用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

898 lines
32 KiB

5 months ago
// Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License, version 2.0,
// as published by the Free Software Foundation.
//
// This program is also distributed with certain software (including
// but not limited to OpenSSL) that is licensed under separate terms,
// as designated in a particular file or component or in included license
// documentation. The authors of MySQL hereby grant you an additional
// permission to link the program and your derivative works with the
// separately licensed software that they have included with MySQL.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License, version 2.0, for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
/// @file
///
/// This file implements the crosses functor and function.
#include <memory> // std::unique_ptr
#include <boost/geometry.hpp>
#include "sql/dd/types/spatial_reference_system.h" // dd::Spatial_reference_system
#include "sql/gis/crosses_functor.h"
#include "sql/gis/difference_functor.h"
#include "sql/gis/disjoint_functor.h"
#include "sql/gis/gc_utils.h"
#include "sql/gis/geometries.h"
#include "sql/gis/geometries_traits.h"
#include "sql/gis/relops.h"
#include "sql/gis/within_functor.h"
#include "sql/sql_exception_handler.h" // handle_gis_exception
namespace bg = boost::geometry;
namespace gis {
/// Apply a Crosses functor to two geometries, which both may be geometry
/// collections, and return the booelan result of the functor applied on each
/// combination of elements in the collections.
///
/// @tparam GC Coordinate specific gometry collection type.
///
/// @param f Functor to apply.
/// @param g1 First geometry.
/// @param g2 Second geometry.
///
/// @retval true g1 crosses g2.
/// @retval false g1 doesn't cross g2.
template <typename GC>
static bool geometry_collection_apply_crosses(const Crosses &f,
const Geometry *g1,
const Geometry *g2) {
if (g1->type() == Geometry_type::kGeometrycollection) {
std::unique_ptr<Multipoint> g1_mpt;
std::unique_ptr<Multilinestring> g1_mls;
std::unique_ptr<Multipolygon> g1_mpy;
split_gc(down_cast<const Geometrycollection *>(g1), &g1_mpt, &g1_mls,
&g1_mpy);
if (!g1_mpy->empty()) throw null_value_exception();
gc_union(f.semi_major(), f.semi_minor(), &g1_mpt, &g1_mls, &g1_mpy);
if (g2->type() == Geometry_type::kGeometrycollection) {
std::unique_ptr<Multipoint> g2_mpt;
std::unique_ptr<Multilinestring> g2_mls;
std::unique_ptr<Multipolygon> g2_mpy;
split_gc(down_cast<const Geometrycollection *>(g2), &g2_mpt, &g2_mls,
&g2_mpy);
if (!g2_mpt->empty() && g2_mls->empty() && g2_mpy->empty())
throw null_value_exception();
gc_union(f.semi_major(), f.semi_minor(), &g2_mpt, &g2_mls, &g2_mpy);
// g1 and g2 must have at least one interior point in common.
bool shared_interior = false;
DBUG_ASSERT(g1_mpy->empty()); // Should have returned already.
if (g1->coordinate_system() == Coordinate_system::kCartesian) {
if (g1_mpy->empty() && !g1_mls->empty() && g2_mpy->empty() &&
!g2_mls->empty()) {
// Both g1 and g2 are of dimenision 1, so the common interior has to
// be of dimension 0 for g1 and g2 to cross.
boost::geometry::de9im::mask mask("0********");
shared_interior = bg::relate(
*down_cast<Cartesian_multipoint *>(g1_mpt.get()),
*down_cast<Cartesian_multipoint *>(g2_mpt.get()), mask);
for (std::size_t i = 0;
i < down_cast<Cartesian_multipoint *>(g1_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Cartesian_multipoint *>(g1_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask);
}
for (std::size_t i = 0;
i < down_cast<Cartesian_multipoint *>(g2_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Cartesian_multipoint *>(g2_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Cartesian_multilinestring *>(g1_mls.get()),
mask);
}
if (bg::relate(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask)) {
shared_interior = true;
} else {
boost::geometry::de9im::mask line_mask("1********");
if (bg::relate(
*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multilinestring *>(g2_mls.get()),
line_mask)) {
shared_interior = false; // Shared interior is a line.
