/* Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2.0, as published by the Free Software Foundation. This program is also distributed with certain software (including but not limited to OpenSSL) that is licensed under separate terms, as designated in a particular file or component or in included license documentation. The authors of MySQL hereby grant you an additional permission to link the program and your derivative works with the separately licensed software that they have included with MySQL. Without limiting anything contained in the foregoing, this file, which is part of C Driver for MySQL (Connector/C), is also subject to the Universal FOSS Exception, version 1.0, a copy of which can be found at http://oss.oracle.com/licenses/universal-foss-exception. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License, version 2.0, for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /** * @file mysys/my_alloc.cc * Implementation of MEM_ROOT. * * This file follows Google coding style. */ #include #include #include #include "my_alloc.h" #include "my_compiler.h" #include "my_dbug.h" #include "my_inttypes.h" #include "my_pointer_arithmetic.h" #include "my_sys.h" #include "mysql/service_mysql_alloc.h" #include "mysys_err.h" #include "template_utils.h" // For instrumented code: Always use malloc(); never reuse a chunk. // This gives a lot more memory chunks, each with a red-zone around them. #if defined(HAVE_VALGRIND) || defined(HAVE_ASAN) #define MEM_ROOT_SINGLE_CHUNKS 1 #else #define MEM_ROOT_SINGLE_CHUNKS 0 #endif MEM_ROOT::Block *MEM_ROOT::AllocBlock(size_t length) { DBUG_TRACE; if (m_max_capacity != 0 && (m_allocated_size > m_max_capacity || length > m_max_capacity - m_allocated_size)) { if (m_error_for_capacity_exceeded) { my_error(EE_CAPACITY_EXCEEDED, MYF(0), static_cast(m_max_capacity)); // NOTE: No early return; we will abort the query at the next safe point. } else { return nullptr; } } Block *new_block = static_cast( my_malloc(m_psi_key, length + ALIGN_SIZE(sizeof(Block)), MYF(MY_WME | ME_FATALERROR))); if (new_block == nullptr) { if (m_error_handler) (m_error_handler)(); return nullptr; } m_allocated_size += length; // Make the default block size 50% larger next time. // This ensures O(1) total mallocs (assuming Clear() is not called). m_block_size += m_block_size / 2; return new_block; } void *MEM_ROOT::AllocSlow(size_t length) { DBUG_TRACE; DBUG_PRINT("enter", ("root: %p", this)); // We need to allocate a new block to satisfy this allocation; // otherwise, the fast path in Alloc() would not have sent us here. // We plan to allocate a block of bytes; see if that // would be enough or not. if (length >= m_block_size || MEM_ROOT_SINGLE_CHUNKS) { // The next block we'd allocate would _not_ be big enough // (or we're in Valgrind/ASAN mode, and want everything in single chunks). // Allocate an entirely new block, not disturbing anything; // since the new block isn't going to be used for the next allocation // anyway, we can just as well keep the previous one. Block *new_block = AllocBlock(length); if (new_block == nullptr) return nullptr; if (m_current_block == nullptr) { // This is the only block, so it has to be the current block, too. // However, it will be full, so we won't be allocating from it // unless ClearForReuse() is called. new_block->prev = nullptr; m_current_block = new_block; m_current_free_end = pointer_cast(new_block) + ALIGN_SIZE(sizeof(*new_block)) + length; m_current_free_start = m_current_free_end; } else { // Insert the new block in the second-to-last position. new_block->prev = m_current_block->prev; m_current_block->prev = new_block; } return pointer_cast(new_block) + ALIGN_SIZE(sizeof(*new_block)); } else { // The normal case: Throw away the current block, allocate a new block, // and use that to satisfy the new allocation. const size_t new_block_size = m_block_size; Block *new_block = AllocBlock(new_block_size); // Will modify block_size. if (new_block == nullptr) return nullptr; new_block->prev = m_current_block; m_current_block = new_block; char *new_mem = pointer_cast(new_block) + ALIGN_SIZE(sizeof(*new_block)); m_current_free_start = new_mem + length; m_current_free_end = new_mem + new_block_size; return new_mem; } } void MEM_ROOT::Clear() { DBUG_TRACE; DBUG_PRINT("enter", ("root: %p", this)); // Already cleared, or memset() to zero, so just ignore. if (m_current_block == nullptr) return; Block *start = m_current_block; m_current_block = nullptr; m_block_size = m_orig_block_size; m_current_free_start = &s_dummy_target; m_current_free_end = &s_dummy_target; m_allocated_size = 0; FreeBlocks(start); } void MEM_ROOT::ClearForReuse() { DBUG_TRACE; if (MEM_ROOT_SINGLE_CHUNKS) { Clear(); return; } // Already cleared, or memset() to zero, so just ignore. if (m_current_block == nullptr) return; // Keep the last block, which is usually the biggest one. m_current_free_start = pointer_cast(m_current_block) + ALIGN_SIZE(sizeof(*m_current_block)); Block *start = m_current_block->prev; m_current_block->prev = nullptr; m_allocated_size = m_current_free_end - m_current_free_start; FreeBlocks(start); } void MEM_ROOT::FreeBlocks(Block *start) { // The MEM_ROOT might be allocated on itself, so make sure we don't // touch it after we've started freeing. for (Block *block = start; block != nullptr;) { Block *prev = block->prev; my_free(block); block = prev; } } void MEM_ROOT::Claim() { DBUG_TRACE; DBUG_PRINT("enter", ("root: %p", this)); for (Block *block = m_current_block; block != nullptr; block = block->prev) { my_claim(block); } } /* * Allocate many pointers at the same time. * * DESCRIPTION * ptr1, ptr2, etc all point into big allocated memory area. * * SYNOPSIS * multi_alloc_root() * root Memory root * ptr1, length1 Multiple arguments terminated by a NULL pointer * ptr2, length2 ... * ... * NULL * * RETURN VALUE * A pointer to the beginning of the allocated memory block * in case of success or NULL if out of memory. */ void *multi_alloc_root(MEM_ROOT *root, ...) { va_list args; char **ptr, *start, *res; size_t tot_length, length; DBUG_TRACE; va_start(args, root); tot_length = 0; while ((ptr = va_arg(args, char **))) { length = va_arg(args, uint); tot_length += ALIGN_SIZE(length); } va_end(args); if (!(start = static_cast(root->Alloc(tot_length)))) return 0; /* purecov: inspected */ va_start(args, root); res = start; while ((ptr = va_arg(args, char **))) { *ptr = res; length = va_arg(args, uint); res += ALIGN_SIZE(length); } va_end(args); return (void *)start; } char *strdup_root(MEM_ROOT *root, const char *str) { return strmake_root(root, str, strlen(str)); } char *safe_strdup_root(MEM_ROOT *root, const char *str) { return str ? strdup_root(root, str) : 0; } void free_root(MEM_ROOT *root, myf flags) { if (root != nullptr) { if ((flags & MY_MARK_BLOCKS_FREE) || (flags & MY_KEEP_PREALLOC)) root->ClearForReuse(); else root->Clear(); } } char *strmake_root(MEM_ROOT *root, const char *str, size_t len) { char *pos; if ((pos = static_cast(root->Alloc(len + 1)))) { if (len > 0) memcpy(pos, str, len); pos[len] = 0; } return pos; } void *memdup_root(MEM_ROOT *root, const void *str, size_t len) { char *pos; if ((pos = static_cast(root->Alloc(len)))) { memcpy(pos, str, len); } return pos; } char MEM_ROOT::s_dummy_target;