用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3043 lines
84 KiB

3 months ago
/*
$License:
Copyright (C) 2011-2012 InvenSense Corporation, All Rights Reserved.
See included License.txt for License information.
$
*/
/**
* @addtogroup DRIVERS Sensor Driver Layer
* @brief Hardware drivers to communicate with sensors via I2C.
*
* @{
* @file inv_mpu.c
* @brief An I2C-based driver for Invensense gyroscopes.
* @details This driver currently works for the following devices:
* MPU6050
* MPU6500
* MPU9150 (or MPU6050 w/ AK8975 on the auxiliary bus)
* MPU9250 (or MPU6500 w/ AK8963 on the auxiliary bus)
*/
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "inv_mpu.h"
#include "inv_mpu_dmp_motion_driver.h"
#include "mpu6050.h"
#include "delay.h"
//#include "usart.h"
#define MPU6050 //<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ʹ<EFBFBD>õĴ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ΪMPU6050
#define MOTION_DRIVER_TARGET_MSP430 //<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>,<EFBFBD><EFBFBD><EFBFBD><EFBFBD>MSP430<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(<EFBFBD><EFBFBD>ֲ<EFBFBD><EFBFBD>STM32F1)
/* The following functions must be defined for this platform:
* i2c_write(unsigned char slave_addr, unsigned char reg_addr,
* unsigned char length, unsigned char const *data)
* i2c_read(unsigned char slave_addr, unsigned char reg_addr,
* unsigned char length, unsigned char *data)
* delay_ms(unsigned long num_ms)
* get_ms(unsigned long *count)
* reg_int_cb(void (*cb)(void), unsigned char port, unsigned char pin)
* labs(long x)
* fabsf(float x)
* min(int a, int b)
*/
#if defined MOTION_DRIVER_TARGET_MSP430
//#include "msp430.h"
//#include "msp430_i2c.h"
//#include "msp430_clock.h"
//#include "msp430_interrupt.h"
#define i2c_write MPU_Write_Len
#define i2c_read MPU_Read_Len
#define delay_ms delay_ms
#define get_ms mget_ms
//static inline int reg_int_cb(struct int_param_s *int_param)
//{
// return msp430_reg_int_cb(int_param->cb, int_param->pin, int_param->lp_exit,
// int_param->active_low);
//}
#define log_i printf //<EFBFBD><EFBFBD>ӡ<EFBFBD><EFBFBD>Ϣ
#define log_e printf //<EFBFBD><EFBFBD>ӡ<EFBFBD><EFBFBD>Ϣ
/* labs is already defined by TI's toolchain. */
/* fabs is for doubles. fabsf is for floats. */
#define fabs fabsf
#define min(a,b) ((a<b)?a:b)
#elif defined EMPL_TARGET_MSP430
#include "msp430.h"
#include "msp430_i2c.h"
#include "msp430_clock.h"
#include "msp430_interrupt.h"
#include "log.h"
#define i2c_write msp430_i2c_write
#define i2c_read msp430_i2c_read
#define delay_ms msp430_delay_ms
#define get_ms msp430_get_clock_ms
static inline int reg_int_cb(struct int_param_s *int_param)
{
return msp430_reg_int_cb(int_param->cb, int_param->pin, int_param->lp_exit,
int_param->active_low);
}
#define log_i MPL_LOGI
#define log_e MPL_LOGE
/* labs is already defined by TI's toolchain. */
/* fabs is for doubles. fabsf is for floats. */
#define fabs fabsf
#define min(a,b) ((a<b)?a:b)
#elif defined EMPL_TARGET_UC3L0
/* Instead of using the standard TWI driver from the ASF library, we're using
* a TWI driver that follows the slave address + register address convention.
*/
#include "twi.h"
#include "delay.h"
#include "sysclk.h"
#include "log.h"
#include "sensors_xplained.h"
#include "uc3l0_clock.h"
#define i2c_write(a, b, c, d) twi_write(a, b, d, c)
#define i2c_read(a, b, c, d) twi_read(a, b, d, c)
/* delay_ms is a function already defined in ASF. */
#define get_ms uc3l0_get_clock_ms
static inline int reg_int_cb(struct int_param_s *int_param)
{
sensor_board_irq_connect(int_param->pin, int_param->cb, int_param->arg);
return 0;
}
#define log_i MPL_LOGI
#define log_e MPL_LOGE
/* UC3 is a 32-bit processor, so abs and labs are equivalent. */
#define labs abs
#define fabs(x) (((x)>0)?(x):-(x))
#else
#error Gyro driver is missing the system layer implementations.
#endif
#if !defined MPU6050 && !defined MPU9150 && !defined MPU6500 && !defined MPU9250
#error Which gyro are you using? Define MPUxxxx in your compiler options.
#endif
/* Time for some messy macro work. =]
* #define MPU9150
* is equivalent to..
* #define MPU6050
* #define AK8975_SECONDARY
*
* #define MPU9250
* is equivalent to..
* #define MPU6500
* #define AK8963_SECONDARY
*/
#if defined MPU9150
#ifndef MPU6050
#define MPU6050
#endif /* #ifndef MPU6050 */
#if defined AK8963_SECONDARY
#error "MPU9150 and AK8963_SECONDARY cannot both be defined."
#elif !defined AK8975_SECONDARY /* #if defined AK8963_SECONDARY */
#define AK8975_SECONDARY
#endif /* #if defined AK8963_SECONDARY */
#elif defined MPU9250 /* #if defined MPU9150 */
#ifndef MPU6500
#define MPU6500
#endif /* #ifndef MPU6500 */
#if defined AK8975_SECONDARY
#error "MPU9250 and AK8975_SECONDARY cannot both be defined."
#elif !defined AK8963_SECONDARY /* #if defined AK8975_SECONDARY */
#define AK8963_SECONDARY
#endif /* #if defined AK8975_SECONDARY */
#endif /* #if defined MPU9150 */
#if defined AK8975_SECONDARY || defined AK8963_SECONDARY
#define AK89xx_SECONDARY
#else
/* #warning "No compass = less profit for Invensense. Lame." */
#endif
static int set_int_enable(unsigned char enable);
/* Hardware registers needed by driver. */
struct gyro_reg_s {
unsigned char who_am_i;
unsigned char rate_div;
unsigned char lpf;
unsigned char prod_id;
unsigned char user_ctrl;
unsigned char fifo_en;
unsigned char gyro_cfg;
unsigned char accel_cfg;
// unsigned char accel_cfg2;
// unsigned char lp_accel_odr;
unsigned char motion_thr;
unsigned char motion_dur;
unsigned char fifo_count_h;
unsigned char fifo_r_w;
unsigned char raw_gyro;
unsigned char raw_accel;
unsigned char temp;
unsigned char int_enable;
unsigned char dmp_int_status;
unsigned char int_status;
// unsigned char accel_intel;
unsigned char pwr_mgmt_1;
unsigned char pwr_mgmt_2;
unsigned char int_pin_cfg;
unsigned char mem_r_w;
unsigned char accel_offs;
unsigned char i2c_mst;
unsigned char bank_sel;
unsigned char mem_start_addr;
unsigned char prgm_start_h;
#if defined AK89xx_SECONDARY
unsigned char s0_addr;
unsigned char s0_reg;
unsigned char s0_ctrl;
unsigned char s1_addr;
unsigned char s1_reg;
unsigned char s1_ctrl;
unsigned char s4_ctrl;
unsigned char s0_do;
unsigned char s1_do;
unsigned char i2c_delay_ctrl;
unsigned char raw_compass;
/* The I2C_MST_VDDIO bit is in this register. */
unsigned char yg_offs_tc;
#endif
};
/* Information specific to a particular device. */
struct hw_s {
unsigned char addr;
unsigned short max_fifo;
unsigned char num_reg;
unsigned short temp_sens;
short temp_offset;
unsigned short bank_size;
#if defined AK89xx_SECONDARY
unsigned short compass_fsr;
#endif
};
/* When entering motion interrupt mode, the driver keeps track of the
* previous state so that it can be restored at a later time.
* TODO: This is tacky. Fix it.
