// Copyright (c) 2017, Oracle and/or its affiliates. All rights reserved. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License, version 2.0, // as published by the Free Software Foundation. // // This program is also distributed with certain software (including // but not limited to OpenSSL) that is licensed under separate terms, // as designated in a particular file or component or in included license // documentation. The authors of MySQL hereby grant you an additional // permission to link the program and your derivative works with the // separately licensed software that they have included with MySQL. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License, version 2.0, for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. /// @file /// /// This file implements the equals functor and function. #include // std::unique_ptr #include #include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system #include "sql/gis/box.h" #include "sql/gis/box_traits.h" #include "sql/gis/equals_functor.h" #include "sql/gis/gc_utils.h" #include "sql/gis/geometries.h" #include "sql/gis/geometries_traits.h" #include "sql/gis/mbr_utils.h" #include "sql/gis/relops.h" #include "sql/sql_exception_handler.h" // handle_gis_exception #include "template_utils.h" // down_cast namespace bg = boost::geometry; namespace gis { /// Apply an Equals functor to two geometries, which both may be geometry /// collections, and return the boolean result of the functor applied on each /// combination of elements in the collections. /// /// @tparam GC Coordinate specific gometry collection type. /// /// @param f Functor to apply. /// @param g1 First geometry. /// @param g2 Second geometry. /// /// @retval true g1 equals g2. /// @retval false g1 doesn't equal g2. template static bool geometry_collection_apply_equals(const Equals &f, const Geometry *g1, const Geometry *g2) { if (g1->type() == Geometry_type::kGeometrycollection) { if (g2->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g1_mpt; std::unique_ptr g1_mls; std::unique_ptr g1_mpy; std::unique_ptr g2_mpt; std::unique_ptr g2_mls; std::unique_ptr g2_mpy; split_gc(down_cast(g1), &g1_mpt, &g1_mls, &g1_mpy); gc_union(f.semi_major(), f.semi_minor(), &g1_mpt, &g1_mls, &g1_mpy); split_gc(down_cast(g2), &g2_mpt, &g2_mls, &g2_mpy); gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy); if (g1_mpt->empty() != g2_mpt->empty() || g1_mls->empty() != g2_mls->empty() || g1_mpy->empty() != g2_mpy->empty()) return false; bool mpt_equals; if (g1_mpt->empty() && g2_mpt->empty()) mpt_equals = true; else mpt_equals = f(g1_mpt.get(), g2_mpt.get()); bool mls_equals; if (g1_mls->empty() && g2_mls->empty()) mls_equals = true; else mls_equals = f(g1_mls.get(), g2_mls.get()); bool mpy_equals; if (g1_mpy->empty() && g2_mpy->empty()) mpy_equals = true; else mpy_equals = f(g1_mpy.get(), g2_mpy.get()); return mpt_equals && mls_equals && mpy_equals; } else { return f(g2, g1); } } else { if (g2->type() == Geometry_type::kGeometrycollection) { std::unique_ptr g2_mpt; std::unique_ptr g2_mls; std::unique_ptr g2_mpy; split_gc(down_cast(g2), &g2_mpt, &g2_mls, &g2_mpy); gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy); switch (g1->type()) { case Geometry_type::kPoint: case Geometry_type::kMultipoint: { bool mls_empty = !g2_mls.get() || g2_mls->empty(); bool mpy_empty = !g2_mpy.get() || g2_mpy->empty(); if (!mls_empty || !mpy_empty) return false; return f(g1, g2_mpt.get()); } case Geometry_type::kLinestring: case Geometry_type::kMultilinestring: { bool mpt_empty = !g2_mpt.get() || g2_mpt->empty(); bool mpy_empty = !g2_mpy.get() || g2_mpy->empty(); if (!mpt_empty || !mpy_empty) return false; return f(g1, g2_mls.get()); } case Geometry_type::kPolygon: case Geometry_type::kMultipolygon: { bool mpt_empty = !g2_mpt.get() || g2_mpt->empty(); bool mls_empty = !g2_mls.get() || g2_mls->empty(); if (!mpt_empty || !mls_empty) return false; return f(g1, g2_mpy.get()); } default: // All possible combinations should be covered above. DBUG_ASSERT(false); return false; } } else { return f(g1, g2); } } } Equals::Equals(double semi_major, double semi_minor) : m_semi_major(semi_major), m_semi_minor(semi_minor), m_geographic_ll_aa_strategy( bg::srs::spheroid(semi_major, semi_minor)) {} bool Equals::operator()(const Geometry *g1, const Geometry *g2) const { return apply(*this, g1, g2); } bool Equals::operator()(const Box *b1, const Box *b2) const { DBUG_ASSERT(b1->coordinate_system() == b2->coordinate_system()); switch (b1->coordinate_system()) { case Coordinate_system::kCartesian: return eval(down_cast(b1), down_cast(b2)); case Coordinate_system::kGeographic: return eval(down_cast(b1), down_cast(b2)); } DBUG_ASSERT(false); return false; } bool Equals::eval(const Geometry *g1, const Geometry *g2) const { // All parameter