}
}
} else {
// Either g1 or g2 are not of dimension 1. Therefore, it's enough to
// have some common interior, there's no requirement on the
// dimensionality.
boost::geometry::de9im::mask mask("T********");
shared_interior = bg::relate(
*down_cast<Cartesian_multipoint *>(g1_mpt.get()),
*down_cast<Cartesian_multipoint *>(g2_mpt.get()), mask);
for (std::size_t i = 0;
i < down_cast<Cartesian_multipoint *>(g1_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Cartesian_multipoint *>(g1_mpt.get()))[i];
shared_interior |=
bg::relate(
pt, *down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask) ||
bg::relate(pt,
*down_cast<Cartesian_multipolygon *>(g2_mpy.get()),
mask);
}
for (std::size_t i = 0;
i < down_cast<Cartesian_multipoint *>(g2_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Cartesian_multipoint *>(g2_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Cartesian_multilinestring *>(g1_mls.get()),
mask);
}
shared_interior |=
bg::relate(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multilinestring *>(g2_mls.get()),
mask) ||
bg::relate(*down_cast<Cartesian_multilinestring *>(g1_mls.get()),
*down_cast<Cartesian_multipolygon *>(g2_mpy.get()),
mask);
}
} else {
DBUG_ASSERT(g1->coordinate_system() == Coordinate_system::kGeographic);
if (g1_mpy->empty() && !g1_mls->empty() && g2_mpy->empty() &&
!g2_mls->empty()) {
// Both g1 and g2 are of dimenision 1, so the common interior has to
// be of dimension 0 for g1 and g2 to cross.
boost::geometry::de9im::mask mask("0********");
shared_interior = bg::relate(
*down_cast<Geographic_multipoint *>(g1_mpt.get()),
*down_cast<Geographic_multipoint *>(g2_mpt.get()), mask);
for (std::size_t i = 0;
i < down_cast<Geographic_multipoint *>(g1_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Geographic_multipoint *>(g1_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask);
}
for (std::size_t i = 0;
i < down_cast<Geographic_multipoint *>(g2_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Geographic_multipoint *>(g2_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Geographic_multilinestring *>(g1_mls.get()),
mask);
}
if (bg::relate(*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask)) {
shared_interior = true;
} else {
boost::geometry::de9im::mask line_mask("1********");
if (bg::relate(
*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
line_mask)) {
shared_interior = false; // Shared interior is a line.
}
}
} else {
// Either g1 or g2 are not of dimension 1. Therefore, it's enough to
// have some common interior, there's no requirement on the
// dimensionality.
boost::geometry::de9im::mask mask("T********");
boost::geometry::strategy::within::geographic_winding<
Geographic_point>
geographic_pl_pa_strategy(
bg::srs::spheroid<double>(f.semi_major(), f.semi_minor()));
boost::geometry::strategy::intersection::geographic_segments<>
geographic_ll_la_aa_strategy(
bg::srs::spheroid<double>(f.semi_major(), f.semi_minor()));
shared_interior = bg::relate(
*down_cast<Geographic_multipoint *>(g1_mpt.get()),
*down_cast<Geographic_multipoint *>(g2_mpt.get()), mask);
for (std::size_t i = 0;
i < down_cast<Geographic_multipoint *>(g1_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Geographic_multipoint *>(g1_mpt.get()))[i];
shared_interior |=
bg::relate(
pt, *down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask, geographic_pl_pa_strategy) ||
bg::relate(pt,
*down_cast<Geographic_multipolygon *>(g2_mpy.get()),
mask, geographic_pl_pa_strategy);
}
for (std::size_t i = 0;
i < down_cast<Geographic_multipoint *>(g2_mpt.get())->size();
i++) {
auto &pt = (*down_cast<Geographic_multipoint *>(g2_mpt.get()))[i];
shared_interior |= bg::relate(
pt, *down_cast<Geographic_multilinestring *>(g1_mls.get()),
mask, geographic_pl_pa_strategy);
}
shared_interior |=
bg::relate(*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multilinestring *>(g2_mls.get()),
mask, geographic_ll_la_aa_strategy) ||
bg::relate(*down_cast<Geographic_multilinestring *>(g1_mls.get()),
*down_cast<Geographic_multipolygon *>(g2_mpy.get()),
mask, geographic_ll_la_aa_strategy);
}
}
if (!shared_interior) return false;
// At least one point of g1 must be in g2's exterior.