*/
struct motion_int_cache_s {
unsigned short gyro_fsr;
unsigned char accel_fsr;
unsigned short lpf;
unsigned short sample_rate;
unsigned char sensors_on;
unsigned char fifo_sensors;
unsigned char dmp_on;
};
/* Cached chip configuration data.
* TODO: A lot of these can be handled with a bitmask.
*/
struct chip_cfg_s {
/* Matches gyro_cfg >> 3 & 0x03 */
unsigned char gyro_fsr;
/* Matches accel_cfg >> 3 & 0x03 */
unsigned char accel_fsr;
/* Enabled sensors. Uses same masks as fifo_en, NOT pwr_mgmt_2. */
unsigned char sensors;
/* Matches config register. */
unsigned char lpf;
unsigned char clk_src;
/* Sample rate, NOT rate divider. */
unsigned short sample_rate;
/* Matches fifo_en register. */
unsigned char fifo_enable;
/* Matches int enable register. */
unsigned char int_enable;
/* 1 if devices on auxiliary I2C bus appear on the primary. */
unsigned char bypass_mode;
/* 1 if half-sensitivity.
* NOTE: This doesn't belong here, but everything else in hw_s is const,
* and this allows us to save some precious RAM.
*/
unsigned char accel_half;
/* 1 if device in low-power accel-only mode. */
unsigned char lp_accel_mode;
/* 1 if interrupts are only triggered on motion events. */
unsigned char int_motion_only;
struct motion_int_cache_s cache;
/* 1 for active low interrupts. */
unsigned char active_low_int;
/* 1 for latched interrupts. */
unsigned char latched_int;
/* 1 if DMP is enabled. */
unsigned char dmp_on;
/* Ensures that DMP will only be loaded once. */
unsigned char dmp_loaded;
/* Sampling rate used when DMP is enabled. */
unsigned short dmp_sample_rate;
#ifdef AK89xx_SECONDARY
/* Compass sample rate. */
unsigned short compass_sample_rate;
unsigned char compass_addr;
short mag_sens_adj[3];
#endif
};
/* Information for self-test. */
struct test_s {
unsigned long gyro_sens;
unsigned long accel_sens;
unsigned char reg_rate_div;
unsigned char reg_lpf;
unsigned char reg_gyro_fsr;
unsigned char reg_accel_fsr;
unsigned short wait_ms;
unsigned char packet_thresh;
float min_dps;
float max_dps;
float max_gyro_var;
float min_g;
float max_g;
float max_accel_var;
};
/* Gyro driver state variables. */
struct gyro_state_s {
const struct gyro_reg_s *reg;
const struct hw_s *hw;
struct chip_cfg_s chip_cfg;
const struct test_s *test;
};
/* Filter configurations. */
enum lpf_e {
INV_FILTER_256HZ_NOLPF2 = 0,
INV_FILTER_188HZ,
INV_FILTER_98HZ,
INV_FILTER_42HZ,
INV_FILTER_20HZ,
INV_FILTER_10HZ,
INV_FILTER_5HZ,
INV_FILTER_2100HZ_NOLPF,
NUM_FILTER
};
/* Full scale ranges. */
enum gyro_fsr_e {
INV_FSR_250DPS = 0,
INV_FSR_500DPS,
INV_FSR_1000DPS,
INV_FSR_2000DPS,
NUM_GYRO_FSR
};
/* Full scale ranges. */
enum accel_fsr_e {
INV_FSR_2G = 0,
INV_FSR_4G,
INV_FSR_8G,
INV_FSR_16G,
NUM_ACCEL_FSR
};
/* Clock sources. */
enum clock_sel_e {
INV_CLK_INTERNAL = 0,
INV_CLK_PLL,
NUM_CLK
};
/* Low-power accel wakeup rates. */
enum lp_accel_rate_e {
#if defined MPU6050
INV_LPA_1_25HZ,
INV_LPA_5HZ,
INV_LPA_20HZ,
INV_LPA_40HZ
#elif defined MPU6500
INV_LPA_0_3125HZ,
INV_LPA_0_625HZ,
INV_LPA_1_25HZ,
INV_LPA_2_5HZ,
INV_LPA_5HZ,
INV_LPA_10HZ,
INV_LPA_20HZ,
INV_LPA_40HZ,
INV_LPA_80HZ,
INV_LPA_160HZ,
INV_LPA_320HZ,
INV_LPA_640HZ
#endif
};
#define BIT_I2C_MST_VDDIO (0x80)
#define BIT_FIFO_EN (0x40)
#define BIT_DMP_EN (0x80)
#define BIT_FIFO_RST (0x04)
#define BIT_DMP_RST (0x08)
#define BIT_FIFO_OVERFLOW (0x10)
#define BIT_DATA_RDY_EN (0x01)
#define BIT_DMP_INT_EN (0x02)
#define BIT_MOT_INT_EN (0x40)
#define BITS_FSR (0x18)
#define BITS_LPF (0x07)
#define BITS_HPF (0x07)
#define BITS_CLK (0x07)
#define BIT_FIFO_SIZE_1024 (0x40)
#define BIT_FIFO_SIZE_2048 (0x80)
#define BIT_FIFO_SIZE_4096 (0xC0)
#define BIT_RESET (0x80)
#define BIT_SLEEP (0x40)
#define BIT_S0_DELAY_EN (0x01)
#define BIT_S2_DELAY_EN (0x04)
#define BITS_SLAVE_LENGTH (0x0F)
#define BIT_SLAVE_BYTE_SW (0x40)
#define BIT_SLAVE_GROUP (0x10)
#define BIT_SLAVE_EN (0x80)
#define BIT_I2C_READ (0x80)
#define BITS_I2C_MASTER_DLY (0x1F)
#define BIT_AUX_IF_EN (0x20)
#define BIT_ACTL (0x80)
#define BIT_LATCH_EN (0x20)
#define BIT_ANY_RD_CLR (0x10)
#define BIT_BYPASS_EN (0x02)
#define BITS_WOM_EN (0xC0)
#define BIT_LPA_CYCLE (0x20)
#define BIT_STBY_XA (0x20)
#define BIT_STBY_YA (0x10)
#define BIT_STBY_ZA (0x08)
#define BIT_STBY_XG (0x04)
#define BIT_STBY_YG (0x02)
#define BIT_STBY_ZG (0x01)
#define BIT_STBY_XYZA (BIT_STBY_XA | BIT_STBY_YA | BIT_STBY_ZA)
#define BIT_STBY_XYZG (BIT_STBY_XG | BIT_STBY_YG | BIT_STBY_ZG)
#if defined AK8975_SECONDARY
#define SUPPORTS_AK89xx_HIGH_SENS (0x00)
#define AK89xx_FSR (9830)
#elif defined AK8963_SECONDARY
#define SUPPORTS_AK89xx_HIGH_SENS (0x10)
#define AK89xx_FSR (4915)
#endif
#ifdef AK89xx_SECONDARY
#define AKM_REG_WHOAMI (0x00)
#define AKM_REG_ST1 (0x02)
#define AKM_REG_HXL (0x03)
#define AKM_REG_ST2 (0x09)
#define AKM_REG_CNTL (0x0A)
#define AKM_REG_ASTC (0x0C)
#define AKM_REG_ASAX (0x10)
#define AKM_REG_ASAY (0x11)
#define AKM_REG_ASAZ (0x12)
#define AKM_DATA_READY (0x01)
#define AKM_DATA_OVERRUN (0x02)
#define AKM_OVERFLOW (0x80)
#define AKM_DATA_ERROR (0x40)
#define AKM_BIT_SELF_TEST (0x40)
#define AKM_POWER_DOWN (0x00 | SUPPORTS_AK89xx_HIGH_SENS)
#define AKM_SINGLE_MEASUREMENT (0x01 | SUPPORTS_AK89xx_HIGH_SENS)
#define AKM_FUSE_ROM_ACCESS (0x0F | SUPPORTS_AK89xx_HIGH_SENS)