type combinations have been implemented. DBUG_ASSERT(false); throw not_implemented_exception::for_non_projected(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_point, *) bool Equals::eval(const Cartesian_point *g1, const Cartesian_point *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_point *, const Cartesian_linestring *) const { // A point may never be equal to a linestring. return false; } bool Equals::eval(const Cartesian_point *, const Cartesian_polygon *) const { // A point may never be equal to a polygon. return false; } bool Equals::eval(const Cartesian_point *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_point *g1, const Cartesian_multipoint *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_point *, const Cartesian_multilinestring *) const { // A point may never be equal to a multilinestring. return false; } bool Equals::eval(const Cartesian_point *, const Cartesian_multipolygon *) const { // A point may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_linestring, *) bool Equals::eval(const Cartesian_linestring *, const Cartesian_point *) const { // A linestring may never be equal to a point. return false; } bool Equals::eval(const Cartesian_linestring *g1, const Cartesian_linestring *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_linestring *, const Cartesian_polygon *) const { // A linestring may never be equal to a polygon. return false; } bool Equals::eval(const Cartesian_linestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_linestring *, const Cartesian_multipoint *) const { // A linestring may never be equal to a multipoint. return false; } bool Equals::eval(const Cartesian_linestring *g1, const Cartesian_multilinestring *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_linestring *, const Cartesian_multipolygon *) const { // A linestring may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_polygon, *) bool Equals::eval(const Cartesian_polygon *, const Cartesian_point *) const { // A polygon may never be equal to a point. return false; } bool Equals::eval(const Cartesian_polygon *, const Cartesian_linestring *) const { // A polygon may never be equal to a linestring. return false; } bool Equals::eval(const Cartesian_polygon *g1, const Cartesian_polygon *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_polygon *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_polygon *, const Cartesian_multipoint *) const { // A polygon may never be equal to a multipoint. return false; } bool Equals::eval(const Cartesian_polygon *, const Cartesian_multilinestring *) const { // A polygon may never be equal to a multilinestring. return false; } bool Equals::eval(const Cartesian_polygon *g1, const Cartesian_multipolygon *g2) const { return bg::equals(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_geometrycollection, *) bool Equals::eval(const Cartesian_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_multipoint, *) bool Equals::eval(const Cartesian_multipoint *g1, const Cartesian_point *g2) const { return eval(g2, g1); } bool Equals::eval(const Cartesian_multipoint *, const Cartesian_linestring *) const { // A multipoint may never be equal to a linestring. return false; } bool Equals::eval(const Cartesian_multipoint *, const Cartesian_polygon *) const { // A multipoint may never be equal to a polygon. return false; } bool Equals::eval(const Cartesian_multipoint *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_multipoint *g1, const Cartesian_multipoint *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_multipoint *, const Cartesian_multilinestring *) const { // A multipoint may never be equal to a multilinestring. return false; } bool Equals::eval(const Cartesian_multipoint *, const Cartesian_multipolygon *) const { // A multipoint may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_multilinestring, *) bool Equals::eval(const Cartesian_multilinestring *, const Cartesian_point *) const { // A multilinestring may never be equal to a point. return false; } bool Equals::eval(const Cartesian_multilinestring *g1, const Cartesian_linestring *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_multilinestring *, const Cartesian_polygon *) const { // A multilinestring may never be equal to a polygon. return false; } bool Equals::eval(const Cartesian_multilinestring *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_multilinestring *, const Cartesian_multipoint *) const { // A multilinestring may never be equal to a multipoint. return false; } bool Equals::eval(const Cartesian_multilinestring *g1, const Cartesian_multilinestring *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_multilinestring *, const Cartesian_multipolygon *) const { // A multilinestring may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Cartesian_multipolygon, *) bool