#ifndef ITEM_SUM_INCLUDED #define ITEM_SUM_INCLUDED /* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* classes for sum functions */ #include #include #include #include #include #include // std::forward #include "field_types.h" // enum_field_types #include "m_ctype.h" #include "m_string.h" #include "my_compiler.h" #include "my_dbug.h" #include "my_inttypes.h" #include "my_macros.h" #include "my_sys.h" #include "my_table_map.h" #include "my_time.h" #include "my_tree.h" // TREE #include "mysql/udf_registration_types.h" #include "mysql_time.h" #include "mysqld_error.h" #include "sql/enum_query_type.h" #include "sql/item.h" // Item_result_field #include "sql/item_func.h" // Item_int_func #include "sql/json_dom.h" // Json_wrapper #include "sql/mem_root_array.h" #include "sql/my_decimal.h" #include "sql/parse_tree_node_base.h" #include "sql/parse_tree_nodes.h" // PT_window #include "sql/sql_base.h" #include "sql/sql_const.h" #include "sql/sql_lex.h" #include "sql/sql_list.h" #include "sql/sql_udf.h" // udf_handler #include "sql/window.h" #include "sql/window_lex.h" #include "sql_string.h" #include "template_utils.h" class Field; class Item_sum; class PT_item_list; class THD; class Temp_table_param; struct ORDER; struct TABLE; /** The abstract base class for the Aggregator_* classes. It implements the data collection functions (setup/add/clear) as either pass-through to the real functionality or as collectors into an Unique (for distinct) structure. Note that update_field/reset_field are not in that class, because they're simply not called when GROUP BY/DISTINCT can be handled with help of index on grouped fields (allow_group_via_temp_table is false); */ class Aggregator { friend class Item_sum; friend class Item_sum_sum; friend class Item_sum_count; friend class Item_sum_avg; /* All members are protected as this class is not usable outside of an Item_sum descendant. */ protected: /* the aggregate function class to act on */ Item_sum *item_sum; public: Aggregator(Item_sum *arg) : item_sum(arg) {} virtual ~Aggregator() {} enum Aggregator_type { SIMPLE_AGGREGATOR, DISTINCT_AGGREGATOR }; virtual Aggregator_type Aggrtype() = 0; /** Called before adding the first row. Allocates and sets up the internal aggregation structures used, e.g. the Unique instance used to calculate distinct. */ virtual bool setup(THD *) = 0; /** Called when we need to wipe out all the data from the aggregator : all the values acumulated and all the state. Cleans up the internal structures and resets them to their initial state. */ virtual void clear() = 0; /** Called when there's a new value to be aggregated. Updates the internal state of the aggregator to reflect the new value. */ virtual bool add() = 0; /** Called when there are no more data and the final value is to be retrieved. Finalises the state of the aggregator, so the final result can be retrieved. */ virtual void endup() = 0; /** Decimal value of being-aggregated argument */ virtual my_decimal *arg_val_decimal(my_decimal *value) = 0; /** Floating point value of being-aggregated argument */ virtual double arg_val_real() = 0; /** NULLness of being-aggregated argument. @param use_null_value Optimization: to determine if the argument is NULL we must, in the general case, call is_null() on it, which itself might call val_*() on it, which might be costly. If you just have called arg_val*(), you can pass use_null_value=true; this way, arg_is_null() might avoid is_null() and instead do a cheap read of the Item's null_value (updated by arg_val*()). */ virtual bool arg_is_null(bool use_null_value) = 0; }; /** Class Item_sum is the base class used for special expressions that SQL calls 'set functions'. These expressions are formed with the help of aggregate functions such as SUM, MAX, GROUP_CONCAT etc. Class Item_sum is also the base class for Window functions; the text below first documents set functions, then window functions. GENERAL NOTES A set function cannot be used in all positions where expressions are accepted. There are some quite explicable restrictions for the use of set functions. In the query: SELECT AVG(b) FROM t1 WHERE SUM(b) > 20 GROUP by a the set function AVG(b) is valid, while the usage of SUM(b) is invalid. A WHERE condition must contain expressions that can be evaluated for each row of the table. Yet the expression SUM(b) can be evaluated only for each group of rows with the same value of column a. In the query: SELECT AVG(b) FROM t1 WHERE c > 30 GROUP BY a HAVING SUM(b) > 20 both set function expressions AVG(b) and SUM(b) are valid. We can say that in a query without nested selects an occurrence of a set function in an expression of the SELECT list or/and in the HAVING clause is valid, while in the WHERE clause, FROM clause or GROUP BY clause it is invalid. The general rule to detect whether a set function is valid in a query with nested subqueries is much more complicated. Consider the following query: SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL (SELECT t2.c FROM t2 WHERE SUM(t1.b) < t2.c). The set function SUM(b) is used here in the WHERE clause of the subquery. Nevertheless it is valid since it is contained in the HAVING clause of the outer query. The expression SUM(t1.b) is evaluated for each group defined in the main query, not for groups of the subquery. The problem of finding the query where to aggregate a particular set function is not so simple as it seems to be. In the query: SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL(SELECT t2.c FROM t2 GROUP BY t2.c HAVING SUM(t1.a) < t2.c) the set function can be evaluated in both the outer and the inner query block. If we evaluate SUM(t1.a) for the outer query then we get the value of t1.a multiplied by the cardinality of a group in table t1. In this case, SUM(t1.a) is used as a constant value in each correlated subquery. But SUM(t1.a) can also be evaluated for the inner query. In this case t1.a will be a constant value for each correlated subquery and summation is performed for each group of table t2. (Here it makes sense to remind that the query SELECT c FROM t GROUP BY a HAVING SUM(1) < a is quite valid in our SQL). So depending on what query block we assign the set function to we can get different results. The general rule to detect the query block Q where a set function will be aggregated (evaluated) can be formulated as follows. Reference: SQL2011 @ syntax rules 6 and 7. Consider a set function S(E) where E is an expression which contains column references C1, ..., Cn. Resolve all column references Ci against the query block Qi containing the set function S(E). Let Q be the innermost query block of all query blocks Qi. (It should be noted here that S(E) in no way can be aggregated in the query block containing the subquery Q, otherwise S(E) would refer to at least one unbound column reference). If S(E) is used in a construct of Q where set functions are allowed then we aggregate S(E) in Q. Otherwise: - if ANSI SQL mode is enabled (MODE_ANSI), then report an error. - otherwise, look for the innermost query block containing S(E) of those where usage of S(E) is allowed. The place of aggregation depends on which clause the subquery is contained within; It will be different when contained in a WHERE clause versus in the select list or in HAVING clause. Let's demonstrate how this rule is applied to the following queries. 1. SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c HAVING SUM(t1.a+t2.b) < t3.c)) For this query the set function SUM(t1.a+t2.b) contains t1.a and t2.b with t1.a defined in the outermost query, and t2.b defined for its subquery. The set function is contained in the HAVING clause of the subquery and can be evaluated in this subquery. 2. SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL(SELECT t2.b FROM t2 WHERE t2.b > ALL (SELECT t3.c FROM t3 GROUP BY t3.c HAVING SUM(t1.a+t2.b) < t3.c)) The set function SUM(t1.a+t2.b) is contained in the WHERE clause of the second query block - the outermost query block where t1.a and t2.b are defined. If we evaluate the function in this subquery we violate the context rules. So we evaluate the function in the third query block (over table t3) where it is used under the HAVING clause; if in ANSI SQL mode, an error is thrown. 3. SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL(SELECT t2.b FROM t2 WHERE t2.b > ALL (SELECT t3.c FROM t3 WHERE SUM(t1.a+t2.b) < t3.c)) In this query, evaluation of SUM(t1.a+t2.b) is not valid neither in the second nor in the third query block. Set functions can generally not be nested. In the query SELECT t1.a from t1 GROUP BY t1.a HAVING AVG(SUM(t1.b)) > 20 the expression SUM(b) is not valid, even though it is contained inside a HAVING clause. However, it is acceptable in the query: SELECT t.1 FROM t1 GROUP BY t1.a HAVING SUM(t1.b) > 20. An argument of a set function does not have to be a simple column reference as seen in examples above. This can be a more complex expression SELECT t1.a FROM t1 GROUP BY t1.a HAVING SUM(t1.b+1) > 20. The expression SUM(t1.b+1) has clear semantics in this context: we sum up the values of t1.b+1 where t1.b varies for all values within a group of rows that contain the same t1.a value. A set function for an outer query yields a constant value within a subquery. So the semantics of the query SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c HAVING AVG(t2.c+SUM(t1.b)) > 20) is still clear. For a group of rows with the same value for t1.a, calculate the value of SUM(t1.b) as 's'. This value is substituted in the subquery: SELECT t2.c FROM t2 GROUP BY t2.c HAVING AVG(t2.c+s) By the same reason the following query with a subquery SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a IN (SELECT t2.c FROM t2 GROUP BY t2.c HAVING AVG(SUM(t1.b)) > 20) is also valid. IMPLEMENTATION NOTES The member base_select contains a reference to the query block that the set function is