if (res) return res; } return 0; } /** Compare record and columns partition tuple including endpoint handling. @param val Columns partition tuple @param n_vals_in_rec Number of columns to compare @param is_left_endpoint True if left endpoint (part_tuple < rec or part_tuple <= rec) @param include_endpoint If endpoint is included (part_tuple <= rec or rec <= part_tuple) @return Less than/Equal to/Greater than 0 if the record is L/E/G than the partition tuple. @see get_list_array_idx_for_endpoint() and get_partition_id_range_for_endpoint(). */ static int cmp_rec_and_tuple_prune(part_column_list_val *val, uint32 n_vals_in_rec, bool is_left_endpoint, bool include_endpoint) { int cmp; Field **field; if ((cmp = cmp_rec_and_tuple(val, n_vals_in_rec))) return cmp; field = val->part_info->part_field_array + n_vals_in_rec; if (!(*field)) { /* Full match. Only equal if including endpoint. */ if (include_endpoint) return 0; if (is_left_endpoint) return +4; /* Start of range, part_tuple < rec, return higher. */ return -4; /* End of range, rec < part_tupe, return lesser. */ } /* The prefix is equal and there are more partition columns to compare. If including left endpoint or not including right endpoint then the record is considered lesser compared to the partition. i.e: part(10, x) <= rec(10, unknown) and rec(10, unknown) < part(10, x) part <= rec -> lesser (i.e. this or previous partitions) rec < part -> lesser (i.e. this or previous partitions) */ if (is_left_endpoint == include_endpoint) return -2; /* If right endpoint and the first additional partition value is MAXVALUE, then the record is lesser. */ if (!is_left_endpoint && (val + n_vals_in_rec)->max_value) return -3; /* Otherwise the record is considered greater. rec <= part -> greater (i.e. does not match this partition, seek higher). part < rec -> greater (i.e. does not match this partition, seek higher). */ return 2; } typedef uint32 (*get_endpoint_func)(partition_info *, bool left_endpoint, bool include_endpoint); typedef uint32 (*get_col_endpoint_func)(partition_info *, bool left_endpoint, bool include_endpoint, uint32 num_parts); /** Get partition for RANGE COLUMNS endpoint. @param part_info Partitioning metadata. @param is_left_endpoint True if left endpoint (const <=/< cols) @param include_endpoint True if range includes the endpoint (<=/>=) @param nparts Total number of partitions @return Partition id of matching partition. @see get_partition_id_cols_list_for_endpoint and get_partition_id_range_for_endpoint. */ static uint32 get_partition_id_cols_range_for_endpoint( partition_info *part_info, bool is_left_endpoint, bool include_endpoint, uint32 nparts) { uint min_part_id = 0, max_part_id = part_info->num_parts, loc_part_id; part_column_list_val *range_col_array = part_info->range_col_array; uint num_columns = part_info->part_field_list.elements; DBUG_TRACE; /* Find the matching partition (including taking endpoint into account). */ do { /* Midpoint, adjusted down, so it can never be > last partition. */ loc_part_id = (max_part_id + min_part_id) >> 1; if (0 <= cmp_rec_and_tuple_prune(range_col_array + loc_part_id * num_columns, nparts, is_left_endpoint, include_endpoint)) min_part_id = loc_part_id + 1; else max_part_id = loc_part_id; } while (max_part_id > min_part_id); loc_part_id = max_part_id; /* Given value must be LESS THAN the found partition. */ DBUG_ASSERT(loc_part_id == part_info->num_parts || (0 > cmp_rec_and_tuple_prune( range_col_array + loc_part_id * num_columns, nparts, is_left_endpoint, include_endpoint))); /* Given value must be GREATER THAN or EQUAL to the previous partition. */ DBUG_ASSERT(loc_part_id == 0 || (0 <= cmp_rec_and_tuple_prune( range_col_array + (loc_part_id - 1) * num_columns, nparts, is_left_endpoint, include_endpoint))); if (!is_left_endpoint) { /* Set the end after this partition if not already after the last. */ if (loc_part_id < part_info->num_parts) loc_part_id++; } return loc_part_id; } static int get_part_iter_for_interval_cols_via_map( partition_info *part_info, bool, uint32 *store_length_array, uchar *min_value, uchar *max_value, uint min_len, uint max_len, uint flags, PARTITION_ITERATOR *part_iter) { uint32 nparts; get_col_endpoint_func get_col_endpoint; DBUG_TRACE; if (part_info->part_type == partition_type::RANGE) { get_col_endpoint = get_partition_id_cols_range_for_endpoint; part_iter->get_next = get_next_partition_id_range; } else if (part_info->part_type == partition_type::LIST) { get_col_endpoint = get_partition_id_cols_list_for_endpoint; part_iter->get_next = get_next_partition_id_list; part_iter->part_info = part_info; DBUG_ASSERT(part_info->num_list_values); } else { assert(0); get_col_endpoint = nullptr; } if (flags & NO_MIN_RANGE) part_iter->part_nums.start = part_iter->part_nums.cur = 0; else { // Copy from min_value to record nparts = store_tuple_to_record(part_info->part_field_array, store_length_array, min_value, min_value + min_len); part_iter->part_nums.start = part_iter->part_nums.cur = get_col_endpoint(part_info, true, !(flags & NEAR_MIN), nparts); } if (flags & NO_MAX_RANGE) { if (part_info->part_type == partition_type::RANGE) part_iter->part_nums.end = part_info->num_parts; else /* LIST_PARTITION */ { DBUG_ASSERT(part_info->part_type == partition_type::LIST); part_iter->part_nums.end = part_info->num_list_values; } } else { // Copy from max_value to record nparts = store_tuple_to_record(part_info->part_field_array, store_length_array, max_value, max_value + max_len); part_iter->part_nums.end = get_col_endpoint(part_info, false, !(flags & NEAR_MAX), nparts); } if (part_iter->part_nums.start == part_iter->part_nums.end) return 0; return 1; } /** Partitioning Interval Analysis: Initialize the iterator for "mapping" case @param part_info Partition info @param is_subpart true - act for subpartitioning false - act for partitioning @param store_length_array Ignored. @param min_value minimum field value, in opt_range key format. @param max_value minimum field value, in opt_range key format. @param min_len Ignored. @param max_len Ignored. @param flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE, NO_MAX_RANGE. @param part_iter Iterator structure to be initialized @details Initialize partition set iterator to walk over the interval in ordered-array-of-partitions (for RANGE partitioning) or ordered-array-of-list-constants (for LIST partitioning) space. This function is used when partitioning is done by (ascending_func(t.field)), and we can map an interval in t.field space into a sub-array of partition_info::range_int_array or partition_info::list_array (see get_partition_id_range_for_endpoint, get_list_array_idx_for_endpoint for details). The function performs this interval mapping, and sets the iterator to traverse the sub-array and return appropriate partitions. @return Status of iterator @retval 0 No matching partitions (iterator not initialized) @retval 1 Ok, iterator intialized for traversal of matching partitions. @retval -1 All partitions would match (iterator not initialized) */ static int get_part_iter_for_interval_via_mapping( partition_info *part_info, bool is_subpart MY_ATTRIBUTE((unused)), uint32 *store_length_array, /* ignored */ uchar *min_value, uchar *max_value, uint min_len, uint max_len, /* ignored */ uint flags, PARTITION_ITERATOR *part_iter) { Field *field = part_info->part_field_array[0]; uint32 max_endpoint_val = 0; get_endpoint_func get_endpoint = 0; bool can_match_multiple_values; /* is not '=' */ uint field_len = field->pack_length_in_rec(); MYSQL_TIME