Equals::eval(const Cartesian_multipolygon *, const Cartesian_point *) const { // A multipolygon may never be equal to a point. return false; } bool Equals::eval(const Cartesian_multipolygon *, const Cartesian_linestring *) const { // A multipolygon may never be equal to a linestring. return false; } bool Equals::eval(const Cartesian_multipolygon *g1, const Cartesian_polygon *g2) const { return bg::equals(*g1, *g2); } bool Equals::eval(const Cartesian_multipolygon *g1, const Cartesian_geometrycollection *g2) const { return geometry_collection_apply_equals(*this, g1, g2); } bool Equals::eval(const Cartesian_multipolygon *, const Cartesian_multipoint *) const { // A multipolygon may never be equal to a multipoint. return false; } bool Equals::eval(const Cartesian_multipolygon *, const Cartesian_multilinestring *) const { // A multipolygon may never be equal to a multilinestring. return false; } bool Equals::eval(const Cartesian_multipolygon *g1, const Cartesian_multipolygon *g2) const { return bg::equals(*g1, *g2); } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_point, *) bool Equals::eval(const Geographic_point *g1, const Geographic_point *g2) const { // Default strategy is OK. P/P computations do not depend on shape of // ellipsoid. return bg::equals(*g1, *g2); } bool Equals::eval(const Geographic_point *, const Geographic_linestring *) const { // A point may never be equal to a linestring. return false; } bool Equals::eval(const Geographic_point *, const Geographic_polygon *) const { // A point may never be equal to a polygon. return false; } bool Equals::eval(const Geographic_point *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_point *g1, const Geographic_multipoint *g2) const { // Default strategy is OK. P/P computations do not depend on shape of // ellipsoid. return bg::equals(*g1, *g2); } bool Equals::eval(const Geographic_point *, const Geographic_multilinestring *) const { // A point may never be equal to a multilinestring. return false; } bool Equals::eval(const Geographic_point *, const Geographic_multipolygon *) const { // A point may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_linestring, *) bool Equals::eval(const Geographic_linestring *, const Geographic_point *) const { // A linestring may never be equal to a point. return false; } bool Equals::eval(const Geographic_linestring *g1, const Geographic_linestring *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_linestring *, const Geographic_polygon *) const { // A linestring may never be equal to a polygon. return false; } bool Equals::eval(const Geographic_linestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_linestring *, const Geographic_multipoint *) const { // A linestring may never be equal to a multipoint. return false; } bool Equals::eval(const Geographic_linestring *g1, const Geographic_multilinestring *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_linestring *, const Geographic_multipolygon *) const { // A linestring may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_polygon, *) bool Equals::eval(const Geographic_polygon *, const Geographic_point *) const { // A polygon may never be equal to a point. return false; } bool Equals::eval(const Geographic_polygon *, const Geographic_linestring *) const { // A polygon may never be equal to a linestring. return false; } bool Equals::eval(const Geographic_polygon *g1, const Geographic_polygon *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_polygon *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_polygon *, const Geographic_multipoint *) const { // A polygon may never be equal to a multipoint. return false; } bool Equals::eval(const Geographic_polygon *, const Geographic_multilinestring *) const { // A polygon may never be equal to a multilinestring. return false; } bool Equals::eval(const Geographic_polygon *g1, const Geographic_multipolygon *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_geometrycollection, *) bool Equals::eval(const Geographic_geometrycollection *g1, const Geometry *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_multipoint, *) bool Equals::eval(const Geographic_multipoint *g1, const Geographic_point *g2) const { return eval(g2, g1); } bool Equals::eval(const Geographic_multipoint *, const Geographic_linestring *) const { // A multipoint may never be equal to a linestring. return false; } bool Equals::eval(const Geographic_multipoint *, const Geographic_polygon *) const { // A multipoint may never be equal to a polygon. return false; } bool Equals::eval(const Geographic_multipoint *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_multipoint *g1, const Geographic_multipoint *g2) const { // Default strategy is OK. P/P computations do not depend on shape of // ellipsoid. return