#define AKM_MODE_SELF_TEST (0x08 | SUPPORTS_AK89xx_HIGH_SENS)
#define AKM_WHOAMI (0x48)
#endif
#if defined MPU6050
//const struct gyro_reg_s reg = {
// .who_am_i = 0x75,
// .rate_div = 0x19,
// .lpf = 0x1A,
// .prod_id = 0x0C,
// .user_ctrl = 0x6A,
// .fifo_en = 0x23,
// .gyro_cfg = 0x1B,
// .accel_cfg = 0x1C,
// .motion_thr = 0x1F,
// .motion_dur = 0x20,
// .fifo_count_h = 0x72,
// .fifo_r_w = 0x74,
// .raw_gyro = 0x43,
// .raw_accel = 0x3B,
// .temp = 0x41,
// .int_enable = 0x38,
// .dmp_int_status = 0x39,
// .int_status = 0x3A,
// .pwr_mgmt_1 = 0x6B,
// .pwr_mgmt_2 = 0x6C,
// .int_pin_cfg = 0x37,
// .mem_r_w = 0x6F,
// .accel_offs = 0x06,
// .i2c_mst = 0x24,
// .bank_sel = 0x6D,
// .mem_start_addr = 0x6E,
// .prgm_start_h = 0x70
//#ifdef AK89xx_SECONDARY
// ,.raw_compass = 0x49,
// .yg_offs_tc = 0x01,
// .s0_addr = 0x25,
// .s0_reg = 0x26,
// .s0_ctrl = 0x27,
// .s1_addr = 0x28,
// .s1_reg = 0x29,
// .s1_ctrl = 0x2A,
// .s4_ctrl = 0x34,
// .s0_do = 0x63,
// .s1_do = 0x64,
// .i2c_delay_ctrl = 0x67
//#endif
//};
const struct gyro_reg_s reg = {
0x75, //who_am_i
0x19, //rate_div
0x1A, //lpf
0x0C, //prod_id
0x6A, //user_ctrl
0x23, //fifo_en
0x1B, //gyro_cfg
0x1C, //accel_cfg
0x1F, // motion_thr
0x20, // motion_dur
0x72, // fifo_count_h
0x74, // fifo_r_w
0x43, // raw_gyro
0x3B, // raw_accel
0x41, // temp
0x38, // int_enable
0x39, // dmp_int_status
0x3A, // int_status
0x6B, // pwr_mgmt_1
0x6C, // pwr_mgmt_2
0x37, // int_pin_cfg
0x6F, // mem_r_w
0x06, // accel_offs
0x24, // i2c_mst
0x6D, // bank_sel
0x6E, // mem_start_addr
0x70 // prgm_start_h
};
//const struct hw_s hw = {
// .addr = 0x68,
// .max_fifo = 1024,
// .num_reg = 118,
// .temp_sens = 340,
// .temp_offset = -521,
// .bank_size = 256
//#if defined AK89xx_SECONDARY
// ,.compass_fsr = AK89xx_FSR
//#endif
//};
const struct hw_s hw={
0x68, //addr
1024, //max_fifo
118, //num_reg
340, //temp_sens
-521, //temp_offset
256 //bank_size
};
//const struct test_s test = {
// .gyro_sens = 32768/250,
// .accel_sens = 32768/16,
// .reg_rate_div = 0, /* 1kHz. */
// .reg_lpf = 1, /* 188Hz. */
// .reg_gyro_fsr = 0, /* 250dps. */
// .reg_accel_fsr = 0x18, /* 16g. */
// .wait_ms = 50,
// .packet_thresh = 5, /* 5% */
// .min_dps = 10.f,
// .max_dps = 105.f,
// .max_gyro_var = 0.14f,
// .min_g = 0.3f,
// .max_g = 0.95f,
// .max_accel_var = 0.14f
//};
const struct test_s test={
32768/250, //gyro_sens
32768/16, // accel_sens
0, // reg_rate_div
1, // reg_lpf
0, // reg_gyro_fsr
0x18, // reg_accel_fsr
50, // wait_ms
5, // packet_thresh
10.0f, // min_dps
105.0f, // max_dps
0.14f, // max_gyro_var
0.3f, // min_g
0.95f, // max_g
0.14f // max_accel_var
};
//static struct gyro_state_s st = {
// .reg = &reg,
// .hw = &hw,
// .test = &test
//};
static struct gyro_state_s st={
&reg,
&hw,
{0},
&test
};
#elif defined MPU6500
const struct gyro_reg_s reg = {
.who_am_i = 0x75,
.rate_div = 0x19,
.lpf = 0x1A,
.prod_id = 0x0C,
.user_ctrl = 0x6A,
.fifo_en = 0x23,
.gyro_cfg = 0x1B,
.accel_cfg = 0x1C,
.accel_cfg2 = 0x1D,
.lp_accel_odr = 0x1E,
.motion_thr = 0x1F,
.motion_dur = 0x20,
.fifo_count_h = 0x72,
.fifo_r_w = 0x74,
.raw_gyro = 0x43,
.raw_accel = 0x3B,
.temp = 0x41,
.int_enable = 0x38,
.dmp_int_status = 0x39,
.int_status = 0x3A,
.accel_intel = 0x69,
.pwr_mgmt_1 = 0x6B,
.pwr_mgmt_2 = 0x6C,
.int_pin_cfg = 0x37,
.mem_r_w = 0x6F,
.accel_offs = 0x77,
.i2c_mst = 0x24,
.bank_sel = 0x6D,
.mem_start_addr = 0x6E,
.prgm_start_h = 0x70
#ifdef AK89xx_SECONDARY
,.raw_compass = 0x49,
.s0_addr = 0x25,
.s0_reg = 0x26,
.s0_ctrl = 0x27,
.s1_addr = 0x28,
.s1_reg = 0x29,
.s1_ctrl = 0x2A,
.s4_ctrl = 0x34,
.s0_do = 0x63,
.s1_do = 0x64,
.i2c_delay_ctrl = 0x67
#endif
};
const struct hw_s hw = {
.addr = 0x68,
.max_fifo = 1024,
.num_reg = 128,
.temp_sens = 321,
.temp_offset = 0,
.bank_size = 256
#if defined AK89xx_SECONDARY
,.compass_fsr = AK89xx_FSR
#endif
};
const struct test_s test = {
.gyro_sens = 32768/250,
.accel_sens = 32768/16,
.reg_rate_div = 0, /* 1kHz. */
.reg_lpf = 1, /* 188Hz. */
.reg_gyro_fsr = 0, /* 250dps. */
.reg_accel_fsr = 0x18, /* 16g. */
.wait_ms = 50,
.packet_thresh = 5, /* 5% */
.min_dps = 10.f,
.max_dps = 105.f,
.max_gyro_var = 0.14f,
.min_g = 0.3f,
.max_g = 0.95f,
.max_accel_var = 0.14f
};
static struct gyro_state_s st = {
.reg = &reg,
.hw = &hw,
.test = &test
};
#endif
#define MAX_PACKET_LENGTH (12)
#ifdef AK89xx_SECONDARY
static int setup_compass(void);
#define MAX_COMPASS_SAMPLE_RATE (100)
#endif
/**
* @brief Enable/disable data ready interrupt.
* If the DMP is on, the DMP interrupt is enabled. Otherwise, the data ready
* interrupt is used.
* @param[in] enable 1 to enable interrupt.
* @return 0 if successful.
*/
static int set_int_enable(unsigned char enable)
{
unsigned char tmp;
if (st.chip_cfg.dmp_on) {
if (enable)
tmp = BIT_DMP_INT_EN;
else
tmp = 0x00;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, &tmp))
return -1;
st.chip_cfg.int_enable = tmp;
} else {
if (!st.chip_cfg.sensors)
return -1;
if (enable && st.chip_cfg.int_enable)
return 0;
if (enable)
tmp = BIT_DATA_RDY_EN;
else
tmp = 0x00;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, &tmp))
return -1;
st.chip_cfg.int_enable = tmp;
}
return 0;
}
/**
* @brief Register dump for testing.
* @return 0 if successful.
