用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

563 lines
15 KiB

3 months ago
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020/12/31 Bernard Add license info
*/
#include <board.h>
#include <rtthread.h>
#include <rtdevice.h>
#include <automac.h>
#include <netif/ethernetif.h>
#include <lwipopts.h>
#include "delay.h"
#include "mmu.h"
#include "drv_smc911x.h"
#define MAX_ADDR_LEN 6
#define SMC911X_EMAC_DEVICE(eth) (struct eth_device_smc911x*)(eth)
#define DRIVERNAME "EMAC"
#define DBG_LVL DBG_LOG
#define DBG_TAG "EMAC"
#include <rtdbg.h>
struct eth_device_smc911x
{
/* inherit from Ethernet device */
struct eth_device parent;
/* interface address info. */
rt_uint8_t enetaddr[MAX_ADDR_LEN]; /* MAC address */
uint32_t iobase;
uint32_t irqno;
};
static struct eth_device_smc911x _emac;
#if defined (CONFIG_SMC911X_32_BIT)
rt_inline uint32_t smc911x_reg_read(struct eth_device_smc911x *dev, uint32_t offset)
{
return *(volatile uint32_t *)(dev->iobase + offset);
}
rt_inline void smc911x_reg_write(struct eth_device_smc911x *dev, uint32_t offset, uint32_t val)
{
*(volatile uint32_t *)(dev->iobase + offset) = val;
}
#elif defined (CONFIG_SMC911X_16_BIT)
rt_inline uint32_t smc911x_reg_read(struct eth_device_smc911x *dev, uint32_t offset)
{
volatile uint16_t *addr_16 = (uint16_t *)(dev->iobase + offset);
return ((*addr_16 & 0x0000ffff) | (*(addr_16 + 1) << 16));
}
rt_inline void smc911x_reg_write(struct eth_device_smc911x *dev, uint32_t offset, uint32_t val)
{
*(volatile uint16_t *)(dev->iobase + offset) = (uint16_t)val;
*(volatile uint16_t *)(dev->iobase + offset + 2) = (uint16_t)(val >> 16);
}
#else
#error "SMC911X: undefined bus width"
#endif /* CONFIG_SMC911X_16_BIT */
struct chip_id
{
uint16_t id;
char *name;
};
static const struct chip_id chip_ids[] =
{
{ LAN9118_ID_89218, "LAN89218" },
{ LAN9118_ID_9115, "LAN9115" },
{ LAN9118_ID_9116, "LAN9116" },
{ LAN9118_ID_9117, "LAN9117" },
{ LAN9118_ID_9118, "LAN9118" },
{ LAN9210_ID_9211, "LAN9211" },
{ LAN9218_ID_9215, "LAN9215" },
{ LAN9218_ID_9216, "LAN9216" },
{ LAN9218_ID_9217, "LAN9217" },
{ LAN9218_ID_9218, "LAN9218" },
{ LAN9220_ID_9220, "LAN9220" },
{ LAN9220_ID_9221, "LAN9221" },
{ 0, RT_NULL },
};
static uint32_t smc911x_get_mac_csr(struct eth_device_smc911x *dev, uint8_t reg)
{
while (smc911x_reg_read(dev, LAN9118_MAC_CSR_CMD) & LAN9118_MAC_CSR_CMD_BUSY) ;
smc911x_reg_write(dev, LAN9118_MAC_CSR_CMD, LAN9118_MAC_CSR_CMD_BUSY | LAN9118_MAC_CSR_CMD_R | reg);
while (smc911x_reg_read(dev, LAN9118_MAC_CSR_CMD) & LAN9118_MAC_CSR_CMD_BUSY) ;
return smc911x_reg_read(dev, LAN9118_MAC_CSR_DATA);
}
static void smc911x_set_mac_csr(struct eth_device_smc911x *dev, uint8_t reg, uint32_t data)