bg::equals(*g1, *g2); } bool Equals::eval(const Geographic_multipoint *, const Geographic_multilinestring *) const { // A multipoint may never be equal to a multilinestring. return false; } bool Equals::eval(const Geographic_multipoint *, const Geographic_multipolygon *) const { // A multipoint may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_multilinestring, *) bool Equals::eval(const Geographic_multilinestring *, const Geographic_point *) const { // A multilinestring may never be equal to a point. return false; } bool Equals::eval(const Geographic_multilinestring *g1, const Geographic_linestring *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_multilinestring *, const Geographic_polygon *) const { // A multilinestring may never be equal to a polygon. return false; } bool Equals::eval(const Geographic_multilinestring *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_multilinestring *, const Geographic_multipoint *) const { // A multilinestring may never be equal to a multipoint. return false; } bool Equals::eval(const Geographic_multilinestring *g1, const Geographic_multilinestring *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_multilinestring *, const Geographic_multipolygon *) const { // A multilinestring may never be equal to a multipolygon. return false; } ////////////////////////////////////////////////////////////////////////////// // equals(Geographic_multipolygon, *) bool Equals::eval(const Geographic_multipolygon *, const Geographic_point *) const { // A multipolygon may never be equal to a point. return false; } bool Equals::eval(const Geographic_multipolygon *, const Geographic_linestring *) const { // A multipolygon may never be equal to a linestring. return false; } bool Equals::eval(const Geographic_multipolygon *g1, const Geographic_polygon *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } bool Equals::eval(const Geographic_multipolygon *g1, const Geographic_geometrycollection *g2) const { return geometry_collection_apply_equals( *this, g1, g2); } bool Equals::eval(const Geographic_multipolygon *, const Geographic_multipoint *) const { // A multipolygon may never be equal to a multipoint. return false; } bool Equals::eval(const Geographic_multipolygon *, const Geographic_multilinestring *) const { // A multipolygon may never be equal to a multilinestring. return false; } bool Equals::eval(const Geographic_multipolygon *g1, const Geographic_multipolygon *g2) const { return bg::equals(*g1, *g2, m_geographic_ll_aa_strategy); } ////////////////////////////////////////////////////////////////////////////// // equals(Box, Box) bool Equals::eval(const Cartesian_box *b1, const Cartesian_box *b2) const { return bg::equals(*b1, *b2); } bool Equals::eval(const Geographic_box *b1, const Geographic_box *b2) const { return bg::equals(*b1, *b2); } ////////////////////////////////////////////////////////////////////////////// bool equals(const dd::Spatial_reference_system *srs, const Geometry *g1, const Geometry *g2, const char *func_name, bool *equals, bool *null) noexcept { try { DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system()); DBUG_ASSERT(srs == nullptr || ((srs->is_cartesian() && g1->coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g1->coordinate_system() == Coordinate_system::kGeographic))); *null = false; if (g1->is_empty()) { *equals = g2->is_empty(); return false; } if (g2->is_empty()) { *equals = false; return false; } Equals equals_func(srs ? srs->semi_major_axis() : 0.0, srs ? srs->semi_minor_axis() : 0.0); *equals = equals_func(g1, g2); } catch (...) { handle_gis_exception(func_name); return true; } return false; } bool mbr_equals(const dd::Spatial_reference_system *srs, const Geometry *g1, const Geometry *g2, const char *func_name, bool *equals, bool *null) noexcept { try { DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system()); DBUG_ASSERT(srs == nullptr || ((srs->is_cartesian() && g1->coordinate_system() == Coordinate_system::kCartesian) || (srs->is_geographic() && g1->coordinate_system() == Coordinate_system::kGeographic))); *null = false; if (g1->is_empty()) { *equals = g2->is_empty(); return false; } if (g2->is_empty()) { *equals = false; return false; } Equals equals_func(srs ? srs->semi_major_axis() : 0.0, srs ? srs->semi_minor_axis() : 0.0); switch (g1->coordinate_system()) { case Coordinate_system::kCartesian: { Cartesian_box mbr1; box_envelope(g1, srs, &mbr1); Cartesian_box mbr2; box_envelope(g2, srs, &mbr2); *equals = equals_func(&mbr1, &mbr2); break; } case Coordinate_system::kGeographic: { Geographic_box mbr1; box_envelope(g1, srs, &mbr1); Geographic_box mbr2; box_envelope(g2, srs, &mbr2); *equals = equals_func(&mbr1, &mbr2); break; } } } catch (...) { handle_gis_exception(func_name); return true; } return false; } } // namespace gis