*/
int mpu_reg_dump(void)
{
unsigned char ii;
unsigned char data;
for (ii = 0; ii < st.hw->num_reg; ii++) {
if (ii == st.reg->fifo_r_w || ii == st.reg->mem_r_w)
continue;
if (i2c_read(st.hw->addr, ii, 1, &data))
return -1;
log_i("%#5x: %#5x\r\n", ii, data);
}
return 0;
}
/**
* @brief Read from a single register.
* NOTE: The memory and FIFO read/write registers cannot be accessed.
* @param[in] reg Register address.
* @param[out] data Register data.
* @return 0 if successful.
*/
int mpu_read_reg(unsigned char reg, unsigned char *data)
{
if (reg == st.reg->fifo_r_w || reg == st.reg->mem_r_w)
return -1;
if (reg >= st.hw->num_reg)
return -1;
return i2c_read(st.hw->addr, reg, 1, data);
}
/**
* @brief Initialize hardware.
* Initial configuration:\n
* Gyro FSR: +/- 2000DPS\n
* Accel FSR +/- 2G\n
* DLPF: 42Hz\n
* FIFO rate: 50Hz\n
* Clock source: Gyro PLL\n
* FIFO: Disabled.\n
* Data ready interrupt: Disabled, active low, unlatched.
* @param[in] int_param Platform-specific parameters to interrupt API.
* @return 0 if successful.
*/
int mpu_init(void)
{
unsigned char data[6], rev;
/* Reset device. */
data[0] = BIT_RESET;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
return -1;
delay_ms(100);
/* Wake up chip. */
data[0] = 0x00;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
return -1;
#if defined MPU6050
/* Check product revision. */
if (i2c_read(st.hw->addr, st.reg->accel_offs, 6, data))
return -1;
rev = ((data[5] & 0x01) << 2) | ((data[3] & 0x01) << 1) |
(data[1] & 0x01);
if (rev) {
/* Congrats, these parts are better. */
if (rev == 1)
st.chip_cfg.accel_half = 1;
else if (rev == 2)
st.chip_cfg.accel_half = 0;
else {
log_e("Unsupported software product rev %d.\n", rev);
return -1;
}
} else {
if (i2c_read(st.hw->addr, st.reg->prod_id, 1, data))
return -1;
rev = data[0] & 0x0F;
if (!rev) {
log_e("Product ID read as 0 indicates device is either "
"incompatible or an MPU3050.\n");
return -1;
} else if (rev == 4) {
log_i("Half sensitivity part found.\n");
st.chip_cfg.accel_half = 1;
} else
st.chip_cfg.accel_half = 0;
}
#elif defined MPU6500
#define MPU6500_MEM_REV_ADDR (0x17)
if (mpu_read_mem(MPU6500_MEM_REV_ADDR, 1, &rev))
return -1;
if (rev == 0x1)
st.chip_cfg.accel_half = 0;
else {
log_e("Unsupported software product rev %d.\n", rev);
return -1;
}
/* MPU6500 shares 4kB of memory between the DMP and the FIFO. Since the
* first 3kB are needed by the DMP, we'll use the last 1kB for the FIFO.
*/
data[0] = BIT_FIFO_SIZE_1024 | 0x8;
if (i2c_write(st.hw->addr, st.reg->accel_cfg2, 1, data))
return -1;
#endif
/* Set to invalid values to ensure no I2C writes are skipped. */
st.chip_cfg.sensors = 0xFF;
st.chip_cfg.gyro_fsr = 0xFF;
st.chip_cfg.accel_fsr = 0xFF;
st.chip_cfg.lpf = 0xFF;
st.chip_cfg.sample_rate = 0xFFFF;
st.chip_cfg.fifo_enable = 0xFF;
st.chip_cfg.bypass_mode = 0xFF;
#ifdef AK89xx_SECONDARY
st.chip_cfg.compass_sample_rate = 0xFFFF;
#endif
/* mpu_set_sensors always preserves this setting. */
st.chip_cfg.clk_src = INV_CLK_PLL;
/* Handled in next call to mpu_set_bypass. */
st.chip_cfg.active_low_int = 1;
st.chip_cfg.latched_int = 0;
st.chip_cfg.int_motion_only = 0;
st.chip_cfg.lp_accel_mode = 0;
memset(&st.chip_cfg.cache, 0, sizeof(st.chip_cfg.cache));
st.chip_cfg.dmp_on = 0;
st.chip_cfg.dmp_loaded = 0;
st.chip_cfg.dmp_sample_rate = 0;
if (mpu_set_gyro_fsr(2000))
return -1;
if (mpu_set_accel_fsr(2))
return -1;
if (mpu_set_lpf(42))
return -1;
if (mpu_set_sample_rate(50))
return -1;
if (mpu_configure_fifo(0))
return -1;
// if (int_param)
// reg_int_cb(int_param);
#ifdef AK89xx_SECONDARY
setup_compass();
if (mpu_set_compass_sample_rate(10))
return -1;
#else
/* Already disabled by setup_compass. */
if (mpu_set_bypass(0))
return -1;
#endif
mpu_set_sensors(0);
return 0;
}
/**
* @brief Enter low-power accel-only mode.
* In low-power accel mode, the chip goes to sleep and only wakes up to sample
* the accelerometer at one of the following frequencies:
* \n MPU6050: 1.25Hz, 5Hz, 20Hz, 40Hz
* \n MPU6500: 1.25Hz, 2.5Hz, 5Hz, 10Hz, 20Hz, 40Hz, 80Hz, 160Hz, 320Hz, 640Hz
* \n If the requested rate is not one listed above, the device will be set to
* the next highest rate. Requesting a rate above the maximum supported
* frequency will result in an error.
* \n To select a fractional wake-up frequency, round down the value passed to
* @e rate.
* @param[in] rate Minimum sampling rate, or zero to disable LP
* accel mode.
* @return 0 if successful.
*/
int mpu_lp_accel_mode(unsigned char rate)
{
unsigned char tmp[2];
if (rate > 40)
return -1;
if (!rate) {
mpu_set_int_latched(0);
tmp[0] = 0;
tmp[1] = BIT_STBY_XYZG;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, tmp))
return -1;
st.chip_cfg.lp_accel_mode = 0;
return 0;
}
/* For LP accel, we automatically configure the hardware to produce latched
* interrupts. In LP accel mode, the hardware cycles into sleep mode before
* it gets a chance to deassert the interrupt pin; therefore, we shift this
* responsibility over to the MCU.
*
* Any register read will clear the interrupt.
*/
mpu_set_int_latched(1);
#if defined MPU6050
tmp[0] = BIT_LPA_CYCLE;
if (rate == 1) {
tmp[1] = INV_LPA_1_25HZ;
mpu_set_lpf(5);
} else if (rate <= 5) {
tmp[1] = INV_LPA_5HZ;
mpu_set_lpf(5);
} else if (rate <= 20) {
tmp[1] = INV_LPA_20HZ;
mpu_set_lpf(10);
} else {
tmp[1] = INV_LPA_40HZ;
mpu_set_lpf(20);
}
tmp[1] = (tmp[1] << 6) | BIT_STBY_XYZG;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, tmp))
return -1;
#elif defined MPU6500
/* Set wake frequency. */
if (rate == 1)
tmp[0] = INV_LPA_1_25HZ;
else if (rate == 2)
tmp[0] = INV_LPA_2_5HZ;
else if (rate <= 5)
tmp[0] = INV_LPA_5HZ;
else if (rate <= 10)
tmp[0] = INV_LPA_10HZ;
else if (rate <= 20)
tmp[0] = INV_LPA_20HZ;
else if (rate <= 40)
tmp[0] = INV_LPA_40HZ;
else if (rate <= 80)
tmp[0] = INV_LPA_80HZ;
else if (rate <= 160)
tmp[0] = INV_LPA_160HZ;
else if (rate <= 320)
tmp[0] = INV_LPA_320HZ;
else
tmp[0] = INV_LPA_640HZ;
if (i2c_write(st.hw->addr, st.reg->lp_accel_odr, 1, tmp))
return -1;
tmp[0] = BIT_LPA_CYCLE;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, tmp))
return -1;
#endif
st.chip_cfg.sensors = INV_XYZ_ACCEL;
st.chip_cfg.clk_src = 0;
st.chip_cfg.lp_accel_mode = 1;
mpu_configure_fifo(0);
return 0;
}
/**
* @brief Read raw gyro data directly from the registers.