start_date; bool check_zero_dates = false; bool zero_in_start_date = true; DBUG_TRACE; DBUG_ASSERT(!is_subpart); (void)store_length_array; (void)min_len; (void)max_len; part_iter->ret_null_part = part_iter->ret_null_part_orig = false; if (part_info->part_type == partition_type::RANGE) { if (part_info->part_charset_field_array) get_endpoint = get_partition_id_range_for_endpoint_charset; else get_endpoint = get_partition_id_range_for_endpoint; max_endpoint_val = part_info->num_parts; part_iter->get_next = get_next_partition_id_range; } else if (part_info->part_type == partition_type::LIST) { if (part_info->part_charset_field_array) get_endpoint = get_list_array_idx_for_endpoint_charset; else get_endpoint = get_list_array_idx_for_endpoint; max_endpoint_val = part_info->num_list_values; part_iter->get_next = get_next_partition_id_list; part_iter->part_info = part_info; if (max_endpoint_val == 0) { /* We handle this special case without optimisations since it is of little practical value but causes a great number of complex checks later in the code. */ part_iter->part_nums.start = part_iter->part_nums.end = 0; part_iter->part_nums.cur = 0; part_iter->ret_null_part = part_iter->ret_null_part_orig = true; return -1; } } else MY_ASSERT_UNREACHABLE(); can_match_multiple_values = (flags || !min_value || !max_value || memcmp(min_value, max_value, field_len)); if (can_match_multiple_values && (part_info->part_type == partition_type::RANGE || part_info->has_null_value)) { /* Range scan on RANGE or LIST partitioned table */ enum_monotonicity_info monotonic; monotonic = part_info->part_expr->get_monotonicity_info(); if (monotonic == MONOTONIC_INCREASING_NOT_NULL || monotonic == MONOTONIC_STRICT_INCREASING_NOT_NULL) { /* col is NOT NULL, but F(col) can return NULL, add NULL partition */ part_iter->ret_null_part = part_iter->ret_null_part_orig = true; check_zero_dates = true; } } /* Find minimum: Do special handling if the interval has left bound in form " NULL <= X ": */ if (field->real_maybe_null() && part_info->has_null_value && !(flags & (NO_MIN_RANGE | NEAR_MIN)) && *min_value) { part_iter->ret_null_part = part_iter->ret_null_part_orig = true; part_iter->part_nums.start = part_iter->part_nums.cur = 0; if (!(flags & NO_MAX_RANGE) && *max_value) { /* The right bound is X <= NULL, i.e. it is a "X IS NULL" interval */ part_iter->part_nums.end = 0; return 1; } } else { if (flags & NO_MIN_RANGE) part_iter->part_nums.start = part_iter->part_nums.cur = 0; else { /* Store the interval edge in the record buffer, and call the function that maps the edge in table-field space to an edge in ordered-set-of-partitions (for RANGE partitioning) or index-in-ordered-array-of-list-constants (for LIST) space. */ store_key_image_to_rec(field, min_value, field_len); bool include_endp = !(flags & NEAR_MIN); part_iter->part_nums.start = get_endpoint(part_info, 1, include_endp); if (!can_match_multiple_values && part_info->part_expr->null_value) { /* col = x and F(x) = NULL -> only search NULL partition */ part_iter->part_nums.cur = part_iter->part_nums.start = 0; part_iter->part_nums.end = 0; part_iter->ret_null_part = part_iter->ret_null_part_orig = true; return 1; } part_iter->part_nums.cur = part_iter->part_nums.start; if (check_zero_dates && !part_info->part_expr->null_value) { if (!(flags & NO_MAX_RANGE) && (field->type() == MYSQL_TYPE_DATE || field->type() == MYSQL_TYPE_DATETIME)) { /* Monotonic, but return NULL for dates with zeros in month/day. */ zero_in_start_date = field->get_date(&start_date, 0); DBUG_PRINT("info", ("zero start %u %04d-%02d-%02d", zero_in_start_date, start_date.year, start_date.month, start_date.day)); } } if (part_iter->part_nums.start == max_endpoint_val) return 0; /* No partitions */ } } /* Find maximum, do the same as above but for right interval bound */ if (flags & NO_MAX_RANGE) part_iter->part_nums.end = max_endpoint_val; else { store_key_image_to_rec(field, max_value, field_len); bool include_endp = !