{
while (smc911x_reg_read(dev, LAN9118_MAC_CSR_CMD) & LAN9118_MAC_CSR_CMD_BUSY) ;
smc911x_reg_write(dev, LAN9118_MAC_CSR_DATA, data);
smc911x_reg_write(dev, LAN9118_MAC_CSR_CMD, LAN9118_MAC_CSR_CMD_BUSY | reg);
while (smc911x_reg_read(dev, LAN9118_MAC_CSR_CMD) & LAN9118_MAC_CSR_CMD_BUSY) ;
}
static int smc911x_detect_chip(struct eth_device_smc911x *dev)
{
unsigned long val, i;
val = smc911x_reg_read(dev, LAN9118_BYTE_TEST);
if (val == 0xffffffff)
{
/* Special case -- no chip present */
return -1;
}
else if (val != 0x87654321)
{
LOG_E("Invalid chip endian 0x%08lx\n", val);
return -1;
}
val = smc911x_reg_read(dev, LAN9118_ID_REV) >> 16;
for (i = 0; chip_ids[i].id != 0; i++)
{
if (chip_ids[i].id == val) break;
}
if (!chip_ids[i].id)
{
rt_kprintf(DRIVERNAME ": Unknown chip ID %04lx\n", val);
return -1;
}
return 0;
}
static void smc911x_reset(struct eth_device_smc911x *dev)
{
int timeout;
/*
* Take out of PM setting first
* Device is already wake up if LAN9118_PMT_CTRL_READY bit is set
*/
if ((smc911x_reg_read(dev, LAN9118_PMT_CTRL) & LAN9118_PMT_CTRL_READY) == 0)
{
/* Write to the bytetest will take out of powerdown */
smc911x_reg_write(dev, LAN9118_BYTE_TEST, 0x0);
timeout = 10;
while (timeout-- && !(smc911x_reg_read(dev, LAN9118_PMT_CTRL) & LAN9118_PMT_CTRL_READY))
udelay(10);
if (timeout < 0)
{
rt_kprintf(DRIVERNAME
": timeout waiting for PM restore\n");
return;
}
}
/* Disable interrupts */
smc911x_reg_write(dev, LAN9118_INT_EN, 0);
smc911x_reg_write(dev, LAN9118_HW_CFG, LAN9118_HW_CFG_SRST);
timeout = 1000;
while (timeout-- && smc911x_reg_read(dev, LAN9118_E2P_CMD) & LAN9118_E2P_CMD)
udelay(10);
if (timeout < 0)
{
rt_kprintf(DRIVERNAME ": reset timeout\n");
return;
}
/* Reset the FIFO level and flow control settings */
smc911x_set_mac_csr(dev, LAN9118_FLOW, LAN9118_FLOW_FCPT(0xffff) | LAN9118_FLOW_FCEN);
smc911x_reg_write(dev, LAN9118_AFC_CFG, 0x0050287F);
/* Set to LED outputs */
smc911x_reg_write(dev, LAN9118_GPIO_CFG, 0x70070000);
}
static void smc911x_handle_mac_address(struct eth_device_smc911x *dev)
{
unsigned long addrh, addrl;
uint8_t *m = dev->enetaddr;
addrl = m[0] | (m[1] << 8) | (m[2] << 16) | (m[3] << 24);
addrh = m[4] | (m[5] << 8);
smc911x_set_mac_csr(dev, LAN9118_ADDRL, addrl);
smc911x_set_mac_csr(dev, LAN9118_ADDRH, addrh);
}
static int smc911x_eth_phy_read(struct eth_device_smc911x *dev,
uint8_t phy, uint8_t reg, uint16_t *val)
{
while (smc911x_get_mac_csr(dev, LAN9118_MII_ACC) & LAN9118_MII_ACC_MIIBZY) ;
smc911x_set_mac_csr(dev, LAN9118_MII_ACC, phy << 11 | reg << 6 | LAN9118_MII_ACC_MIIBZY);
while (smc911x_get_mac_csr(dev, LAN9118_MII_ACC) & LAN9118_MII_ACC_MIIBZY) ;