* @param[out] data Raw data in hardware units.
* @param[out] timestamp Timestamp in milliseconds. Null if not needed.
* @return 0 if successful.
*/
int mpu_get_gyro_reg(short *data, unsigned long *timestamp)
{
unsigned char tmp[6];
if (!(st.chip_cfg.sensors & INV_XYZ_GYRO))
return -1;
if (i2c_read(st.hw->addr, st.reg->raw_gyro, 6, tmp))
return -1;
data[0] = (tmp[0] << 8) | tmp[1];
data[1] = (tmp[2] << 8) | tmp[3];
data[2] = (tmp[4] << 8) | tmp[5];
if (timestamp)
get_ms(timestamp);
return 0;
}
/**
* @brief Read raw accel data directly from the registers.
* @param[out] data Raw data in hardware units.
* @param[out] timestamp Timestamp in milliseconds. Null if not needed.
* @return 0 if successful.
*/
int mpu_get_accel_reg(short *data, unsigned long *timestamp)
{
unsigned char tmp[6];
if (!(st.chip_cfg.sensors & INV_XYZ_ACCEL))
return -1;
if (i2c_read(st.hw->addr, st.reg->raw_accel, 6, tmp))
return -1;
data[0] = (tmp[0] << 8) | tmp[1];
data[1] = (tmp[2] << 8) | tmp[3];
data[2] = (tmp[4] << 8) | tmp[5];
if (timestamp)
get_ms(timestamp);
return 0;
}
/**
* @brief Read temperature data directly from the registers.
* @param[out] data Data in q16 format.
* @param[out] timestamp Timestamp in milliseconds. Null if not needed.
* @return 0 if successful.
*/
int mpu_get_temperature(long *data, unsigned long *timestamp)
{
unsigned char tmp[2];
short raw;
if (!(st.chip_cfg.sensors))
return -1;
if (i2c_read(st.hw->addr, st.reg->temp, 2, tmp))
return -1;
raw = (tmp[0] << 8) | tmp[1];
if (timestamp)
get_ms(timestamp);
data[0] = (long)((35 + ((raw - (float)st.hw->temp_offset) / st.hw->temp_sens)) * 65536L);
return 0;
}
/**
* @brief Push biases to the accel bias registers.
* This function expects biases relative to the current sensor output, and
* these biases will be added to the factory-supplied values.
* @param[in] accel_bias New biases.
* @return 0 if successful.
*/
int mpu_set_accel_bias(const long *accel_bias)
{
unsigned char data[6];
short accel_hw[3];
short got_accel[3];
short fg[3];
if (!accel_bias)
return -1;
if (!accel_bias[0] && !accel_bias[1] && !accel_bias[2])
return 0;
if (i2c_read(st.hw->addr, 3, 3, data))
return -1;
fg[0] = ((data[0] >> 4) + 8) & 0xf;
fg[1] = ((data[1] >> 4) + 8) & 0xf;
fg[2] = ((data[2] >> 4) + 8) & 0xf;
accel_hw[0] = (short)(accel_bias[0] * 2 / (64 + fg[0]));
accel_hw[1] = (short)(accel_bias[1] * 2 / (64 + fg[1]));
accel_hw[2] = (short)(accel_bias[2] * 2 / (64 + fg[2]));
if (i2c_read(st.hw->addr, 0x06, 6, data))
return -1;
got_accel[0] = ((short)data[0] << 8) | data[1];
got_accel[1] = ((short)data[2] << 8) | data[3];
got_accel[2] = ((short)data[4] << 8) | data[5];
accel_hw[0] += got_accel[0];
accel_hw[1] += got_accel[1];
accel_hw[2] += got_accel[2];
data[0] = (accel_hw[0] >> 8) & 0xff;
data[1] = (accel_hw[0]) & 0xff;
data[2] = (accel_hw[1] >> 8) & 0xff;
data[3] = (accel_hw[1]) & 0xff;
data[4] = (accel_hw[2] >> 8) & 0xff;
data[5] = (accel_hw[2]) & 0xff;
if (i2c_write(st.hw->addr, 0x06, 6, data))
return -1;
return 0;
}
/**
* @brief Reset FIFO read/write pointers.
* @return 0 if successful.
*/
int mpu_reset_fifo(void)
{
unsigned char data;
if (!(st.chip_cfg.sensors))
return -1;
data = 0;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, &data))
return -1;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, &data))
return -1;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
return -1;
if (st.chip_cfg.dmp_on) {
data = BIT_FIFO_RST | BIT_DMP_RST;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
return -1;
delay_ms(50);
data = BIT_DMP_EN | BIT_FIFO_EN;
if (st.chip_cfg.sensors & INV_XYZ_COMPASS)
data |= BIT_AUX_IF_EN;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
return -1;
if (st.chip_cfg.int_enable)
data = BIT_DMP_INT_EN;
else
data = 0;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, &data))
return -1;
data = 0;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, &data))
return -1;
} else {
data = BIT_FIFO_RST;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
return -1;
if (st.chip_cfg.bypass_mode || !(st.chip_cfg.sensors & INV_XYZ_COMPASS))
data = BIT_FIFO_EN;
else
data = BIT_FIFO_EN | BIT_AUX_IF_EN;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &data))
return -1;
delay_ms(50);
if (st.chip_cfg.int_enable)
data = BIT_DATA_RDY_EN;
else
data = 0;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, &data))
return -1;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, &st.chip_cfg.fifo_enable))
return -1;
}
return 0;
}
/**
* @brief Get the gyro full-scale range.
* @param[out] fsr Current full-scale range.
* @return 0 if successful.
*/
int mpu_get_gyro_fsr(unsigned short *fsr)
{
switch (st.chip_cfg.gyro_fsr) {
case INV_FSR_250DPS:
fsr[0] = 250;
break;
case INV_FSR_500DPS:
fsr[0] = 500;
break;
case INV_FSR_1000DPS:
fsr[0] = 1000;
break;
case INV_FSR_2000DPS:
fsr[0] = 2000;
break;
default:
fsr[0] = 0;
break;
}
return 0;
}
/**
* @brief Set the gyro full-scale range.
* @param[in] fsr Desired full-scale range.
* @return 0 if successful.
*/
int mpu_set_gyro_fsr(unsigned short fsr)
{
unsigned char data;
if (!(st.chip_cfg.sensors))
return -1;
switch (fsr) {
case 250:
data = INV_FSR_250DPS << 3;
break;
case 500:
data = INV_FSR_500DPS << 3;
break;
case 1000:
data = INV_FSR_1000DPS << 3;
break;
case 2000:
data = INV_FSR_2000DPS << 3;
break;
default:
return -1;
}
if (st.chip_cfg.gyro_fsr == (data >> 3))
return 0;
if (i2c_write(st.hw->addr, st.reg->gyro_cfg, 1, &data))
return -1;
st.chip_cfg.gyro_fsr = data >> 3;
return 0;
}
/**
* @brief Get the accel full-scale range.
* @param[out] fsr Current full-scale range.
* @return 0 if successful.
*/
int mpu_get_accel_fsr(unsigned char *fsr)
{
switch (st.chip_cfg.accel_fsr) {
case INV_FSR_2G:
fsr[0] = 2;
break;
case INV_FSR_4G:
fsr[0] = 4;
break;
case INV_FSR_8G:
fsr[0] = 8;
break;
case INV_FSR_16G:
fsr[0] = 16;
break;
default:
return -1;
}
if (st.chip_cfg.accel_half)
fsr[0] <<= 1;
return 0;
}
/**
* @brief Set the accel full-scale range.
* @param[in] fsr Desired full-scale range.
* @return 0 if successful.