contained within. The member aggr_select contains a reference to the query block where the set function is aggregated. The field max_aggr_level holds the maximum of the nest levels of the unbound column references contained in the set function. A column reference is unbound within a set function if it is not bound by any subquery used as a subexpression in this function. A column reference is bound by a subquery if it is a reference to the column by which the aggregation of some set function that is used in the subquery is calculated. For the set function used in the query SELECT t1.a FROM t1 GROUP BY t1.a HAVING t1.a > ALL(SELECT t2.b FROM t2 GROUP BY t2.b HAVING t2.b > ALL(SELECT t3.c FROM t3 GROUP BY t3.c HAVING SUM(t1.a+t2.b) < t3.c)) the value of max_aggr_level is equal to 1 since t1.a is bound in the main query, and t2.b is bound by the first subquery whose nest level is 1. Obviously a set function cannot be aggregated in a subquery whose nest level is less than max_aggr_level. (Yet it can be aggregated in the subqueries whose nest level is greater than max_aggr_level.) In the query SELECT t1.a FROM t1 HAVING AVG(t1.a+(SELECT MIN(t2.c) FROM t2)) the value of the max_aggr_level for the AVG set function is 0 since the reference t2.c is bound in the subquery. If a set function contains no column references (like COUNT(*)), max_aggr_level is -1. The field 'max_sum_func_level' is to contain the maximum of the nest levels of the set functions that are used as subexpressions of the arguments of the given set function, but not aggregated in any subquery within this set function. A nested set function s1 can be used within set function s0 only if s1.max_sum_func_level < s0.max_sum_func_level. Set function s1 is considered as nested for set function s0 if s1 is not calculated in any subquery within s0. A set function that is used as a subexpression in an argument of another set function refers to the latter via the field 'in_sum_func'. The condition imposed on the usage of set functions are checked when we traverse query subexpressions with the help of the recursive method fix_fields. When we apply this method to an object of the class Item_sum, first, on the descent, we call the method init_sum_func_check that initialize members used at checking. Then, on the ascent, we call the method check_sum_func that validates the set function usage and reports an error if it is invalid. The method check_sum_func serves to link the items for the set functions that are aggregated in the containing query blocks. Circular chains of such functions are attached to the corresponding SELECT_LEX structures through the field inner_sum_func_list. Exploiting the fact that the members mentioned above are used in one recursive function we could have allocated them on the thread stack. Yet we don't do it now. It is assumed that the nesting level of subqueries does not exceed 63 (valid nesting levels are stored in a 64-bit bitmap called nesting_map). The assumption is enforced in LEX::new_query(). WINDOW FUNCTIONS Most set functions (e.g. SUM, COUNT, AVG) can also be used as window functions. In that case, notable differences compared to set functions are: - not using any Aggregator - not supporting DISTINCT - val_*() does more than returning the function's current value: it first accumulates the function's argument into the function's state. Execution (e.g. end_write_wf()) manipulates temporary tables which contain input for WFs; each input row is passed to copy_funcs() which calls the WF's val_*() to accumulate it. */ class Item_sum : public Item_result_field { typedef Item_result_field super; friend class Aggregator_distinct; friend class Aggregator_simple; protected: /** Aggregator class instance. Not set initially. Allocated only after it is determined if the incoming data are already distinct. */ Aggregator *aggr; /** If sum is a window function, this field contains the window. */ PT_window *m_window; /** True if we have already resolved this window functions window reference. Used in execution of prepared statement to avoid re-resolve. */ bool m_window_resolved; private: /** Used in making ROLLUP. Set for the ROLLUP copies of the original Item_sum and passed to create_tmp_field() to cause it to work over the temp table buffer that is referenced by Item_result_field::result_field. */ bool force_copy_fields; /** Indicates how the aggregate function was specified by the parser : true if it was written as AGGREGATE(DISTINCT), false if it was AGGREGATE() */ bool with_distinct; public: bool has_force_copy_fields() const { return force_copy_fields; } bool has_with_distinct() const { return with_distinct; } enum Sumfunctype { COUNT_FUNC, // COUNT COUNT_DISTINCT_FUNC, // COUNT (DISTINCT) SUM_FUNC, // SUM SUM_DISTINCT_FUNC, // SUM (DISTINCT) AVG_FUNC, // AVG AVG_DISTINCT_FUNC, // AVG (DISTINCT) MIN_FUNC, // MIN MAX_FUNC, // MAX STD_FUNC, // STD/STDDEV/STDDEV_POP VARIANCE_FUNC, // VARIANCE/VAR_POP and VAR_SAMP SUM_BIT_FUNC, // BIT_AND, BIT_OR and BIT_XOR UDF_SUM_FUNC, // user defined functions GROUP_CONCAT_FUNC, // GROUP_CONCAT JSON_AGG_FUNC, // JSON_ARRAYAGG and JSON_OBJECTAGG ROW_NUMBER_FUNC, // Window functions RANK_FUNC, DENSE_RANK_FUNC, CUME_DIST_FUNC, PERCENT_RANK_FUNC, NTILE_FUNC, LEAD_LAG_FUNC, FIRST_LAST_VALUE_FUNC, NTH_VALUE_FUNC }; /** @note most member variables below serve only for grouped aggregate functions. */ /** For a group aggregate which is aggregated into an outer query block; none, or just the first or both cells may be non-zero. They are filled with references to the group aggregate (for example if it is the argument of a function; it is then a pointer to that function's args[i] pointer). "ref_by" stands for "referenced by". */ Item **ref_by[2]; Item_sum *next_sum; ///< next in the circular chain of registered objects Item_sum *in_sum_func; ///< the containing set function if any SELECT_LEX *base_select; ///< query block where function is placed /** For a group aggregate, query block where function is aggregated. For a window function, nullptr, as such function is always aggregated in base_select, as it mustn't contain any outer reference. */ SELECT_LEX *aggr_select; int8 max_aggr_level; ///< max level of unbound column references int8 max_sum_func_level; ///< max level of aggregation for contained functions bool allow_group_via_temp_table; ///< If incremental update of fields is ///< supported. /** WFs are forbidden when resolving Item_sum; this member is used to restore WF allowance status afterwards. */ nesting_map save_deny_window_func; protected: uint arg_count; Item **args, *tmp_args[2]; table_map used_tables_cache; bool forced_const; static ulonglong ram_limitation(THD *thd); public: void mark_as_sum_func(); void mark_as_sum_func(SELECT_LEX *); Item_sum(const POS &pos, PT_window *w) : super(pos), m_window(w), m_window_resolved(false), next_sum(nullptr), allow_group_via_temp_table(true), arg_count(0), args(nullptr), used_tables_cache(0), forced_const(false) { init_aggregator(); } Item_sum(Item *a) : m_window(NULL), m_window_resolved(false), next_sum(nullptr), allow_group_via_temp_table(true), arg_count(1), args(tmp_args), used_tables_cache(0), forced_const(false) { args[0] = a; mark_as_sum_func(); init_aggregator(); } Item_sum(const POS &pos, Item *a, PT_window *w) : super(pos), m_window(w), m_window_resolved(false), next_sum(nullptr), allow_group_via_temp_table(true), arg_count(1), args(tmp_args), used_tables_cache(0), forced_const(false) { args[0] = a; init_aggregator(); } Item_sum(const POS &pos, Item *a, Item *b, PT_window *w) : super(pos), m_window(w), m_window_resolved(false), next_sum(nullptr), allow_group_via_temp_table(true), arg_count(2), args(tmp_args), used_tables_cache(0), forced_const(false) { args[0] = a; args[1] = b; init_aggregator(); } Item_sum(const POS &pos, PT_item_list *opt_list, PT_window *w); /// Copy constructor, need to perform subqueries with temporary tables Item_sum(THD *thd, const Item_sum *item); bool itemize(Parse_context *pc, Item **res) override; Type type() const override { return SUM_FUNC_ITEM; } virtual enum Sumfunctype sum_func() const = 0; virtual void fix_after_pullout(SELECT_LEX *parent_select, SELECT_LEX *removed_select MY_ATTRIBUTE((unused))) override { // Just make sure we are not aggregating into a context that is merged up. DBUG_ASSERT(aggr_select != removed_select); base_select = parent_select; } /** Resets the aggregate value to its default and aggregates the current value of its attribute(s). */ inline bool reset_and_add() { aggregator_clear(); return aggregator_add(); } /* Called when new group is started and results are being saved in a temporary table. Similarly to reset_and_add() it resets the value to its default and aggregates the value of its attribute(s), but must also store it in result_field. This set of methods (result_item(), reset_field, update_field()) of Item_sum is used only if allow_group_via_temp_table is true. Otherwise copy_or_same() is used to obtain a copy of this item. */ virtual void reset_field() = 0; /* Called for each new value in the group, when temporary table is in use. Similar to add(), but uses temporary table field to obtain current value, Updated value is then saved in the field. */ virtual void update_field() = 0; virtual bool keep_field_type() const { return 0; } bool resolve_type(THD *) override; virtual Item *result_item(Field *field) { return new Item_field(field); } table_map used_tables() const override { return used_tables_cache; } void update_used_tables() override; bool is_null() override { return null_value; } void make_const() { used_tables_cache = 0; forced_const = true; } void print(const THD *thd, String *str, enum_query_type query_type) const override; void fix_num_length_and_dec(); bool eq(const Item *item, bool binary_cmp) const override; /** Mark an aggregate as having no rows. This function is called by the execution