*val = smc911x_get_mac_csr(dev, LAN9118_MII_DATA);
return 0;
}
static int smc911x_eth_phy_write(struct eth_device_smc911x *dev,
uint8_t phy, uint8_t reg, uint16_t val)
{
while (smc911x_get_mac_csr(dev, LAN9118_MII_ACC) & LAN9118_MII_ACC_MIIBZY)
;
smc911x_set_mac_csr(dev, LAN9118_MII_DATA, val);
smc911x_set_mac_csr(dev, LAN9118_MII_ACC,
phy << 11 | reg << 6 | LAN9118_MII_ACC_MIIBZY | LAN9118_MII_ACC_MIIWNR);
while (smc911x_get_mac_csr(dev, LAN9118_MII_ACC) & LAN9118_MII_ACC_MIIBZY)
;
return 0;
}
static int smc911x_phy_reset(struct eth_device_smc911x *dev)
{
uint32_t reg;
reg = smc911x_reg_read(dev, LAN9118_PMT_CTRL);
reg &= ~0xfffff030;
reg |= LAN9118_PMT_CTRL_PHY_RST;
smc911x_reg_write(dev, LAN9118_PMT_CTRL, reg);
mdelay(100);
return 0;
}
static void smc911x_phy_configure(struct eth_device_smc911x *dev)
{
int timeout;
uint16_t status;
smc911x_phy_reset(dev);
smc911x_eth_phy_write(dev, 1, LAN9118_MII_BMCR, LAN9118_BMCR_RESET);
mdelay(1);
smc911x_eth_phy_write(dev, 1, LAN9118_MII_ADVERTISE, 0x01e1);
smc911x_eth_phy_write(dev, 1, LAN9118_MII_BMCR, LAN9118_BMCR_ANENABLE | LAN9118_BMCR_ANRESTART);
timeout = 5000;
do
{
mdelay(1);
if ((timeout--) == 0)
goto err_out;
if (smc911x_eth_phy_read(dev, 1, LAN9118_MII_BMSR, &status) != 0)
goto err_out;
}
while (!(status & LAN9118_BMSR_LSTATUS));
return;
err_out:
rt_kprintf(DRIVERNAME ": autonegotiation timed out\n");
}
static void smc911x_enable(struct eth_device_smc911x *dev)
{
/* Enable TX */
smc911x_reg_write(dev, LAN9118_HW_CFG, 8 << 16 | LAN9118_HW_CFG_SF);
smc911x_reg_write(dev, LAN9118_GPT_CFG, LAN9118_GPT_CFG_TIMER_EN | 10000);
smc911x_reg_write(dev, LAN9118_TX_CFG, LAN9118_TX_CFG_TX_ON);
/* no padding to start of packets */
smc911x_reg_write(dev, LAN9118_RX_CFG, 0);
smc911x_set_mac_csr(dev, LAN9118_MAC_CR, LAN9118_MAC_CR_TXEN | LAN9118_MAC_CR_RXEN |
LAN9118_MAC_CR_HBDIS);
}
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
/* wrapper for smc911x_eth_phy_read */
static int smc911x_miiphy_read(struct mii_dev *bus, int phy, int devad,
int reg)
{
uint16_t val = 0;
struct eth_device_smc911x *dev = eth_get_dev_by_name(bus->name);
if (dev)
{
int retval = smc911x_eth_phy_read(dev, phy, reg, &val);
if (retval < 0)
return retval;
return val;
}
return -ENODEV;
}
/* wrapper for smc911x_eth_phy_write */
static int smc911x_miiphy_write(struct mii_dev *bus, int phy, int devad,
int reg, uint16_t val)
{
struct eth_device_smc911x *dev = eth_get_dev_by_name(bus->name);
if (dev)
return smc911x_eth_phy_write(dev, phy, reg, val);
return -ENODEV;
}
#endif
static void smc911x_isr(int vector, void *param)
{
uint32_t status;
struct eth_device_smc911x *emac;
emac = SMC911X_EMAC_DEVICE(param);