*/
int mpu_set_accel_fsr(unsigned char fsr)
{
unsigned char data;
if (!(st.chip_cfg.sensors))
return -1;
switch (fsr) {
case 2:
data = INV_FSR_2G << 3;
break;
case 4:
data = INV_FSR_4G << 3;
break;
case 8:
data = INV_FSR_8G << 3;
break;
case 16:
data = INV_FSR_16G << 3;
break;
default:
return -1;
}
if (st.chip_cfg.accel_fsr == (data >> 3))
return 0;
if (i2c_write(st.hw->addr, st.reg->accel_cfg, 1, &data))
return -1;
st.chip_cfg.accel_fsr = data >> 3;
return 0;
}
/**
* @brief Get the current DLPF setting.
* @param[out] lpf Current LPF setting.
* 0 if successful.
*/
int mpu_get_lpf(unsigned short *lpf)
{
switch (st.chip_cfg.lpf) {
case INV_FILTER_188HZ:
lpf[0] = 188;
break;
case INV_FILTER_98HZ:
lpf[0] = 98;
break;
case INV_FILTER_42HZ:
lpf[0] = 42;
break;
case INV_FILTER_20HZ:
lpf[0] = 20;
break;
case INV_FILTER_10HZ:
lpf[0] = 10;
break;
case INV_FILTER_5HZ:
lpf[0] = 5;
break;
case INV_FILTER_256HZ_NOLPF2:
case INV_FILTER_2100HZ_NOLPF:
default:
lpf[0] = 0;
break;
}
return 0;
}
/**
* @brief Set digital low pass filter.
* The following LPF settings are supported: 188, 98, 42, 20, 10, 5.
* @param[in] lpf Desired LPF setting.
* @return 0 if successful.
*/
int mpu_set_lpf(unsigned short lpf)
{
unsigned char data;
if (!(st.chip_cfg.sensors))
return -1;
if (lpf >= 188)
data = INV_FILTER_188HZ;
else if (lpf >= 98)
data = INV_FILTER_98HZ;
else if (lpf >= 42)
data = INV_FILTER_42HZ;
else if (lpf >= 20)
data = INV_FILTER_20HZ;
else if (lpf >= 10)
data = INV_FILTER_10HZ;
else
data = INV_FILTER_5HZ;
if (st.chip_cfg.lpf == data)
return 0;
if (i2c_write(st.hw->addr, st.reg->lpf, 1, &data))
return -1;
st.chip_cfg.lpf = data;
return 0;
}
/**
* @brief Get sampling rate.
* @param[out] rate Current sampling rate (Hz).
* @return 0 if successful.
*/
int mpu_get_sample_rate(unsigned short *rate)
{
if (st.chip_cfg.dmp_on)
return -1;
else
rate[0] = st.chip_cfg.sample_rate;
return 0;
}
/**
* @brief Set sampling rate.
* Sampling rate must be between 4Hz and 1kHz.
* @param[in] rate Desired sampling rate (Hz).
* @return 0 if successful.
*/
int mpu_set_sample_rate(unsigned short rate)
{
unsigned char data;
if (!(st.chip_cfg.sensors))
return -1;
if (st.chip_cfg.dmp_on)
return -1;
else {
if (st.chip_cfg.lp_accel_mode) {
if (rate && (rate <= 40)) {
/* Just stay in low-power accel mode. */
mpu_lp_accel_mode(rate);
return 0;
}
/* Requested rate exceeds the allowed frequencies in LP accel mode,
* switch back to full-power mode.
*/
mpu_lp_accel_mode(0);
}
if (rate < 4)
rate = 4;
else if (rate > 1000)
rate = 1000;
data = 1000 / rate - 1;
if (i2c_write(st.hw->addr, st.reg->rate_div, 1, &data))
return -1;
st.chip_cfg.sample_rate = 1000 / (1 + data);
#ifdef AK89xx_SECONDARY
mpu_set_compass_sample_rate(min(st.chip_cfg.compass_sample_rate, MAX_COMPASS_SAMPLE_RATE));
#endif
/* Automatically set LPF to 1/2 sampling rate. */
mpu_set_lpf(st.chip_cfg.sample_rate >> 1);
return 0;
}
}
/**
* @brief Get compass sampling rate.
* @param[out] rate Current compass sampling rate (Hz).
* @return 0 if successful.
*/
int mpu_get_compass_sample_rate(unsigned short *rate)
{
#ifdef AK89xx_SECONDARY
rate[0] = st.chip_cfg.compass_sample_rate;
return 0;
#else
rate[0] = 0;
return -1;
#endif
}
/**
* @brief Set compass sampling rate.
* The compass on the auxiliary I2C bus is read by the MPU hardware at a
* maximum of 100Hz. The actual rate can be set to a fraction of the gyro
* sampling rate.
*
* \n WARNING: The new rate may be different than what was requested. Call
* mpu_get_compass_sample_rate to check the actual setting.
* @param[in] rate Desired compass sampling rate (Hz).
* @return 0 if successful.
*/
int mpu_set_compass_sample_rate(unsigned short rate)
{
#ifdef AK89xx_SECONDARY
unsigned char div;
if (!rate || rate > st.chip_cfg.sample_rate || rate > MAX_COMPASS_SAMPLE_RATE)
return -1;
div = st.chip_cfg.sample_rate / rate - 1;
if (i2c_write(st.hw->addr, st.reg->s4_ctrl, 1, &div))
return -1;
st.chip_cfg.compass_sample_rate = st.chip_cfg.sample_rate / (div + 1);
return 0;
#else
return -1;
#endif
}
/**
* @brief Get gyro sensitivity scale factor.
* @param[out] sens Conversion from hardware units to dps.
* @return 0 if successful.
*/
int mpu_get_gyro_sens(float *sens)
{
switch (st.chip_cfg.gyro_fsr) {
case INV_FSR_250DPS:
sens[0] = 131.f;
break;
case INV_FSR_500DPS:
sens[0] = 65.5f;
break;
case INV_FSR_1000DPS:
sens[0] = 32.8f;
break;
case INV_FSR_2000DPS:
sens[0] = 16.4f;
break;
default:
return -1;
}
return 0;
}
/**
* @brief Get accel sensitivity scale factor.
* @param[out] sens Conversion from hardware units to g's.
* @return 0 if successful.
*/
int mpu_get_accel_sens(unsigned short *sens)
{
switch (st.chip_cfg.accel_fsr) {
case INV_FSR_2G:
sens[0] = 16384;
break;
case INV_FSR_4G:
sens[0] = 8092;
break;
case INV_FSR_8G:
sens[0] = 4096;
break;
case INV_FSR_16G:
sens[0] = 2048;
break;
default:
return -1;
}
if (st.chip_cfg.accel_half)
sens[0] >>= 1;
return 0;
}
/**
* @brief Get current FIFO configuration.
* @e sensors can contain a combination of the following flags:
* \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
* \n INV_XYZ_GYRO
* \n INV_XYZ_ACCEL
* @param[out] sensors Mask of sensors in FIFO.
* @return 0 if successful.
*/
int mpu_get_fifo_config(unsigned char *sensors)
{
sensors[0] = st.chip_cfg.fifo_enable;
return 0;
}
/**
* @brief Select which sensors are pushed to FIFO.
* @e sensors can contain a combination of the following flags:
* \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
* \n INV_XYZ_GYRO
* \n INV_XYZ_ACCEL
* @param[in] sensors Mask of sensors to push to FIFO.
* @return 0 if successful.
*/
int mpu_configure_fifo(unsigned char sensors)
{
unsigned char prev;
int result = 0;
/* Compass data isn't going into the FIFO. Stop trying. */
sensors &= ~INV_XYZ_COMPASS;
if (st.chip_cfg.dmp_on)
return 0;
else {
if (!(st.chip_cfg.sensors))
return -1;
prev = st.chip_cfg.fifo_enable;
st.chip_cfg.fifo_enable = sensors & st.chip_cfg.sensors;
if (st.chip_cfg.fifo_enable != sensors)
/* You're not getting what you asked for. Some sensors are
* asleep.
*/
result = -1;
else
result = 0;
if (sensors || st.chip_cfg.lp_accel_mode)
set_int_enable(1);
else
set_int_enable(0);
if (sensors) {
if (mpu_reset_fifo()) {
st.chip_cfg.fifo_enable = prev;
return -1;
}
}
}
return result;
}
/**
* @brief Get current power state.