(flags & NEAR_MAX); part_iter->part_nums.end = get_endpoint(part_info, 0, include_endp); if (check_zero_dates && !zero_in_start_date && !part_info->part_expr->null_value) { MYSQL_TIME end_date; bool zero_in_end_date = field->get_date(&end_date, 0); /* This is an optimization for TO_DAYS()/TO_SECONDS() to avoid scanning the NULL partition for ranges that cannot include a date with 0 as month/day. */ DBUG_PRINT("info", ("zero end %u %04d-%02d-%02d", zero_in_end_date, end_date.year, end_date.month, end_date.day)); DBUG_ASSERT(!memcmp(((Item_func *)part_info->part_expr)->func_name(), "to_days", 7) || !memcmp(((Item_func *)part_info->part_expr)->func_name(), "to_seconds", 10)); if (!zero_in_end_date && start_date.month == end_date.month && start_date.year == end_date.year) part_iter->ret_null_part = part_iter->ret_null_part_orig = false; } if (part_iter->part_nums.start >= part_iter->part_nums.end && !part_iter->ret_null_part) return 0; /* No partitions */ } return 1; /* Ok, iterator initialized */ } /* See get_part_iter_for_interval_via_walking for definition of what this is */ #define MAX_RANGE_TO_WALK 32 /* Partitioning Interval Analysis: Initialize iterator to walk field interval SYNOPSIS get_part_iter_for_interval_via_walking() part_info Partition info is_subpart true - act for subpartitioning false - act for partitioning min_value minimum field value, in opt_range key format. max_value minimum field value, in opt_range key format. flags Some combination of NEAR_MIN, NEAR_MAX, NO_MIN_RANGE, NO_MAX_RANGE. part_iter Iterator structure to be initialized DESCRIPTION Initialize partition set iterator to walk over interval in integer field space. That is, for "const1 <=? t.field <=? const2" interval, initialize the iterator to return a set of [sub]partitions obtained with the following procedure: get partition id for t.field = const1, return it get partition id for t.field = const1+1, return it ... t.field = const1+2, ... ... ... ... ... t.field = const2 ... IMPLEMENTATION See get_partitions_in_range_iter for general description of interval analysis. We support walking over the following intervals: "t.field IS NULL" "c1 <=? t.field <=? c2", where c1 and c2 are finite. Intervals with +inf/-inf, and [NULL, c1] interval can be processed but that is more tricky and I don't have time to do it right now. RETURN 0 - No matching partitions, iterator not initialized 1 - Some partitions would match, iterator intialized for traversing them -1 - All partitions would match, iterator not initialized */ static int get_part_iter_for_interval_via_walking( partition_info *part_info, bool is_subpart, uint32 *store_length_array, /* ignored */ uchar *min_value, uchar *max_value, uint min_len, uint max_len, /* ignored */ uint flags, PARTITION_ITERATOR *part_iter) { Field *field; uint total_parts; partition_iter_func get_next_func; DBUG_TRACE; (void)store_length_array; (void)min_len; (void)max_len; part_iter->ret_null_part = part_iter->ret_null_part_orig = false; if (is_subpart) { field = part_info->subpart_field_array[0]; total_parts = part_info->num_subparts; get_next_func = get_next_subpartition_via_walking; } else { field = part_info->part_field_array[0]; total_parts = part_info->num_parts; get_next_func = get_next_partition_via_walking; } /* Handle the "t.field IS NULL" interval, it is a special case */ if (field->real_maybe_null() && !