engine to assign 'NO ROWS FOUND' value to an aggregate item, when the underlying result set has no rows. Such value, in a general case, may be different from the default value of the item after 'clear()': e.g. a numeric item may be initialized to 0 by clear() and to NULL by no_rows_in_result(). */ void no_rows_in_result() override { set_aggregator(with_distinct ? Aggregator::DISTINCT_AGGREGATOR : Aggregator::SIMPLE_AGGREGATOR); aggregator_clear(); } virtual void make_unique() { force_copy_fields = true; } virtual Field *create_tmp_field(bool group, TABLE *table); bool walk(Item_processor processor, enum_walk walk, uchar *arg) override; bool clean_up_after_removal(uchar *arg) override; bool aggregate_check_group(uchar *arg) override; bool aggregate_check_distinct(uchar *arg) override; bool has_aggregate_ref_in_group_by(uchar *arg) override; bool init_sum_func_check(THD *thd); bool check_sum_func(THD *thd, Item **ref); Item *get_arg(uint i) { return args[i]; } Item *set_arg(uint i, THD *thd, Item *new_val); uint get_arg_count() const { return arg_count; } /// @todo delete this when we no longer support temporary transformations Item **get_arg_ptr(uint i) { return &args[i]; } bool fix_fields(THD *thd, Item **ref) override; /* Initialization of distinct related members */ void init_aggregator() { aggr = NULL; with_distinct = false; force_copy_fields = false; } /** Called to initialize the aggregator. */ inline bool aggregator_setup(THD *thd) { return aggr->setup(thd); } /** Called to cleanup the aggregator. */ inline void aggregator_clear() { aggr->clear(); } /** Called to add value to the aggregator. */ inline bool aggregator_add() { return aggr->add(); } /* stores the declared DISTINCT flag (from the parser) */ void set_distinct(bool distinct) { with_distinct = distinct; allow_group_via_temp_table = !with_distinct; } /* Set the type of aggregation : DISTINCT or not. May be called multiple times. */ int set_aggregator(Aggregator::Aggregator_type aggregator); virtual void clear() = 0; virtual bool add() = 0; virtual bool setup(THD *) { return false; } /** Only relevant for aggregates qua window functions. Checks semantics after windows have been set up and checked. Window functions have specific requirements on the window specifications. @param thd Current thread @param select The current select @param [out] reqs Holds collected requirements from this wf @returns true if error */ virtual bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs); void split_sum_func(THD *thd, Ref_item_array ref_item_array, List &fields) override; void cleanup() override; const Window *window() const { return down_cast(m_window); } bool reset_wf_state(uchar *arg) override; /** All aggregates are framing, i.e. they work on the window's frame. If none is defined, the frame is by default the entire partition, unless ORDER BY is defined, in which case it is the set of rows from the start of the partition to and including the peer set of the current row. Some window functions are not framing, i.e. they always work on the entire partition. For such window functions, the method is overridden to return false. */ virtual bool framing() const { return true; } /** Only for framing window functions. True if this function only needs to read one row per frame. */ virtual bool uses_only_one_row() const { return false; } /** Return true if we need to make two passes over the rows in the partition - either because we need the cardinality of it (and we need to read all rows to detect the next partition), or we need to have all partition rows available to evaluate the window function for some other reason, e.g. we may need the last row in the partition in the frame buffer to be able to evaluate LEAD. */ virtual bool needs_card() const { return false; } /** Common initial actions for window functions. For non-buffered processing ("on-the-fly"), check partition change and possible reset partition state. In this case return false. For buffered processing, if windowing state m_do_copy_null is true, set null_value to true and return true. @return true if case two above holds, else false */ bool wf_common_init(); protected: /* Raise an error (ER_NOT_SUPPORTED_YET) with the detail that this function is not yet supported as a window function. */ void unsupported_as_wf() { char buff[STRING_BUFFER_USUAL_SIZE]; snprintf(buff, sizeof(buff), "%s as window function", func_name()); my_error(ER_NOT_SUPPORTED_YET, MYF(0), buff); } }; class Unique; /** The distinct aggregator. Implements AGGFN (DISTINCT ..) Collects all the data into an Unique (similarly to what Item_sum_distinct does currently) and then (if applicable) iterates over the list of unique values and pumps them back into its object */ class Aggregator_distinct : public Aggregator { friend class Item_sum_sum; /* flag to prevent consecutive runs of endup(). Normally in endup there are expensive calculations (like walking the distinct tree for example) which we must do only once if there are no data changes. We can re-use the data for the second and subsequent val_xxx() calls. endup_done set to true also means that the calculated values for the aggregate functions are correct and don't need recalculation. */ bool endup_done; /* Used depending on the type of the aggregate function and the presence of blob columns in it: - For COUNT(DISTINCT) and no blob fields this points to a real temporary table. It's used as a hash table. - For AVG/SUM(DISTINCT) or COUNT(DISTINCT) with blob fields only the in-memory data structure of a temporary table is constructed. It's used by the Field classes to transform data into row format. */ TABLE *table; /* An array of field lengths on row allocated and used only for COUNT(DISTINCT) with multiple columns and no blobs. Used in Aggregator_distinct::composite_key_cmp (called from Unique to compare nodes */ uint32 *field_lengths; /* Used in conjunction with 'table' to support the access to Field classes for COUNT(DISTINCT). Needed by copy_fields()/copy_funcs(). */ Temp_table_param *tmp_table_param; /* If there are no blobs in the COUNT(DISTINCT) arguments, we can use a tree, which is faster than heap table. In that case, we still use the table to help get things set up, but we insert nothing in it. For AVG/SUM(DISTINCT) we always use this tree (as it takes a single argument) to get the distinct rows. */ Unique *tree; /* The length of the temp table row. Must be a member of the class as it gets passed down to simple_raw_key_cmp () as a compare function argument to Unique. simple_raw_key_cmp () is used as a fast comparison function when the entire row can be binary compared. */ uint tree_key_length; enum Const_distinct { NOT_CONST = 0, /** Set to true if the result is known to be always NULL. If set deactivates creation and usage of the temporary table (in the 'table' member) and the Unique instance (in the 'tree' member) as well as the calculation of the final value on the first call to @c Item_sum::val_xxx(), @c Item_avg::val_xxx(), @c Item_count::val_xxx(). */ CONST_NULL, /** Set to true if count distinct is on only const items. Distinct on a const value will always be the constant itself. And count distinct of the same would always be 1. Similar to CONST_NULL, it avoids creation of temporary table and the Unique instance. */ CONST_NOT_NULL } const_distinct; /** When feeding back the data in endup() from Unique/temp table back to Item_sum::add() methods we must read the data from Unique (and not recalculate the functions that are given as arguments to the aggregate function. This flag is to tell the arg_*() methods to take the data from the Unique instead of calling the relevant val_..() method. */ bool use_distinct_values; public: Aggregator_distinct(Item_sum *sum) : Aggregator(sum), table(NULL), tmp_table_param(NULL), tree(NULL), const_distinct(NOT_CONST), use_distinct_values(false) {} ~Aggregator_distinct() override; Aggregator_type Aggrtype() override { return DISTINCT_AGGREGATOR; } bool setup(THD *) override; void clear() override; bool add() override; void endup() override; my_decimal *arg_val_decimal(my_decimal *value) override; double arg_val_real() override; bool arg_is_null(bool use_null_value) override; bool unique_walk_function(void *element); static int composite_key_cmp(const void *arg, const void *a, const void *b); }; /** The pass-through aggregator. Implements AGGFN (DISTINCT ..) by knowing it gets distinct data on input. So it just pumps them back to the Item_sum descendant class. */ class Aggregator_simple : public Aggregator { public: Aggregator_simple(Item_sum *sum) : Aggregator(sum) {} Aggregator_type Aggrtype() override { return Aggregator::SIMPLE_AGGREGATOR; } bool setup(THD *thd) override { return item_sum->setup(thd); } void clear() override { item_sum->clear(); } bool add() override { return item_sum->add(); } void endup() override {} my_decimal *arg_val_decimal(my_decimal *value) override; double arg_val_real() override; bool arg_is_null(bool use_null_value) override; }; class Item_sum_num : public Item_sum { typedef Item_sum super; protected: /* val_xxx() functions may be called several times during the execution of a query. Derived classes that require extensive calculation in val_xxx() maintain cache of aggregate value. This variable governs the validity of that cache. */ bool is_evaluated; public: Item_sum_num(const POS &pos, Item *item_par, PT_window *window) : Item_sum(pos, item_par, window), is_evaluated(false) {} Item_sum_num(const POS &pos, PT_item_list *list, PT_window *w) : Item_sum(pos, list, w), is_evaluated(false) {} Item_sum_num(THD *thd, Item_sum_num *item) : Item_sum(thd, item), is_evaluated(item->is_evaluated) {} bool fix_fields(THD *, Item **) override; longlong val_int() override { DBUG_ASSERT(fixed == 1); return llrint_with_overflow_check(val_real()); /* Real as default */ } String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_numeric(ltime, fuzzydate); /* Decimal