std::unique_ptr<Multipoint> mpt_diff;
Difference d(f.semi_major(), f.semi_minor());
mpt_diff.reset(down_cast<Multipoint *>(d(g1_mpt.get(), g2_mpt.get())));
mpt_diff.reset(down_cast<Multipoint *>(d(mpt_diff.get(), g2_mls.get())));
mpt_diff.reset(down_cast<Multipoint *>(d(mpt_diff.get(), g2_mpy.get())));
if (mpt_diff->size() > 0) return true;
std::unique_ptr<Multilinestring> mls_diff;
mls_diff.reset(
down_cast<Multilinestring *>(d(g1_mls.get(), g2_mls.get())));
mls_diff.reset(
down_cast<Multilinestring *>(d(mls_diff.get(), g2_mpy.get())));
return (mls_diff->size() > 0);
} else {
if (g1->coordinate_system() == Coordinate_system::kCartesian) {
Cartesian_geometrycollection gc;
gc.push_back(*g2);
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
f, g1, &gc);
} else {
DBUG_ASSERT(g1->coordinate_system() == Coordinate_system::kGeographic);
Geographic_geometrycollection gc;
gc.push_back(*g2);
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
f, g1, &gc);
}
}
} else {
if (g2->type() == Geometry_type::kGeometrycollection) {
if (g1->coordinate_system() == Coordinate_system::kCartesian) {
Cartesian_geometrycollection gc;
gc.push_back(*g1);
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
f, &gc, g2);
} else {
DBUG_ASSERT(g1->coordinate_system() == Coordinate_system::kGeographic);
Geographic_geometrycollection gc;
gc.push_back(*g1);
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
f, &gc, g2);
}
} else {
return f(g1, g2);
}
}
}
Crosses::Crosses(double semi_major, double semi_minor)
: m_semi_major(semi_major),
m_semi_minor(semi_minor),
m_geographic_pl_pa_strategy(
bg::srs::spheroid<double>(semi_major, semi_minor)),
m_geographic_ll_la_aa_strategy(
bg::srs::spheroid<double>(semi_major, semi_minor)) {}
bool Crosses::operator()(const Geometry *g1, const Geometry *g2) const {
return apply(*this, g1, g2);
}
bool Crosses::eval(const Geometry *g1, const Geometry *g2) const {
// All parameter type combinations have been implemented.
DBUG_ASSERT(false);
throw not_implemented_exception::for_non_projected(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_point, *)
bool Crosses::eval(const Cartesian_point *, const Cartesian_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_point *,
const Cartesian_linestring *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Cartesian_point *, const Cartesian_polygon *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Cartesian_point *g1,
const Cartesian_geometrycollection *g2) const {
// Must be evaluated in case g2 contains a single point.
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Cartesian_point *,
const Cartesian_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_point *,
const Cartesian_multilinestring *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Cartesian_point *,
const Cartesian_multipolygon *) const {
// A point may never cross another geometry.
return false;
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_linestring, *)
bool Crosses::eval(const Cartesian_linestring *,
const Cartesian_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_linestring *g1,
const Cartesian_linestring *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_linestring *g1,
const Cartesian_polygon *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_linestring *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Cartesian_linestring *,
const Cartesian_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_linestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_linestring *g1,
const Cartesian_multipolygon *g2) const {
return bg::crosses(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_polygon, *)
bool Crosses::eval(const Cartesian_polygon *, const Geometry *) const {
// If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_geometrycollection, *)
bool Crosses::eval(const Cartesian_geometrycollection *g1,
const Geometry *g2) const {
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
*this, g1, g2);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_multipoint, *)
bool Crosses::eval(const Cartesian_multipoint *,
const Cartesian_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_multipoint *g1,
const Cartesian_linestring *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Cartesian_multipoint *g1,
const Cartesian_polygon *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Cartesian_multipoint *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Cartesian_multipoint *,
const Cartesian_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_multipoint *g1,
const Cartesian_multilinestring *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Cartesian_multipoint *g1,
const Cartesian_multipolygon *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_multilinestring, *)
bool Crosses::eval(const Cartesian_multilinestring *,
const Cartesian_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_multilinestring *g1,
const Cartesian_linestring *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_multilinestring *g1,
const Cartesian_polygon *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_multilinestring *g1,
const Cartesian_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Cartesian_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Cartesian_multilinestring *,
const Cartesian_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Cartesian_multilinestring *g1,
const Cartesian_multilinestring *g2) const {
return bg::crosses(*g1, *g2);
}
bool Crosses::eval(const Cartesian_multilinestring *g1,
const Cartesian_multipolygon *g2) const {
return bg::crosses(*g1, *g2);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Cartesian_multipolygon, *)
bool Crosses::eval(const Cartesian_multipolygon *, const Geometry *) const {
// If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_point, *)
bool Crosses::eval(const Geographic_point *, const Geographic_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_point *,
const Geographic_linestring *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Geographic_point *, const Geographic_polygon *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Geographic_point *g1,
const Geographic_geometrycollection *g2) const {
// Must be evaluated in case g2 contains a single point.