status = smc911x_reg_read(emac, LAN9118_INT_STS);
if (status & LAN9118_INT_STS_RSFL)
{
eth_device_ready(&emac->parent);
}
smc911x_reg_write(emac, LAN9118_INT_STS, status);
return ;
}
static rt_err_t smc911x_emac_init(rt_device_t dev)
{
// uint32_t value;
struct eth_device_smc911x *emac;
emac = SMC911X_EMAC_DEVICE(dev);
RT_ASSERT(emac != RT_NULL);
smc911x_reset(emac);
/* Configure the PHY, initialize the link state */
smc911x_phy_configure(emac);
smc911x_handle_mac_address(emac);
/* Turn on Tx + Rx */
smc911x_enable(emac);
/* Interrupt on every received packet */
smc911x_reg_write(emac, LAN9118_FIFO_INT, 0x01 << 8);
smc911x_reg_write(emac, LAN9118_INT_EN, LAN9118_INT_EN_RDFL_EN | LAN9118_INT_RSFL);
/* enable interrupt */
smc911x_reg_write(emac, LAN9118_IRQ_CFG, LAN9118_IRQ_CFG_IRQ_EN | LAN9118_IRQ_CFG_IRQ_POL | LAN9118_IRQ_CFG_IRQ_TYPE);
rt_hw_interrupt_install(emac->irqno, smc911x_isr, emac, "smc911x");
rt_hw_interrupt_umask(emac->irqno);
return RT_EOK;
}
static rt_err_t smc911x_emac_control(rt_device_t dev, int cmd, void *args)
{
struct eth_device_smc911x *emac;
emac = SMC911X_EMAC_DEVICE(dev);
RT_ASSERT(emac != RT_NULL);
switch (cmd)
{
case NIOCTL_GADDR:
/* get MAC address */
if (args) rt_memcpy(args, emac->enetaddr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* Ethernet device interface */
/* transmit packet. */
static uint8_t tx_buf[2048];
rt_err_t smc911x_emac_tx(rt_device_t dev, struct pbuf *p)
{
struct eth_device_smc911x *emac;
uint32_t *data;
uint32_t tmplen;
uint32_t status;
uint32_t length;
emac = SMC911X_EMAC_DEVICE(dev);
RT_ASSERT(emac != RT_NULL);
/* copy pbuf to a whole ETH frame */
pbuf_copy_partial(p, tx_buf, p->tot_len, 0);
/* send it out */
data = (uint32_t *)tx_buf;
length = p->tot_len;
smc911x_reg_write(emac, LAN9118_TXDFIFOP, LAN9118_TXC_A_FS | LAN9118_TXC_A_LS | length);
smc911x_reg_write(emac, LAN9118_TXDFIFOP, length);
tmplen = (length + 3) / 4;
while (tmplen--)
{
smc911x_reg_write(emac, LAN9118_TXDFIFOP, *data++);
}
/* wait for transmission */
while (!(LAN9118_TX_FIFO_INF_TXSUSED(smc911x_reg_read(emac, LAN9118_TX_FIFO_INF))));
/* get status. Ignore 'no carrier' error, it has no meaning for
* full duplex operation
*/
status = smc911x_reg_read(emac, LAN9118_TXSFIFOP) &
(LAN9118_TXS_LOC | LAN9118_TXS_LCOL | LAN9118_TXS_ECOL |
LAN9118_TXS_ED | LAN9118_TX_STS_UNDERRUN);
if (!status) return 0;
LOG_E(DRIVERNAME ": failed to send packet: %s%s%s%s%s\n",
status & LAN9118_TXS_LOC ? "LAN9118_TXS_LOC " : "",
status & LAN9118_TXS_LCOL ? "LAN9118_TXS_LCOL " : "",
status & LAN9118_TXS_ECOL ? "LAN9118_TXS_ECOL " : "",
status & LAN9118_TXS_ED ? "LAN9118_TXS_ED " : "",
status & LAN9118_TX_STS_UNDERRUN ? "LAN9118_TX_STS_UNDERRUN" : "");