or real */ } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_numeric(ltime); /* Decimal or real */ } void reset_field() override; }; class Item_sum_int : public Item_sum_num { public: Item_sum_int(const POS &pos, Item *item_par, PT_window *w) : Item_sum_num(pos, item_par, w) { set_data_type_longlong(); } Item_sum_int(const POS &pos, PT_item_list *list, PT_window *w) : Item_sum_num(pos, list, w) { set_data_type_longlong(); } Item_sum_int(THD *thd, Item_sum_int *item) : Item_sum_num(thd, item) { set_data_type_longlong(); } bool resolve_type(THD *) override { maybe_null = false; for (uint i = 0; i < arg_count; i++) { maybe_null |= args[i]->maybe_null; } null_value = false; return false; } double val_real() override { DBUG_ASSERT(fixed); return static_cast(val_int()); } String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_int(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_int(ltime); } enum Item_result result_type() const override { return INT_RESULT; } }; class Item_sum_sum : public Item_sum_num { protected: Item_result hybrid_type; double sum; my_decimal dec_buffs[2]; uint curr_dec_buff; bool resolve_type(THD *thd) override; /** Execution state: this is for counting rows entering and leaving the window frame, see #m_frame_null_count. */ ulonglong m_count; /** Execution state: this is for counting NULLs of rows entering and leaving the window frame, when we use optimized inverse-based computations. By comparison with m_count we can know how many non-NULLs are in the frame. */ ulonglong m_frame_null_count; public: Item_sum_sum(const POS &pos, Item *item_par, bool distinct, PT_window *window) : Item_sum_num(pos, item_par, window), hybrid_type(INVALID_RESULT), m_count(0), m_frame_null_count(0) { set_distinct(distinct); } Item_sum_sum(THD *thd, Item_sum_sum *item); enum Sumfunctype sum_func() const override { return has_with_distinct() ? SUM_DISTINCT_FUNC : SUM_FUNC; } void clear() override; bool add() override; double val_real() override; longlong val_int() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *) override; enum Item_result result_type() const override { return hybrid_type; } bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; void reset_field() override; void update_field() override; void no_rows_in_result() override {} const char *func_name() const override { return "sum"; } Item *copy_or_same(THD *thd) override; }; class Item_sum_count : public Item_sum_int { longlong count; friend class Aggregator_distinct; void clear() override; bool add() override; void cleanup() override; public: Item_sum_count(const POS &pos, Item *item_par, PT_window *w) : Item_sum_int(pos, item_par, w), count(0) {} /** Constructs an instance for COUNT(DISTINCT) @param pos Position of token in the parser. @param list A list of the arguments to the aggregate function @param w A window, if COUNT is used as a windowing function This constructor is called by the parser only for COUNT (DISTINCT). */ Item_sum_count(const POS &pos, PT_item_list *list, PT_window *w) : Item_sum_int(pos, list, w), count(0) { set_distinct(true); } Item_sum_count(THD *thd, Item_sum_count *item) : Item_sum_int(thd, item), count(item->count) {} enum Sumfunctype sum_func() const override { return has_with_distinct() ? COUNT_DISTINCT_FUNC : COUNT_FUNC; } bool resolve_type(THD *) override { maybe_null = false; null_value = false; return false; } void no_rows_in_result() override { count = 0; } void make_const(longlong count_arg) { count = count_arg; Item_sum::make_const(); } longlong val_int() override; void reset_field() override; void update_field() override; const char *func_name() const override { return "count"; } Item *copy_or_same(THD *thd) override; }; /* Item to get the value of a stored sum function */ class Item_sum_avg; class Item_sum_bit; /** This is used in connection which a parent Item_sum: - which can produce different result types (is "hybrid") - which stores function's value into a temporary table's column (one row per group). - which stores in the column some internal piece of information which should not be returned to the user, so special implementations are needed. */ class Item_sum_hybrid_field : public Item_result_field { protected: /// The tmp table's column containing the value of the set function. Field *field; /// Stores the Item's result type. Item_result hybrid_type; public: enum Item_result result_type() const override { return hybrid_type; } bool mark_field_in_map(uchar *arg) override { /* Filesort (find_all_keys) over a temporary table collects the columns it needs. */ return Item::mark_field_in_map(pointer_cast(arg), field); } bool check_function_as_value_generator(uchar *args) override { Check_function_as_value_generator_parameters *func_arg = pointer_cast(args); func_arg->banned_function_name = func_name(); return true; } }; /** Common abstract class for: Item_avg_field Item_variance_field */ class Item_sum_num_field : public Item_sum_hybrid_field { public: longlong val_int() override { /* can't be fix_fields()ed */ return llrint_with_overflow_check(val_real()); } bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_numeric(ltime, fuzzydate); /* Decimal or real */ } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_numeric(ltime); /* Decimal or real */ } bool is_null() override { /* TODO : Implement error handling for this function as update_null_value() can return error. */ (void)update_null_value(); return null_value; } }; class Item_avg_field : public Item_sum_num_field { public: uint f_precision, f_scale, dec_bin_size; uint prec_increment; Item_avg_field(Item_result res_type, Item_sum_avg *item); enum Type type() const override { return FIELD_AVG_ITEM; } double val_real() override; my_decimal *val_decimal(my_decimal *) override; String *val_str(String *) override; bool resolve_type(THD *) override { return false; } const char *func_name() const override { DBUG_ASSERT(0); return "avg_field"; } }; /// This is used in connection with an Item_sum_bit, @see Item_sum_hybrid_field class Item_sum_bit_field : public Item_sum_hybrid_field { protected: ulonglong reset_bits; public: Item_sum_bit_field(Item_result res_type, Item_sum_bit *item, ulonglong reset_bits); longlong val_int() override; double val_real() override; my_decimal *val_decimal(my_decimal *) override; String *val_str(String *) override; bool resolve_type(THD *) override { return false; } bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; enum Type type() const override { return FIELD_BIT_ITEM; } const char *func_name() const override { DBUG_ASSERT(0); return "sum_bit_field"; } }; /// Common abstraction for Item_sum_json_array and Item_sum_json_object class Item_sum_json : public Item_sum { typedef Item_sum super; protected: /// String used when reading JSON binary values or JSON text values. String m_value; /// String used for converting JSON text values to utf8mb4 charset. String m_conversion_buffer; /// Wrapper around the container (object/array) which accumulates the value. Json_wrapper m_wrapper; public: /** Construct an Item_sum_json instance. @param parent_args arguments to forward to Item_sum's constructor */ template Item_sum_json(Args &&... parent_args) : Item_sum(std::forward(parent_args)...) { set_data_type_json(); } bool fix_fields(THD *thd, Item **pItem) override; enum Sumfunctype sum_func() const override { return JSON_AGG_FUNC; } Item_result result_type() const override { return STRING_RESULT; } double val_real() override; longlong val_int() override; String *val_str(String *str) override; bool val_json(Json_wrapper *wr) override; my_decimal *val_decimal(my_decimal *decimal_buffer) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; void reset_field() override; void update_field() override; bool check_wf_semantics(THD *thd MY_ATTRIBUTE((unused)), SELECT_LEX *select MY_ATTRIBUTE((unused)), Window::Evaluation_requirements *reqs MY_ATTRIBUTE((unused))) override; }; /// Implements aggregation of values into an array. class Item_sum_json_array final : public Item_sum_json { /// Accumulates the final value. Json_array m_json_array; public: Item_sum_json_array(THD *thd, Item_sum *item) : Item_sum_json(thd, item) {} Item_sum_json_array(const POS &pos, Item *a, PT_window *w) : Item_sum_json(pos, a, w) {} const char *func_name() const override { return "json_arrayagg"; } void clear() override; bool add() override; Item *copy_or_same(THD *thd) override; }; /// Implements aggregation of values into an object. class Item_sum_json_object final : public Item_sum_json { /// Accumulates the final value. Json_object m_json_object; /// Buffer used to get the value of the key. String m_tmp_key_value; /** Map of keys in Json_object and the count for each key within a window frame. It is used in handling rows leaving a window frame when rows are not sorted according to the key in Json_object. */ std::map m_key_map; /** If window provides ordering on the key in Json_object, a key_map is not needed to handle rows leaving a window frame. In this case, process_buffered_windowing_record() will set flags when a key/value pair can be removed from the Json_object. */ bool m_optimize{false}; public: Item_sum_json_object(THD *thd, Item_sum *item) : Item_sum_json(thd, item) {} Item_sum_json_object(const POS &pos, Item *a, Item *b, PT_window *w) : Item_sum_json(pos, a, b, w) {} const char *func_name() const override { return "json_objectagg"; } void clear() override; bool add() override; Item *copy_or_same(THD *thd) override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; }; class Item_sum_avg final : public Item_sum_sum { public: uint prec_increment; uint f_precision, f_scale, dec_bin_size; typedef Item_sum_sum super; my_decimal m_avg_dec; double m_avg; Item_sum_avg(const POS &pos, Item *item_par, bool distinct, PT_window *w) : Item_sum_sum(pos, item_par, distinct, w) {} Item_sum_avg(THD *thd, Item_sum_avg *item) : Item_sum_sum(thd, item), prec_increment(item->prec_increment) {} bool resolve_type(THD *thd) override; enum Sumfunctype sum_func() const override { return has_with_distinct() ? AVG_DISTINCT_FUNC : AVG_FUNC; } void clear() override; bool add() override; double val_real() override; // In SPs we might force the "wrong" type with select into a declare variable longlong val_int() override { return llrint_with_overflow_check(val_real()); } my_decimal *val_decimal(my_decimal *) override; String *val_str(String *str) override; void reset_field() override; void update_field() override; Item *result_item(Field *) override { return new Item_avg_field(hybrid_type, this); } void no_rows_in_result() override {} const char *func_name() const override { return "avg"; } Item *copy_or_same(THD *thd) override; Field *create_tmp_field(bool group, TABLE *table) override; void cleanup() override { m_count = 0; m_frame_null_count = 0; Item_sum_sum::cleanup(); } }; class Item_sum_variance; class Item_variance_field : public Item_sum_num_field { protected: uint sample; public: Item_variance_field(Item_sum_variance *item); enum Type type() const override { return FIELD_VARIANCE_ITEM; } double val_real() override; String *val_str(String *str) override { return val_string_from_real(str); } my_decimal *val_decimal(my_decimal *dec_buf) override { return val_decimal_from_real(dec_buf); } bool resolve_type(THD *) override { return false; } const char *func_name() const override { DBUG_ASSERT(0); return "variance_field"; } bool check_function_as_value_generator(uchar *args) override { Check_function_as_value_generator_parameters *func_arg = pointer_cast(args); func_arg->err_code = func_arg->get_unnamed_function_error_code(); return true; } }; /* variance(a) = = sum (ai - avg(a))^2 / count(a) ) = sum (ai^2 - 2*ai*avg(a) + avg(a)^2) / count(a) = (sum(ai^2) - sum(2*ai*avg(a)) + sum(avg(a)^2))/count(a) = = (sum(ai^2) - 2*avg(a)*sum(a) + count(a)*avg(a)^2)/count(a) = = (sum(ai^2) - 2*sum(a)*sum(a)/count(a) + count(a)*sum(a)^2/count(a)^2 )/count(a) = = (sum(ai^2) - 2*sum(a)^2/count(a) + sum(a)^2/count(a) )/count(a) = = (sum(ai^2) - sum(a)^2/count(a))/count(a) But, this falls prey to catastrophic cancellation. Instead, we use recurrence formulas in Algorithm I mentoned below for group aggregates. Algorithm I: M_{1} = x_{1}, ~ M_{k} = M_{k-1} + (x_{k} - M_{k-1}) / k newline S_{1} = 0, ~ S_{k} = S_{k-1} + (x_{k} - M_{k-1}) times (x_{k} - M_{k}) newline for 2 <= k <= n newline ital variance = S_{n} / (n-1) For aggregate window functions algorithm I cannot be optimized for moving frames since M_{i} changes for every row. So we use the following algorithm. Algorithm II: K = 0 n = 0 ex = 0 ex2 = 0 def add_sample(x): if (n == 0): K = x n = n + 1 ex += x - K ex2 += (x - K) * (x - K) def remove_sample(x): n = n - 1 ex -= (x - K) ex2 -= (x - K) * (x - K) def variance(): return (ex2 - (ex*ex)/n) / (n-1) This formula facilitates incremental computation enabling us to optimize in case of moving window frames. The optimized codepath is taken only when windowing_use_high_precision is set to false. By default, aggregate window functions take the non-optimized codepath. Note: Results could differ between optimized and non-optimized code path. Hence algorithm II is used only when user sets windowing_use_high_precision to false. */ class Item_sum_variance : public Item_sum_num { bool resolve_type(THD *) override; public: Item_result hybrid_type; /** Used in recurrence relation. */ double recurrence_m, recurrence_s; double recurrence_s2; ulonglong count; uint sample; uint prec_increment; /** If set, uses a algorithm II mentioned in the class description to calculate the variance which helps in optimizing windowing functions in presence of frames. */ bool optimize; Item_sum_variance(const POS &pos, Item *item_par, uint sample_arg, PT_window *w) : Item_sum_num(pos, item_par, w), hybrid_type(REAL_RESULT), count(0), sample(sample_arg), optimize(false) {} Item_sum_variance(THD *thd, Item_sum_variance *item); enum Sumfunctype sum_func() const override { return VARIANCE_FUNC; } void clear() override; bool add() override; double val_real() override; my_decimal *val_decimal(my_decimal *) override; void reset_field() override; void update_field() override; Item *result_item(Field *) override { return new Item_variance_field(this); } void no_rows_in_result() override {} const char *func_name() const override { return sample ? "var_samp" : "variance"; } Item *copy_or_same(THD *thd) override; Field *create_tmp_field(bool group, TABLE *table) override; enum Item_result result_type() const override { return REAL_RESULT; } void cleanup() override { count = 0; Item_sum_num::cleanup(); } bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; }; class Item_sum_std; class Item_std_field final : public Item_variance_field { public: Item_std_field(Item_sum_std *item); enum Type type() const override { return FIELD_STD_ITEM; } double val_real() override; my_decimal *val_decimal(my_decimal *) override; enum Item_result result_type() const override { return REAL_RESULT; } const char *func_name() const override { DBUG_ASSERT(0); return "std_field"; } bool check_function_as_value_generator(uchar *args) override { Check_function_as_value_generator_parameters *func_arg = pointer_cast(args); func_arg->err_code = func_arg->get_unnamed_function_error_code(); return true; } }; /* standard_deviation(a) = sqrt(variance(a)) */ class Item_sum_std : public Item_sum_variance { public: Item_sum_std(const POS &pos, Item *item_par, uint sample_arg, PT_window *w) : Item_sum_variance(pos, item_par, sample_arg, w) {} Item_sum_std(THD *thd, Item_sum_std *item) : Item_sum_variance(thd, item) {} enum Sumfunctype sum_func() const override { return STD_FUNC; } double val_real() override; Item *result_item(Field *) override { return new Item_std_field(this); } const char *func_name() const override { return sample ? "stddev_samp" : "std"; } Item *copy_or_same(THD *thd) override; enum Item_result result_type() const override { return REAL_RESULT; } }; // This class is a string or number function depending on num_func class Arg_comparator; /** Abstract base class for the MIN and MAX aggregate functions. */ class Item_sum_hybrid : public Item_sum { typedef Item_sum super; private: /** Tells if this is the MIN function (true) or the MAX function (false). */ const bool m_is_min; /* For window functions MIN/MAX with optimized code path, no comparisons are needed beyond NULL detection: MIN/MAX are then roughly equivalent to FIRST/LAST_VALUE. For this case, 'value' is the value of the window function a priori taken from args[0], while arg_cache is used to remember the value from the previous row. NULLs need a bit of careful treatment. */ Item_cache *value, *arg_cache; Arg_comparator *cmp; Item_result hybrid_type; bool was_values; // Set if we have found at least one row (for max/min only) /** Set to true if the window is ordered ascending. */ bool m_nulls_first; /** Set to true when min/max can be optimized using window's ordering. */ bool m_optimize; /** For min() - Set to true when results are ordered in ascending and false when descending. For max() - Set to true when results are ordered in descending and false when ascending. Valid only when m_optimize is true. */ bool m_want_first; ///< Want first non-null value, else last non_null value /** Execution state: keeps track if this is the first row in the frame when buffering is not needed. Valid only when m_optimize is true. */ int64 m_cnt; /** Execution state: keeps track of at which row we saved a non-null last value. */ int64 m_saved_last_value_at; /** This function implements the optimized version of retrieving min/max value. When we have "ordered ASC" results in a window, min will always be the first value in the result set (neglecting the NULL's) and max will always be the last value (or the other way around, if ordered DESC). It is based on the implementation of FIRST_VALUE/LAST_VALUE, except for the NULL handling. @return true if computation yielded a NULL or error */ bool compute(); /** MIN/MAX function setup. Setup cache/comparator of MIN/MAX functions. When called by the copy_or_same() function, the value_arg parameter contains the calculated value of the original MIN/MAX object, and it is saved in this object's cache. @param item the argument of the MIN/MAX function @param value_arg the calculated value of the MIN/MAX function @return false on success, true on error */ bool setup_hybrid(Item *item, Item *value_arg); /** Create a clone of this object. */ virtual Item_sum_hybrid *clone_hybrid(THD *thd) const = 0; protected: Item_sum_hybrid(Item *item_par, bool is_min) : Item_sum(item_par), m_is_min(is_min), value(0), arg_cache(0), cmp(0), hybrid_type(INT_RESULT), was_values(true), m_nulls_first(false), m_optimize(false), m_want_first(false), m_cnt(0), m_saved_last_value_at(0) { collation.set(&my_charset_bin); } Item_sum_hybrid(const POS &pos, Item *item_par, bool is_min, PT_window *w) : Item_sum(pos, item_par, w), m_is_min(is_min), value(0), arg_cache(0), cmp(0), hybrid_type(INT_RESULT), was_values(true), m_nulls_first(false), m_optimize(false), m_want_first(false), m_cnt(0), m_saved_last_value_at(0) { collation.set(&my_charset_bin); } Item_sum_hybrid(THD *thd, const Item_sum_hybrid *item) : Item_sum(thd, item), m_is_min(item->m_is_min), value(item->value), arg_cache(0), hybrid_type(item->hybrid_type), was_values(item->was_values), m_nulls_first(item->m_nulls_first), m_optimize(item->m_optimize), m_want_first(item->m_want_first), m_cnt(item->m_cnt), m_saved_last_value_at(0) {} public: bool fix_fields(THD *, Item **) override; void clear() override; void split_sum_func(THD *thd, Ref_item_array ref_item_array, List &fields) override; double val_real() override; longlong val_int() override; longlong val_time_temporal() override; longlong