(flags & (NO_MIN_RANGE | NO_MAX_RANGE)) && *min_value && *max_value) { /* We don't have a part_iter->get_next() function that would find which partition "t.field IS NULL" belongs to, so find partition that contains NULL right here, and return an iterator over singleton set. */ uint32 part_id; field->set_null(); if (is_subpart) { if (!part_info->get_subpartition_id(part_info, &part_id)) { init_single_partition_iterator(part_id, part_iter); return 1; /* Ok, iterator initialized */ } } else { longlong dummy; int res = part_info->is_sub_partitioned() ? part_info->get_part_partition_id(part_info, &part_id, &dummy) : part_info->get_partition_id(part_info, &part_id, &dummy); if (!res) { init_single_partition_iterator(part_id, part_iter); return 1; /* Ok, iterator initialized */ } } return 0; /* No partitions match */ } if ((field->real_maybe_null() && ((!(flags & NO_MIN_RANGE) && *min_value) || // NULL pack_length_in_rec(); store_key_image_to_rec(field, min_value, len); a = field->val_int(); store_key_image_to_rec(field, max_value, len); b = field->val_int(); /* Handle a special case where the distance between interval bounds is exactly 4G-1. This interval is too big for range walking, and if it is an (x,y]-type interval then the following "b +=..." code will convert it to an empty interval by "wrapping around" a + 4G-1 + 1 = a. */ if (b - a == ~0ULL) return -1; if (flags & NEAR_MIN) ++a; if (!(flags & NEAR_MAX)) ++b; ulonglong n_values = b - a; /* Will it pay off to enumerate all values in the [a..b] range and evaluate the partitioning function for every value? It depends on 1. whether we'll be able to infer that some partitions are not used 2. if time savings from not scanning these partitions will be greater than time spent in enumeration. We will assume that the cost of accessing one extra partition is greater than the cost of evaluating the partitioning function O(#partitions). This means we should jump at any chance to eliminate a partition, which gives us this logic: Do the enumeration if - the number of values to enumerate is comparable to the number of partitions, or - there are not many values to enumerate. */ if ((n_values > 2 * total_parts) && n_values > MAX_RANGE_TO_WALK) return -1; part_iter->field_vals.start = part_iter->field_vals.cur = a; part_iter->field_vals.end = b; part_iter->part_info = part_info; part_iter->get_next = get_next_func; return 1; } /* PARTITION_ITERATOR::get_next implementation: enumerate partitions in range SYNOPSIS get_next_partition_id_range() part_iter Partition set iterator structure DESCRIPTION This is implementation of PARTITION_ITERATOR::get_next() that returns [sub]partition ids in [min_partition_id, max_partition_id] range. The function conforms to partition_iter_func type. RETURN partition id NOT_A_PARTITION_ID if there are no more partitions */ uint32 get_next_partition_id_range(PARTITION_ITERATOR *part_iter) { if (part_iter->part_nums.cur >= part_iter->part_nums.end) { if (part_iter->ret_null_part) { part_iter->ret_null_part = false; return 0; /* NULL always in first range partition */ } part_iter->part_nums.cur = part_iter->part_nums.start; part_iter->ret_null_part = part_iter->ret_null_part_orig; return NOT_A_PARTITION_ID; } else return part_iter->part_nums.cur++; } /* PARTITION_ITERATOR::get_next implementation for LIST partitioning SYNOPSIS get_next_partition_id_list() part_iter Partition set iterator structure DESCRIPTION This implementation of PARTITION_ITERATOR::get_next() is special for LIST partitioning: it enumerates partition ids in part_info->list_array[i] (list_col_array[i*cols] for COLUMNS LIST partitioning) where i runs over [min_idx, max_idx] interval. The function conforms to partition_iter_func type. RETURN partition id NOT_A_PARTITION_ID if there are no more partitions */ static uint32 get_next_partition_id_list(PARTITION_ITERATOR *part_iter) { if (part_iter->part_nums.cur >= part_iter->part_nums.end) { if (part_iter->ret_null_part) { part_iter->ret_null_part = false; return part_iter->part_info->has_null_part_id; } part_iter->part_nums.cur = part_iter->part_nums.start; part_iter->ret_null_part = part_iter->ret_null_part_orig; return NOT_A_PARTITION_ID; } else { partition_info *part_info = part_iter->part_info; uint32 num_part = part_iter->part_nums.cur++; if (part_info->column_list) { uint num_columns = part_info->part_field_list.elements; return part_info->list_col_array[num_part * num_columns].partition_id; } return part_info->list_array[num_part].partition_id; } } /* PARTITION_ITERATOR::get_next implementation: walk over field-space interval SYNOPSIS get_next_partition_via_walking() part_iter Partitioning iterator DESCRIPTION This implementation of PARTITION_ITERATOR::get_next() returns ids of partitions that contain records with partitioning field value within [start_val, end_val] interval. The function conforms to partition_iter_func type. RETURN partition id NOT_A_PARTITION_ID if there are no more partitioning. */ static uint32 get_next_partition_via_walking(PARTITION_ITERATOR *part_iter) { uint32 part_id; Field *field = part_iter->part_info->part_field_array[0]; while (part_iter->field_vals.cur != part_iter->field_vals.end) { longlong dummy; field->store(part_iter->field_vals.cur++, field->flags & UNSIGNED_FLAG); if ((part_iter->part_info->is_sub_partitioned() && !part_iter->part_info->get_part_partition_id(part_iter->part_info, &part_id, &dummy)) || !part_iter->part_info->get_partition_id(part_iter->part_info, &part_id, &dummy)) return part_id; } part_iter->field_vals.cur = part_iter->field_vals.start; return NOT_A_PARTITION_ID; } /* Same as get_next_partition_via_walking, but for subpartitions */ static uint32 get_next_subpartition_via_walking(PARTITION_ITERATOR *part_iter) { Field *field = part_iter->part_info->subpart_field_array[0]; uint32 res; if (part_iter->field_vals.cur == part_iter->field_vals.end) { part_iter->field_vals.cur = part_iter->field_vals.start; return NOT_A_PARTITION_ID; } field->store(part_iter->field_vals.cur++, field->flags & UNSIGNED_FLAG); if (part_iter->part_info->get_subpartition_id(part_iter->part_info, &res)) return NOT_A_PARTITION_ID; return res; } /* Create partition names SYNOPSIS create_partition_name() out:out Created partition name string in1 First part in2 Second part RETURN VALUE NONE DESCRIPTION This method is used to calculate the partition name, service routine to the del_ren_cre_table method. */ void create_partition_name(char *out, const char *in1, const char *in2, bool translate) { char transl_part_name[FN_REFLEN]; const char *transl_part; if (translate) { tablename_to_filename(in2, transl_part_name, FN_REFLEN); transl_part = transl_part_name; } else transl_part = in2; strxmov(out, in1, "#P#", transl_part, NullS); } /* Create subpartition name SYNOPSIS create_subpartition_name() out:out Created partition name string in1 First part in2 Second part in3 Third part RETURN VALUE NONE DESCRIPTION This method is used to calculate the subpartition name, service routine to the del_ren_cre_table method. */ void create_subpartition_name(char *out, const char *in1, const char *in2, const char *in3) { char transl_part_name[FN_REFLEN], transl_subpart_name[FN_REFLEN]; tablename_to_filename(in2, transl_part_name, FN_REFLEN); tablename_to_filename(in3, transl_subpart_name, FN_REFLEN); strxmov(out, in1, "#P#", transl_part_name, "#SP#", transl_subpart_name, NullS); } uint get_partition_field_store_length(Field *field) { uint store_length; store_length = field->key_length(); if (field->real_maybe_null()) store_length += HA_KEY_NULL_LENGTH; if (field->real_type() == MYSQL_TYPE_VARCHAR) store_length += HA_KEY_BLOB_LENGTH; return store_length; }