* @param[in] power_on 1 if turned on, 0 if suspended.
* @return 0 if successful.
*/
int mpu_get_power_state(unsigned char *power_on)
{
if (st.chip_cfg.sensors)
power_on[0] = 1;
else
power_on[0] = 0;
return 0;
}
/**
* @brief Turn specific sensors on/off.
* @e sensors can contain a combination of the following flags:
* \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
* \n INV_XYZ_GYRO
* \n INV_XYZ_ACCEL
* \n INV_XYZ_COMPASS
* @param[in] sensors Mask of sensors to wake.
* @return 0 if successful.
*/
int mpu_set_sensors(unsigned char sensors)
{
unsigned char data;
#ifdef AK89xx_SECONDARY
unsigned char user_ctrl;
#endif
if (sensors & INV_XYZ_GYRO)
data = INV_CLK_PLL;
else if (sensors)
data = 0;
else
data = BIT_SLEEP;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, &data)) {
st.chip_cfg.sensors = 0;
return -1;
}
st.chip_cfg.clk_src = data & ~BIT_SLEEP;
data = 0;
if (!(sensors & INV_X_GYRO))
data |= BIT_STBY_XG;
if (!(sensors & INV_Y_GYRO))
data |= BIT_STBY_YG;
if (!(sensors & INV_Z_GYRO))
data |= BIT_STBY_ZG;
if (!(sensors & INV_XYZ_ACCEL))
data |= BIT_STBY_XYZA;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_2, 1, &data)) {
st.chip_cfg.sensors = 0;
return -1;
}
if (sensors && (sensors != INV_XYZ_ACCEL))
/* Latched interrupts only used in LP accel mode. */
mpu_set_int_latched(0);
#ifdef AK89xx_SECONDARY
#ifdef AK89xx_BYPASS
if (sensors & INV_XYZ_COMPASS)
mpu_set_bypass(1);
else
mpu_set_bypass(0);
#else
if (i2c_read(st.hw->addr, st.reg->user_ctrl, 1, &user_ctrl))
return -1;
/* Handle AKM power management. */
if (sensors & INV_XYZ_COMPASS) {
data = AKM_SINGLE_MEASUREMENT;
user_ctrl |= BIT_AUX_IF_EN;
} else {
data = AKM_POWER_DOWN;
user_ctrl &= ~BIT_AUX_IF_EN;
}
if (st.chip_cfg.dmp_on)
user_ctrl |= BIT_DMP_EN;
else
user_ctrl &= ~BIT_DMP_EN;
if (i2c_write(st.hw->addr, st.reg->s1_do, 1, &data))
return -1;
/* Enable/disable I2C master mode. */
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &user_ctrl))
return -1;
#endif
#endif
st.chip_cfg.sensors = sensors;
st.chip_cfg.lp_accel_mode = 0;
delay_ms(50);
return 0;
}
/**
* @brief Read the MPU interrupt status registers.
* @param[out] status Mask of interrupt bits.
* @return 0 if successful.
*/
int mpu_get_int_status(short *status)
{
unsigned char tmp[2];
if (!st.chip_cfg.sensors)
return -1;
if (i2c_read(st.hw->addr, st.reg->dmp_int_status, 2, tmp))
return -1;
status[0] = (tmp[0] << 8) | tmp[1];
return 0;
}
/**
* @brief Get one packet from the FIFO.
* If @e sensors does not contain a particular sensor, disregard the data
* returned to that pointer.
* \n @e sensors can contain a combination of the following flags:
* \n INV_X_GYRO, INV_Y_GYRO, INV_Z_GYRO
* \n INV_XYZ_GYRO
* \n INV_XYZ_ACCEL
* \n If the FIFO has no new data, @e sensors will be zero.
* \n If the FIFO is disabled, @e sensors will be zero and this function will
* return a non-zero error code.
* @param[out] gyro Gyro data in hardware units.
* @param[out] accel Accel data in hardware units.
* @param[out] timestamp Timestamp in milliseconds.
* @param[out] sensors Mask of sensors read from FIFO.
* @param[out] more Number of remaining packets.
* @return 0 if successful.
*/
int mpu_read_fifo(short *gyro, short *accel, unsigned long *timestamp,
unsigned char *sensors, unsigned char *more)
{
/* Assumes maximum packet size is gyro (6) + accel (6). */
unsigned char data[MAX_PACKET_LENGTH];
unsigned char packet_size = 0;
unsigned short fifo_count, index = 0;
if (st.chip_cfg.dmp_on)
return -1;
sensors[0] = 0;
if (!st.chip_cfg.sensors)
return -1;
if (!st.chip_cfg.fifo_enable)
return -1;
if (st.chip_cfg.fifo_enable & INV_X_GYRO)
packet_size += 2;
if (st.chip_cfg.fifo_enable & INV_Y_GYRO)
packet_size += 2;
if (st.chip_cfg.fifo_enable & INV_Z_GYRO)
packet_size += 2;
if (st.chip_cfg.fifo_enable & INV_XYZ_ACCEL)
packet_size += 6;
if (i2c_read(st.hw->addr, st.reg->fifo_count_h, 2, data))
return -1;
fifo_count = (data[0] << 8) | data[1];
if (fifo_count < packet_size)
return 0;
// log_i("FIFO count: %hd\n", fifo_count);
if (fifo_count > (st.hw->max_fifo >> 1)) {
/* FIFO is 50% full, better check overflow bit. */
if (i2c_read(st.hw->addr, st.reg->int_status, 1, data))
return -1;
if (data[0] & BIT_FIFO_OVERFLOW) {
mpu_reset_fifo();
return -2;
}
}
get_ms((unsigned long*)timestamp);
if (i2c_read(st.hw->addr, st.reg->fifo_r_w, packet_size, data))
return -1;
more[0] = fifo_count / packet_size - 1;
sensors[0] = 0;
if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_XYZ_ACCEL) {
accel[0] = (data[index+0] << 8) | data[index+1];
accel[1] = (data[index+2] << 8) | data[index+3];
accel[2] = (data[index+4] << 8) | data[index+5];
sensors[0] |= INV_XYZ_ACCEL;
index += 6;
}
if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_X_GYRO) {
gyro[0] = (data[index+0] << 8) | data[index+1];
sensors[0] |= INV_X_GYRO;
index += 2;
}
if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_Y_GYRO) {
gyro[1] = (data[index+0] << 8) | data[index+1];
sensors[0] |= INV_Y_GYRO;
index += 2;
}
if ((index != packet_size) && st.chip_cfg.fifo_enable & INV_Z_GYRO) {
gyro[2] = (data[index+0] << 8) | data[index+1];
sensors[0] |= INV_Z_GYRO;
index += 2;
}
return 0;
}
/**
* @brief Get one unparsed packet from the FIFO.
* This function should be used if the packet is to be parsed elsewhere.
* @param[in] length Length of one FIFO packet.
* @param[in] data FIFO packet.
* @param[in] more Number of remaining packets.
*/
int mpu_read_fifo_stream(unsigned short length, unsigned char *data,
unsigned char *more)
{
unsigned char tmp[2];
unsigned short fifo_count;
if (!st.chip_cfg.dmp_on)
return -1;
if (!st.chip_cfg.sensors)
return -1;
if (i2c_read(st.hw->addr, st.reg->fifo_count_h, 2, tmp))
return -1;
fifo_count = (tmp[0] << 8) | tmp[1];
if (fifo_count < length) {
more[0] = 0;
return -1;
}
if (fifo_count > (st.hw->max_fifo >> 1)) {
/* FIFO is 50% full, better check overflow bit. */
if (i2c_read(st.hw->addr, st.reg->int_status, 1, tmp))
return -1;
if (tmp[0] & BIT_FIFO_OVERFLOW) {
mpu_reset_fifo();
return -2;
}
}
if (i2c_read(st.hw->addr, st.reg->fifo_r_w, length, data))
return -1;
more[0] = fifo_count / length - 1;
return 0;
}
/**
* @brief Set device to bypass mode.
* @param[in] bypass_on 1 to enable bypass mode.