val_date_temporal() override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; void reset_field() override; String *val_str(String *) override; bool val_json(Json_wrapper *wr) override; bool keep_field_type() const override { return 1; } enum Item_result result_type() const override { return hybrid_type; } void update_field() override; void cleanup() override; bool any_value() { return was_values; } void no_rows_in_result() override; Field *create_tmp_field(bool group, TABLE *table) override; bool uses_only_one_row() const override { return m_optimize; } bool add() override; Item *copy_or_same(THD *thd) override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *r) override; private: /* These functions check if the value on the current row exceeds the maximum or minimum value seen so far, and update the current max/min stored in result_field, if needed. */ void min_max_update_str_field(); void min_max_update_temporal_field(); void min_max_update_json_field(); void min_max_update_real_field(); void min_max_update_int_field(); void min_max_update_decimal_field(); }; class Item_sum_min final : public Item_sum_hybrid { public: Item_sum_min(Item *item_par) : Item_sum_hybrid(item_par, true) {} Item_sum_min(const POS &pos, Item *item_par, PT_window *w) : Item_sum_hybrid(pos, item_par, true, w) {} Item_sum_min(THD *thd, const Item_sum_min *item) : Item_sum_hybrid(thd, item) {} enum Sumfunctype sum_func() const override { return MIN_FUNC; } const char *func_name() const override { return "min"; } private: Item_sum_min *clone_hybrid(THD *thd) const override; }; class Item_sum_max final : public Item_sum_hybrid { public: Item_sum_max(Item *item_par) : Item_sum_hybrid(item_par, false) {} Item_sum_max(const POS &pos, Item *item_par, PT_window *w) : Item_sum_hybrid(pos, item_par, false, w) {} Item_sum_max(THD *thd, const Item_sum_max *item) : Item_sum_hybrid(thd, item) {} enum Sumfunctype sum_func() const override { return MAX_FUNC; } const char *func_name() const override { return "max"; } private: Item_sum_max *clone_hybrid(THD *thd) const override; }; /** Base class used to implement BIT_AND, BIT_OR and BIT_XOR. Each of them is both a set function and a framing window function. */ class Item_sum_bit : public Item_sum { typedef Item_sum super; /// Stores the neutral element for function ulonglong reset_bits; /// Stores the result value for the INT_RESULT ulonglong bits; /// Stores the result value for the STRING_RESULT String value_buff; /// Stores the Item's result type. Can only be INT_RESULT or STRING_RESULT Item_result hybrid_type; /// Buffer used to avoid String allocation in the constructor const char initial_value_buff_storage[1] = {0}; /** Execution state (windowing): this is for counting rows entering and leaving the window frame, see #m_frame_null_count. */ ulonglong m_count; /** Execution state (windowing): this is for counting NULLs of rows entering and leaving the window frame, when we use optimized inverse-based computations. By comparison with m_count we can know how many non-NULLs are in the frame. */ ulonglong m_frame_null_count; /** Execution state (windowing): Used for AND, OR to be able to invert window functions in optimized mode. For the optimized code path of BIT_XXX wfs, we keep track of the number of bit values (0's or 1's; see below) seen in a frame using a 64 bits counter pr bit. This lets us compute the value of OR by just inspecting: - the number of 1's in the previous frame - whether any removed row(s) is a 1 - whether any added row(s) is a 1 Similarly for AND, we keep track of the number of 0's seen for a particular bit. To do this trick we need a counter per bit position. This array holds these counters. Note that for XOR, the inverse operation is identical to the operation, so we don't need the above. */ ulonglong *m_digit_cnt; /* Size of allocated array m_digit_cnt. The size is DIGIT_CNT_CARD (for integer types) or ::max_length * 8 for bit strings. */ uint m_digit_cnt_card; static constexpr uint DIGIT_CNT_CARD = sizeof(ulonglong) * 8; protected: bool m_is_xor; ///< true iff BIT_XOR public: Item_sum_bit(const POS &pos, Item *item_par, ulonglong reset_arg, PT_window *w) : Item_sum(pos, item_par, w), reset_bits(reset_arg), bits(reset_arg), value_buff(initial_value_buff_storage, 1, &my_charset_bin), m_count(0), m_frame_null_count(0), m_digit_cnt(nullptr), m_digit_cnt_card(0), m_is_xor(false) {} /// Copy constructor, used for executing subqueries with temporary tables Item_sum_bit(THD *thd, Item_sum_bit *item) : Item_sum(thd, item), reset_bits(item->reset_bits), bits(item->bits), value_buff(initial_value_buff_storage, 1, &my_charset_bin), hybrid_type(item->hybrid_type), m_count(item->m_count), m_frame_null_count(item->m_frame_null_count), m_digit_cnt(nullptr), m_digit_cnt_card(0), m_is_xor(item->m_is_xor) { /* This constructor should only be called during the Optimize stage. Asserting that the item was not evaluated yet. */ DBUG_ASSERT(item->value_buff.length() == 1); DBUG_ASSERT(item->bits == item->reset_bits); } Item *result_item(Field *) override { return new Item_sum_bit_field(hybrid_type, this, reset_bits); } enum Sumfunctype sum_func() const override { return SUM_BIT_FUNC; } enum Item_result result_type() const override { return hybrid_type; } void clear() override; longlong val_int() override; double val_real() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *decimal_value) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; void reset_field() override; void update_field() override; bool resolve_type(THD *) override; bool fix_fields(THD *thd, Item **ref) override; void cleanup() override { bits = reset_bits; // At end of one execution of statement, free buffer to reclaim memory: value_buff.set(initial_value_buff_storage, 1, &my_charset_bin); Item_sum::cleanup(); } /** Common implementation of Item_sum_or::add, Item_sum_and:add and Item_sum_xor::add. */ bool add() override; /// @returns true iff this is BIT_AND. inline bool is_and() const { return reset_bits != 0; } private: /** Accumulate the value of 's1' (if in string mode) or of 'b1' (if in integer mode). Updates 'value_buff' or 'bits'. @param s1 argument to accumulate @param b1 argument to accumulate @returns true if error */ bool add_bits(const String *s1, ulonglong b1); /** For windowing: perform inverse aggregation. "De-accumulate" the value of 's1' (if in string mode) or of 'b1' (if in integer mode). Updates 'value_buff' or 'bits'. For BIT_XOR we simply apply XOR as it's its inverse operation. For BIT_OR and BIT_AND we do the rest below. For each bit in argument, decrement the corresponding bits's counter ('m_digit_cnt') for that bit as follows: for BIT_AND, decrement the counter if we see a zero in that bit; for BIT_OR decrement the counter if we see a 1 in that bit. Next, update 'value_buff' or 'bits' using the resulting counters: for each bit, for BIT_AND, set bit if we have counter == 0, i.e. we have no zero bits for that bit in the frame (yet). For BIT_OR, set bit if we have counter > 0, i.e. at least one row in the frame has that bit set. @param s1 the bits to be inverted from the aggregate value @param b1 the bits to be inverted from the aggregate value */ void remove_bits(const String *s1, ulonglong b1); }; class Item_sum_or final : public Item_sum_bit { public: Item_sum_or(const POS &pos, Item *item_par, PT_window *w) : Item_sum_bit(pos, item_par, 0LL, w) {} Item_sum_or(THD *thd, Item_sum_or *item) : Item_sum_bit(thd, item) {} const char *func_name() const override { return "bit_or"; } Item *copy_or_same(THD *thd) override; }; class Item_sum_and final : public Item_sum_bit { public: Item_sum_and(const POS &pos, Item *item_par, PT_window *w) : Item_sum_bit(pos, item_par, ULLONG_MAX, w) {} Item_sum_and(THD *thd, Item_sum_and *item) : Item_sum_bit(thd, item) {} const char *func_name() const override { return "bit_and"; } Item *copy_or_same(THD *thd) override; }; class Item_sum_xor final : public Item_sum_bit { public: Item_sum_xor(const POS &pos, Item *item_par, PT_window *w) : Item_sum_bit(pos, item_par, 0LL, w) { m_is_xor = true; } Item_sum_xor(THD *thd, Item_sum_xor *item) : Item_sum_bit(thd, item) {} const char *func_name() const override { return "bit_xor"; } Item *copy_or_same(THD *thd) override; }; /* User defined aggregates */ class Item_udf_sum : public Item_sum { typedef Item_sum super; protected: udf_handler udf; public: Item_udf_sum(const POS &pos, udf_func *udf_arg, PT_item_list *opt_list) : Item_sum(pos, opt_list, NULL), udf(udf_arg) { allow_group_via_temp_table = false; } Item_udf_sum(THD *thd, Item_udf_sum *item) : Item_sum(thd, item), udf(item->udf) { udf.not_original = true; } bool itemize(Parse_context *pc, Item **res) override; const char *func_name() const override { return udf.name(); } bool fix_fields(THD *thd, Item **ref) override { DBUG_ASSERT(fixed == 0); if (init_sum_func_check(thd)) return true; fixed = 1; if (udf.fix_fields(thd, this, this->arg_count, this->args)) return true; return check_sum_func(thd, ref); } enum Sumfunctype sum_func() const override { return UDF_SUM_FUNC; } void clear() override; bool add() override; void reset_field() override {} void update_field() override {} void cleanup() override; void print(const THD *thd, String *str, enum_query_type query_type) const override; }; class Item_sum_udf_float final : public Item_udf_sum { public: Item_sum_udf_float(const POS &pos, udf_func *udf_arg, PT_item_list *opt_list) : Item_udf_sum(pos, udf_arg, opt_list) {} Item_sum_udf_float(THD *thd, Item_sum_udf_float *item) : Item_udf_sum(thd, item) {} longlong val_int() override { DBUG_ASSERT(fixed == 1); return (longlong)rint(Item_sum_udf_float::val_real()); } double val_real() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_real(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_real(ltime); } bool resolve_type(THD *) override { set_data_type(MYSQL_TYPE_DOUBLE); fix_num_length_and_dec(); return false; } Item *copy_or_same(THD *thd) override; }; class Item_sum_udf_int final : public Item_udf_sum { public: Item_sum_udf_int(const POS &pos, udf_func *udf_arg, PT_item_list *opt_list) : Item_udf_sum(pos, udf_arg, opt_list) {} Item_sum_udf_int(THD *thd, Item_sum_udf_int *item) : Item_udf_sum(thd, item) {} longlong val_int() override; double val_real() override { DBUG_ASSERT(fixed == 1); return (double)Item_sum_udf_int::val_int(); } String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_int(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_int(ltime); } enum Item_result result_type() const override { return INT_RESULT; } bool resolve_type(THD *) override { set_data_type_longlong(); return false; } Item *copy_or_same(THD *thd) override; }; class Item_sum_udf_str final : public Item_udf_sum { public: Item_sum_udf_str(const POS &pos, udf_func *udf_arg, PT_item_list *opt_list) : Item_udf_sum(pos, udf_arg, opt_list) {} Item_sum_udf_str(THD *thd, Item_sum_udf_str *item) : Item_udf_sum(thd, item) {} String *val_str(String *) override; double val_real() override { int err_not_used; const char *end_not_used; String *res; res = val_str(&str_value); return res ? my_strntod(res->charset(), res->ptr(), res->length(), &end_not_used, &err_not_used) : 0.0; } longlong val_int() override { int err_not_used; String *res; const CHARSET_INFO *cs; if (!