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Geographic_point *,
const Geographic_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_point *,
const Geographic_multilinestring *) const {
// A point may never cross another geometry.
return false;
}
bool Crosses::eval(const Geographic_point *,
const Geographic_multipolygon *) const {
// A point may never cross another geometry.
return false;
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_linestring, *)
bool Crosses::eval(const Geographic_linestring *,
const Geographic_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_linestring *g1,
const Geographic_linestring *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_linestring *g1,
const Geographic_polygon *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_linestring *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Geographic_linestring *,
const Geographic_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_linestring *g1,
const Geographic_multilinestring *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_linestring *g1,
const Geographic_multipolygon *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_polygon, *)
bool Crosses::eval(const Geographic_polygon *, const Geometry *) const {
// If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_geometrycollection, *)
bool Crosses::eval(const Geographic_geometrycollection *g1,
const Geometry *g2) const {
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
*this, g1, g2);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_multipoint, *)
bool Crosses::eval(const Geographic_multipoint *,
const Geographic_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_multipoint *g1,
const Geographic_linestring *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Geographic_multipoint *g1,
const Geographic_polygon *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Geographic_multipoint *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Geographic_multipoint *,
const Geographic_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_multipoint *g1,
const Geographic_multilinestring *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
bool Crosses::eval(const Geographic_multipoint *g1,
const Geographic_multipolygon *g2) const {
Within within(m_semi_major, m_semi_minor);
Disjoint disjoint(m_semi_major, m_semi_minor);
bool found_within = false;
bool found_disjoint = false;
// At least one point in g1 has to be within g2, and at least one point in
// g1
// has to be disjoint from g2.
for (auto &pt : *g1) {
bool pt_disjoint = false;
if (!found_disjoint) {
pt_disjoint = disjoint(&pt, g2);
found_disjoint = pt_disjoint;
}
if (!pt_disjoint && !found_within) {
found_within = within(&pt, g2);
}
if (found_disjoint && found_within) break;
}
return found_disjoint && found_within;
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_multilinestring, *)
bool Crosses::eval(const Geographic_multilinestring *,
const Geographic_point *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_multilinestring *g1,
const Geographic_linestring *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_multilinestring *g1,
const Geographic_polygon *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_multilinestring *g1,
const Geographic_geometrycollection *g2) const {
return geometry_collection_apply_crosses<Geographic_geometrycollection>(
*this, g1, g2);
}
bool Crosses::eval(const Geographic_multilinestring *,
const Geographic_multipoint *) const {
// If g2 is a 0d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
bool Crosses::eval(const Geographic_multilinestring *g1,
const Geographic_multilinestring *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
bool Crosses::eval(const Geographic_multilinestring *g1,
const Geographic_multipolygon *g2) const {
return bg::crosses(*g1, *g2, m_geographic_ll_la_aa_strategy);
}
//////////////////////////////////////////////////////////////////////////////
// crosses(Geographic_multipolygon, *)
bool Crosses::eval(const Geographic_multipolygon *, const Geometry *) const {
// If g1 is a 2d geometry, return NULL (SQL/MM 2015, Sect. 5.1.51).
throw null_value_exception();
}
//////////////////////////////////////////////////////////////////////////////
bool crosses(const dd::Spatial_reference_system *srs, const Geometry *g1,
const Geometry *g2, const char *func_name, bool *crosses,
bool *null) noexcept {
try {
DBUG_ASSERT(g1->coordinate_system() == g2->coordinate_system());
DBUG_ASSERT(srs == nullptr ||
((srs->is_cartesian() &&
g1->coordinate_system() == Coordinate_system::kCartesian) ||
(srs->is_geographic() &&
g1->coordinate_system() == Coordinate_system::kGeographic)));
if ((*null = (g1->is_empty() || g2->is_empty()))) return false;
Crosses crosses_func(srs ? srs->semi_major_axis() : 0.0,
srs ? srs->semi_minor_axis() : 0.0);
*crosses = crosses_func(g1, g2);
} catch (const null_value_exception &e) {
*null = true;
return false;
} catch (...) {
handle_gis_exception(func_name);
return true;
}
return false;
}
} // namespace gis