return -RT_EIO;
}
/* reception packet. */
struct pbuf *smc911x_emac_rx(rt_device_t dev)
{
struct pbuf *p = RT_NULL;
struct eth_device_smc911x *emac;
emac = SMC911X_EMAC_DEVICE(dev);
RT_ASSERT(emac != RT_NULL);
/* take the emac buffer to the pbuf */
if (LAN9118_RX_FIFO_INF_RXSUSED(smc911x_reg_read(emac, LAN9118_RX_FIFO_INF)))
{
uint32_t status;
uint32_t pktlen, tmplen;
status = smc911x_reg_read(emac, LAN9118_RXSFIFOP);
/* get frame length */
pktlen = (status & LAN9118_RX_STS_PKT_LEN) >> 16;
smc911x_reg_write(emac, LAN9118_RX_CFG, 0);
tmplen = (pktlen + 3) / 4;
/* allocate pbuf */
p = pbuf_alloc(PBUF_RAW, tmplen * 4, PBUF_RAM);
if (p)
{
uint32_t *data = (uint32_t *)p->payload;
while (tmplen--)
{
*data++ = smc911x_reg_read(emac, LAN9118_RXDFIFOP);
}
}
if (status & LAN9118_RXS_ES)
{
rt_kprintf(DRIVERNAME ": dropped bad packet. Status: 0x%08x\n", status);
}
}
return p;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops smc911x_emac_ops =
{
smc911x_emac_init,
RT_NULL,
RT_NULL,
RT_NULL,
RT_NULL,
smc911x_emac_control
};
#endif
int smc911x_emac_hw_init(void)
{
rt_memset(&_emac, 0x0, sizeof(_emac));
_emac.iobase = VEXPRESS_ETH_BASE;
#ifdef RT_USING_SMART
_emac.iobase = (uint32_t)rt_ioremap((void*)VEXPRESS_ETH_BASE, 0x1000);
#endif
_emac.irqno = IRQ_VEXPRESS_A9_ETH;
if (smc911x_detect_chip(&_emac))
{
rt_kprintf("no smc911x network interface found!\n");
return -1;
}
/* set INT CFG */
smc911x_reg_write(&_emac, LAN9118_IRQ_CFG, LAN9118_IRQ_CFG_IRQ_POL | LAN9118_IRQ_CFG_IRQ_TYPE);
/* test MAC address */
_emac.enetaddr[0] = AUTOMAC0;
_emac.enetaddr[1] = AUTOMAC1;
_emac.enetaddr[2] = AUTOMAC2;
_emac.enetaddr[3] = AUTOMAC3;
_emac.enetaddr[4] = AUTOMAC4;
_emac.enetaddr[5] = AUTOMAC5;
#ifdef RT_USING_DEVICE_OPS
_emac.parent.parent.ops = &smc911x_emac_ops;
#else
_emac.parent.parent.init = smc911x_emac_init;
_emac.parent.parent.open = RT_NULL;
_emac.parent.parent.close = RT_NULL;
_emac.parent.parent.read = RT_NULL;
_emac.parent.parent.write = RT_NULL;
_emac.parent.parent.control = smc911x_emac_control;
#endif
_emac.parent.parent.user_data = RT_NULL;
_emac.parent.eth_rx = smc911x_emac_rx;
_emac.parent.eth_tx = smc911x_emac_tx;
/* register ETH device */
eth_device_init(&(_emac.parent), "e0");
#if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
{
int retval;
struct mii_dev *mdiodev = mdio_alloc();
if (!mdiodev)
return -ENOMEM;
strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
mdiodev->read = smc911x_miiphy_read;
mdiodev->write = smc911x_miiphy_write;
retval = mdio_register(mdiodev);
if (retval < 0)
return retval;
}
#endif
eth_device_linkchange(&_emac.parent, RT_TRUE);
return 0;
}
INIT_APP_EXPORT(smc911x_emac_hw_init);