(res = val_str(&str_value))) return 0; /* Null value */ cs = res->charset(); const char *end = res->ptr() + res->length(); return cs->cset->strtoll10(cs, res->ptr(), &end, &err_not_used); } my_decimal *val_decimal(my_decimal *dec) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_string(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_string(ltime); } enum Item_result result_type() const override { return STRING_RESULT; } bool resolve_type(THD *) override; Item *copy_or_same(THD *thd) override; }; class Item_sum_udf_decimal final : public Item_udf_sum { public: Item_sum_udf_decimal(const POS &pos, udf_func *udf_arg, PT_item_list *opt_list) : Item_udf_sum(pos, udf_arg, opt_list) {} Item_sum_udf_decimal(THD *thd, Item_sum_udf_decimal *item) : Item_udf_sum(thd, item) {} String *val_str(String *) override; double val_real() override; longlong val_int() override; my_decimal *val_decimal(my_decimal *) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_decimal(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_decimal(ltime); } enum Item_result result_type() const override { return DECIMAL_RESULT; } bool resolve_type(THD *) override { set_data_type(MYSQL_TYPE_NEWDECIMAL); fix_num_length_and_dec(); return false; } Item *copy_or_same(THD *thd) override; }; int group_concat_key_cmp_with_distinct(const void *arg, const void *key1, const void *key2); int group_concat_key_cmp_with_order(const void *arg, const void *key1, const void *key2); int dump_leaf_key(void *key_arg, element_count count MY_ATTRIBUTE((unused)), void *item_arg); class Item_func_group_concat final : public Item_sum { typedef Item_sum super; Temp_table_param *tmp_table_param; String result; String *separator; TREE tree_base; TREE *tree; /** If DISTINCT is used with this GROUP_CONCAT, this member is used to filter out duplicates. @see Item_func_group_concat::setup @see Item_func_group_concat::add @see Item_func_group_concat::clear */ Unique *unique_filter; TABLE *table; Mem_root_array order_array; Name_resolution_context *context; /** The number of ORDER BY items. */ uint arg_count_order; /** The number of selected items, aka the expr list. */ uint arg_count_field; uint row_count; /** The maximum permitted result length in bytes as set for group_concat_max_len system variable */ uint group_concat_max_len; bool distinct; bool warning_for_row; bool always_null; bool force_copy_fields; /** True if result has been written to output buffer. */ bool m_result_finalized; /* Following is 0 normal object and pointer to original one for copy (to correctly free resources) */ Item_func_group_concat *original; friend int group_concat_key_cmp_with_distinct(const void *arg, const void *key1, const void *key2); friend int group_concat_key_cmp_with_order(const void *arg, const void *key1, const void *key2); friend int dump_leaf_key(void *key_arg, element_count count MY_ATTRIBUTE((unused)), void *item_arg); public: Item_func_group_concat(const POS &pos, bool is_distinct, PT_item_list *select_list, PT_order_list *opt_order_list, String *separator, PT_window *w); Item_func_group_concat(THD *thd, Item_func_group_concat *item); ~Item_func_group_concat() override; bool itemize(Parse_context *pc, Item **res) override; void cleanup() override; enum Sumfunctype sum_func() const override { return GROUP_CONCAT_FUNC; } const char *func_name() const override { return "group_concat"; } Item_result result_type() const override { return STRING_RESULT; } Field *make_string_field(TABLE *table_arg) override; void clear() override; bool add() override; void reset_field() override { DBUG_ASSERT(0); } // not used void update_field() override { DBUG_ASSERT(0); } // not used bool fix_fields(THD *, Item **) override; bool setup(THD *thd) override; void make_unique() override; double val_real() override { String *res; res = val_str(&str_value); return res ? my_atof(res->c_ptr()) : 0.0; } longlong val_int() override { String *res; int error; if (!(res = val_str(&str_value))) return (longlong)0; const char *end_ptr = res->ptr() + res->length(); return my_strtoll10(res->ptr(), &end_ptr, &error); } my_decimal *val_decimal(my_decimal *decimal_value) override { return val_decimal_from_string(decimal_value); } bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_string(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_string(ltime); } String *val_str(String *str) override; Item *copy_or_same(THD *thd) override; void no_rows_in_result() override {} void print(const THD *thd, String *str, enum_query_type query_type) const override; bool change_context_processor(uchar *cntx) override { context = reinterpret_cast(cntx); return false; } bool check_wf_semantics(THD *thd MY_ATTRIBUTE((unused)), SELECT_LEX *select MY_ATTRIBUTE((unused)), Window::Evaluation_requirements *reqs MY_ATTRIBUTE((unused))) override { unsupported_as_wf(); return true; } }; /** Common parent class for window functions that always work on the entire partition, even if a frame is defined. The subclasses can be divided in two disjoint sub-categories: - one-pass - two-pass (requires partition cardinality to be evaluated) cf. method needs_card. */ class Item_non_framing_wf : public Item_sum { typedef Item_sum super; public: Item_non_framing_wf(const POS &pos, PT_window *w) : Item_sum(pos, w) {} Item_non_framing_wf(const POS &pos, Item *a, PT_window *w) : Item_sum(pos, a, w) {} Item_non_framing_wf(const POS &pos, PT_item_list *opt_list, PT_window *w) : Item_sum(pos, opt_list, w) {} Item_non_framing_wf(THD *thd, Item_non_framing_wf *i) : Item_sum(thd, i) {} bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override { return get_date_from_numeric(ltime, fuzzydate); } bool get_time(MYSQL_TIME *ltime) override { return get_time_from_numeric(ltime); } void reset_field() override { DBUG_ASSERT(false); } void update_field() override { DBUG_ASSERT(false); } bool add() override { DBUG_ASSERT(false); return false; } bool fix_fields(THD *thd, Item **items) override; bool framing() const override { return false; } }; /** ROW_NUMBER window function, cf. SQL 2003 Section 6.10 \ */ class Item_row_number : public Item_non_framing_wf { // Execution state variables ulonglong m_ctr; ///< Increment for each row in partition public: Item_row_number(const POS &pos, PT_window *w) : Item_non_framing_wf(pos, w), m_ctr(0) { unsigned_flag = true; } const char *func_name() const override { return "row_number"; } enum Sumfunctype sum_func() const override { return ROW_NUMBER_FUNC; } bool resolve_type(THD *thd MY_ATTRIBUTE((unused))) override { set_data_type_longlong(); return false; } longlong val_int() override; double val_real() override; my_decimal *val_decimal(my_decimal *buff) override; String *val_str(String *) override; void clear() override; Item_result result_type() const override { return INT_RESULT; } bool check_wf_semantics(THD *thd MY_ATTRIBUTE((unused)), SELECT_LEX *select MY_ATTRIBUTE((unused)), Window::Evaluation_requirements *reqs MY_ATTRIBUTE((unused))) override { return false; } }; /** RANK or DENSE_RANK window function, cf. SQL 2003 Section 6.10 \ */ class Item_rank : public Item_non_framing_wf { typedef Item_non_framing_wf super; bool m_dense; ///< If true, the object represents DENSE_RANK // Execution state variables ulonglong m_rank_ctr; ///< Increment when window order columns change ulonglong m_duplicates; ///< Needed to make RANK different from DENSE_RANK List m_previous; ///< Values of previous row's ORDER BY items public: Item_rank(const POS &pos, bool dense, PT_window *w) : Item_non_framing_wf(pos, w), m_dense(dense), m_rank_ctr(0), m_duplicates(0), m_previous() { unsigned_flag = true; } const char *func_name() const override { return m_dense ? "dense_rank" : "rank"; } enum Sumfunctype sum_func() const override { return m_dense ? DENSE_RANK_FUNC : RANK_FUNC; } bool resolve_type(THD *thd MY_ATTRIBUTE((unused))) override { set_data_type_longlong(); return false; } longlong val_int() override; double val_real() override; my_decimal *val_decimal(my_decimal *buff) override; String *val_str(String *) override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; /** Clear state for a new partition */ void clear() override; /** Cleanup after query, free up resources */ void cleanup() override; Item_result result_type() const override { return INT_RESULT; } }; /** CUME_DIST window function, cf. SQL 2003 Section 6.10 \ */ class Item_cume_dist : public Item_non_framing_wf { typedef Item_non_framing_wf super; public: Item_cume_dist(const POS &pos, PT_window *w) : Item_non_framing_wf(pos, w) {} const char *func_name() const override { return "cume_dist"; } enum Sumfunctype sum_func() const override { return CUME_DIST_FUNC; } bool resolve_type(THD *thd MY_ATTRIBUTE((unused))) override { set_data_type_double(); return false; } bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; bool needs_card() const override { return true; } void clear() override {} longlong val_int() override; double val_real() override; String *val_str(String *) override; my_decimal *val_decimal(my_decimal *buffer) override; Item_result result_type() const override { return REAL_RESULT; } }; /** PERCENT_RANK window function, cf. SQL 2003 Section 6.10 \ */ class Item_percent_rank : public Item_non_framing_wf { typedef Item_non_framing_wf super; // Execution state variables ulonglong m_rank_ctr; ///< Increment when window order columns change ulonglong m_peers; ///< Needed to make PERCENT_RANK same for peers /** Set when the last peer has been visited. Needed to increment m_rank_ctr. */ bool m_last_peer_visited; public: Item_percent_rank(const POS &pos, PT_window *w) : Item_non_framing_wf(pos, w), m_rank_ctr(0), m_peers(0), m_last_peer_visited(false) {} const char *func_name() const override { return "percent_rank"; } enum Sumfunctype sum_func() const override { return PERCENT_RANK_FUNC; } bool resolve_type(THD *thd MY_ATTRIBUTE((unused))) override { set_data_type_double(); return false; } bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; bool needs_card() const override { return true; } void clear() override; void cleanup() override; longlong val_int() override; double val_real() override; String *val_str(String *) override; my_decimal *val_decimal(my_decimal *buffer) override; Item_result result_type() const override { return REAL_RESULT; } }; /** NTILE window function, cf. SQL 2011 Section 6.10 \ */ class Item_ntile : public Item_non_framing_wf { typedef Item_non_framing_wf super; longlong m_value; public: Item_ntile(const POS &pos, Item *a, PT_window *w) : Item_non_framing_wf(pos, a, w), m_value(0) { unsigned_flag = true; } const char *func_name() const override { return "ntile"; } enum Sumfunctype sum_func() const override { return NTILE_FUNC; } bool resolve_type(THD *thd MY_ATTRIBUTE((unused))) override { set_data_type_longlong(); return false; } bool fix_fields(THD *thd, Item **items) override; longlong val_int() override; double val_real() override; my_decimal *val_decimal(my_decimal *buff) override; String *val_str(String *) override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; Item_result result_type() const override { return INT_RESULT; } void clear() override {} bool needs_card() const override { return true; } }; /** LEAD/LAG window functions, cf. SQL 2011 Section 6.10 \ */ class Item_lead_lag : public Item_non_framing_wf { enum_null_treatment m_null_treatment; bool m_is_lead; ///< if true, the function is LEAD, else LAG int64 m_n; ///< canonicalized offset value Item_result m_hybrid_type; Item_cache *m_value; Item_cache *m_default; /** Execution state: if set, we already have a value for current row. State is used to avoid interference with other LEAD/LAG functions on the same window, since they share the same eval loop and they should trigger evaluation only when they are on the "right" row relative to current row. For other offsets, return NULL if we don't know the value for this function yet, or if we do (m_has_value==true), return the found value. */ bool m_has_value; bool m_use_default; ///< execution state: use default value for current row typedef Item_non_framing_wf super; public: Item_lead_lag(const POS &pos, bool lead, PT_item_list *opt_list, // [0] expr, [1] offset, [2] default enum_null_treatment null_treatment, PT_window *w) : Item_non_framing_wf(pos, opt_list, w), m_null_treatment(null_treatment), m_is_lead(lead), m_n(0), m_hybrid_type(INVALID_RESULT), m_value(nullptr), m_default(nullptr), m_has_value(false), m_use_default(false) {} const char *func_name() const override { return (m_is_lead ? "lead" : "lag"); } enum Sumfunctype sum_func() const override { return LEAD_LAG_FUNC; } bool resolve_type(THD *thd) override; bool fix_fields(THD *thd, Item **items) override; void clear() override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; enum Item_result result_type() const override { return m_hybrid_type; } longlong val_int() override; double val_real() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *decimal_buffer) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; bool val_json(Json_wrapper *wr) override; bool needs_card() const override { /* A possible optimization here: if LAG, we are only interested in rows we have already seen, so we might compute the result without reading the entire partition as soon as we have the current row. Similarly, a small LEAD value might avoid reading the entire partition also, giving shorter time to first result. For now, we read the entirely partition for these window functions - for simplicity. */ return true; } void split_sum_func(THD *thd, Ref_item_array ref_item_array, List &fields) override; void set_has_value(bool value) { m_has_value = value; } bool has_value() const { return m_has_value; } void set_use_default(bool value) { m_use_default = value; } bool use_default() const { return m_use_default; } private: bool setup_lead_lag(); /** Core logic of LEAD/LAG window functions @return true if computation yielded a NULL or error */ bool compute(); }; /** FIRST_VALUE/LAST_VALUE window functions, cf. SQL 2011 Section 6.10 \ */ class Item_first_last_value : public Item_sum { bool m_is_first; ///< if true, the function is FIRST_VALUE, else LAST_VALUE enum_null_treatment m_null_treatment; Item_result m_hybrid_type; Item_cache *m_value; int64 cnt; ///< used when evaluating on-the-fly (non-buffered processing) typedef Item_sum super; public: Item_first_last_value(const POS &pos, bool first, Item *a, enum_null_treatment null_treatment, PT_window *w) : Item_sum(pos, a, w), m_is_first(first), m_null_treatment(null_treatment), m_hybrid_type(INVALID_RESULT), m_value(nullptr), cnt(0) {} const char *func_name() const override { return m_is_first ? "first_value" : "last_value"; } enum Sumfunctype sum_func() const override { return FIRST_LAST_VALUE_FUNC; } bool resolve_type(THD *thd) override; bool fix_fields(THD *thd, Item **items) override; void clear() override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; enum Item_result result_type() const override { return m_hybrid_type; } longlong val_int() override; double val_real() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *decimal_buffer) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; bool val_json(Json_wrapper *wr) override; void reset_field() override { DBUG_ASSERT(false); } void update_field() override { DBUG_ASSERT(false); } bool add() override { DBUG_ASSERT(false); return false; } void split_sum_func(THD *thd, Ref_item_array ref_item_array, List &fields) override; bool uses_only_one_row() const override { return true; } private: bool setup_first_last(); /** Core logic of FIRST/LAST_VALUE window functions @return true if computation yielded a NULL or error */ bool compute(); }; /** NTH_VALUE window function, cf. SQL 2011 Section 6.10 \ */ class Item_nth_value : public Item_sum { enum_null_treatment m_null_treatment; int64 m_n; ///< The N of the function bool m_from_last; ///< true iff FROM_LAST was specified Item_result m_hybrid_type; enum_field_types m_hybrid_field_type; Item_cache *m_value; int64 m_cnt; ///< used when evaluating on-the-fly (non-buffered processing) typedef Item_sum super; public: Item_nth_value(const POS &pos, PT_item_list *a, bool from_last, enum_null_treatment null_treatment, PT_window *w) : Item_sum(pos, a, w), m_null_treatment(null_treatment), m_n(0), m_from_last(from_last), m_hybrid_type(INVALID_RESULT), m_value(nullptr), m_cnt(0) {} const char *func_name() const override { return "nth_value"; } enum Sumfunctype sum_func() const override { return NTH_VALUE_FUNC; } bool resolve_type(THD *thd) override; bool fix_fields(THD *thd, Item **items) override; bool setup_nth(); void clear() override; bool check_wf_semantics(THD *thd, SELECT_LEX *select, Window::Evaluation_requirements *reqs) override; enum Item_result result_type() const override { return m_hybrid_type; } longlong val_int() override; double val_real() override; String *val_str(String *str) override; my_decimal *val_decimal(my_decimal *decimal_buffer) override; bool get_date(MYSQL_TIME *ltime, my_time_flags_t fuzzydate) override; bool get_time(MYSQL_TIME *ltime) override; bool val_json(Json_wrapper *wr) override; void reset_field() override { DBUG_ASSERT(false); } void update_field() override { DBUG_ASSERT(false); } bool add() override { DBUG_ASSERT(false); return false; } void split_sum_func(THD *thd, Ref_item_array ref_item_array, List &fields) override; bool uses_only_one_row() const override { return true; } private: /** Core logic of NTH_VALUE window functions @return true if computation yielded a NULL or error */ bool compute(); }; /** Class for implementation of the GROUPING function. The GROUPING function distinguishes super-aggregate rows from regular grouped rows. GROUP BY extensions such as ROLLUP and CUBE produce super-aggregate rows where the set of all values is represented by null. Using the GROUPING function, you can distinguish a null representing the set of all values in a super-aggregate row from a NULL in a regular row. */ class Item_func_grouping : public Item_int_func { public: Item_func_grouping(const POS &pos, PT_item_list *a) : Item_int_func(pos, a) { set_grouping_func(); } const char *func_name() const override { return "grouping"; } enum Functype functype() const override { return GROUPING_FUNC; } longlong val_int() override; bool aggregate_check_group(uchar *arg) override; bool fix_fields(THD *thd, Item **ref) override; void update_used_tables() override; }; #endif /* ITEM_SUM_INCLUDED */