* @return 0 if successful.
*/
int mpu_set_bypass(unsigned char bypass_on)
{
unsigned char tmp;
if (st.chip_cfg.bypass_mode == bypass_on)
return 0;
if (bypass_on) {
if (i2c_read(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
return -1;
tmp &= ~BIT_AUX_IF_EN;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
return -1;
delay_ms(3);
tmp = BIT_BYPASS_EN;
if (st.chip_cfg.active_low_int)
tmp |= BIT_ACTL;
if (st.chip_cfg.latched_int)
tmp |= BIT_LATCH_EN | BIT_ANY_RD_CLR;
if (i2c_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
return -1;
} else {
/* Enable I2C master mode if compass is being used. */
if (i2c_read(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
return -1;
if (st.chip_cfg.sensors & INV_XYZ_COMPASS)
tmp |= BIT_AUX_IF_EN;
else
tmp &= ~BIT_AUX_IF_EN;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, &tmp))
return -1;
delay_ms(3);
if (st.chip_cfg.active_low_int)
tmp = BIT_ACTL;
else
tmp = 0;
if (st.chip_cfg.latched_int)
tmp |= BIT_LATCH_EN | BIT_ANY_RD_CLR;
if (i2c_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
return -1;
}
st.chip_cfg.bypass_mode = bypass_on;
return 0;
}
/**
* @brief Set interrupt level.
* @param[in] active_low 1 for active low, 0 for active high.
* @return 0 if successful.
*/
int mpu_set_int_level(unsigned char active_low)
{
st.chip_cfg.active_low_int = active_low;
return 0;
}
/**
* @brief Enable latched interrupts.
* Any MPU register will clear the interrupt.
* @param[in] enable 1 to enable, 0 to disable.
* @return 0 if successful.
*/
int mpu_set_int_latched(unsigned char enable)
{
unsigned char tmp;
if (st.chip_cfg.latched_int == enable)
return 0;
if (enable)
tmp = BIT_LATCH_EN | BIT_ANY_RD_CLR;
else
tmp = 0;
if (st.chip_cfg.bypass_mode)
tmp |= BIT_BYPASS_EN;
if (st.chip_cfg.active_low_int)
tmp |= BIT_ACTL;
if (i2c_write(st.hw->addr, st.reg->int_pin_cfg, 1, &tmp))
return -1;
st.chip_cfg.latched_int = enable;
return 0;
}
#ifdef MPU6050
static int get_accel_prod_shift(float *st_shift)
{
unsigned char tmp[4], shift_code[3], ii;
if (i2c_read(st.hw->addr, 0x0D, 4, tmp))
return 0x07;
shift_code[0] = ((tmp[0] & 0xE0) >> 3) | ((tmp[3] & 0x30) >> 4);
shift_code[1] = ((tmp[1] & 0xE0) >> 3) | ((tmp[3] & 0x0C) >> 2);
shift_code[2] = ((tmp[2] & 0xE0) >> 3) | (tmp[3] & 0x03);
for (ii = 0; ii < 3; ii++) {
if (!shift_code[ii]) {
st_shift[ii] = 0.f;
continue;
}
/* Equivalent to..
* st_shift[ii] = 0.34f * powf(0.92f/0.34f, (shift_code[ii]-1) / 30.f)
*/
st_shift[ii] = 0.34f;
while (--shift_code[ii])
st_shift[ii] *= 1.034f;
}
return 0;
}
static int accel_self_test(long *bias_regular, long *bias_st)
{
int jj, result = 0;
float st_shift[3], st_shift_cust, st_shift_var;
get_accel_prod_shift(st_shift);
for(jj = 0; jj < 3; jj++) {
st_shift_cust = labs(bias_regular[jj] - bias_st[jj]) / 65536.f;
if (st_shift[jj]) {
st_shift_var = st_shift_cust / st_shift[jj] - 1.f;
if (fabs(st_shift_var) > test.max_accel_var)
result |= 1 << jj;
} else if ((st_shift_cust < test.min_g) ||
(st_shift_cust > test.max_g))
result |= 1 << jj;
}
return result;
}
static int gyro_self_test(long *bias_regular, long *bias_st)
{
int jj, result = 0;
unsigned char tmp[3];
float st_shift, st_shift_cust, st_shift_var;
if (i2c_read(st.hw->addr, 0x0D, 3, tmp))
return 0x07;
tmp[0] &= 0x1F;
tmp[1] &= 0x1F;
tmp[2] &= 0x1F;
for (jj = 0; jj < 3; jj++) {
st_shift_cust = labs(bias_regular[jj] - bias_st[jj]) / 65536.f;
if (tmp[jj]) {
st_shift = 3275.f / test.gyro_sens;
while (--tmp[jj])
st_shift *= 1.046f;
st_shift_var = st_shift_cust / st_shift - 1.f;
if (fabs(st_shift_var) > test.max_gyro_var)
result |= 1 << jj;
} else if ((st_shift_cust < test.min_dps) ||
(st_shift_cust > test.max_dps))
result |= 1 << jj;
}
return result;
}
#ifdef AK89xx_SECONDARY
static int compass_self_test(void)
{
unsigned char tmp[6];
unsigned char tries = 10;
int result = 0x07;
short data;
mpu_set_bypass(1);
tmp[0] = AKM_POWER_DOWN;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp))
return 0x07;
tmp[0] = AKM_BIT_SELF_TEST;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_ASTC, 1, tmp))
goto AKM_restore;
tmp[0] = AKM_MODE_SELF_TEST;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp))
goto AKM_restore;
do {
delay_ms(10);
if (i2c_read(st.chip_cfg.compass_addr, AKM_REG_ST1, 1, tmp))
goto AKM_restore;
if (tmp[0] & AKM_DATA_READY)
break;
} while (tries--);
if (!(tmp[0] & AKM_DATA_READY))
goto AKM_restore;
if (i2c_read(st.chip_cfg.compass_addr, AKM_REG_HXL, 6, tmp))
goto AKM_restore;
result = 0;
data = (short)(tmp[1] << 8) | tmp[0];
if ((data > 100) || (data < -100))
result |= 0x01;
data = (short)(tmp[3] << 8) | tmp[2];
if ((data > 100) || (data < -100))
result |= 0x02;
data = (short)(tmp[5] << 8) | tmp[4];
if ((data > -300) || (data < -1000))
result |= 0x04;
AKM_restore:
tmp[0] = 0 | SUPPORTS_AK89xx_HIGH_SENS;
i2c_write(st.chip_cfg.compass_addr, AKM_REG_ASTC, 1, tmp);
tmp[0] = SUPPORTS_AK89xx_HIGH_SENS;
i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp);
mpu_set_bypass(0);
return result;
}
#endif
#endif
static int get_st_biases(long *gyro, long *accel, unsigned char hw_test)
{
unsigned char data[MAX_PACKET_LENGTH];
unsigned char packet_count, ii;
unsigned short fifo_count;
data[0] = 0x01;
data[1] = 0;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, data))
return -1;
delay_ms(200);
data[0] = 0;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, data))
return -1;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, data))
return -1;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
return -1;
if (i2c_write(st.hw->addr, st.reg->i2c_mst, 1, data))
return -1;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, data))
return -1;
data[0] = BIT_FIFO_RST | BIT_DMP_RST;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, data))
return -1;
delay_ms(15);
data[0] = st.test->reg_lpf;
if (i2c_write(st.hw->addr, st.reg->lpf, 1, data))
return -1;
data[0] = st.test->reg_rate_div;
if (i2c_write(st.hw->addr, st.reg->rate_div, 1, data))
return -1;
if (hw_test)
data[0] = st.test->reg_gyro_fsr | 0xE0;
else
data[0] = st.test->reg_gyro_fsr;
if (i2c_write(st.hw->addr, st.reg->gyro_cfg, 1, data))
return -1;
if (hw_test)
data[0] = st.test->reg_accel_fsr | 0xE0;
else
data[0] = test.reg_accel_fsr;
if (i2c_write(st.hw->addr, st.reg->accel_cfg, 1, data))
return -1;
if (hw_test)
delay_ms(200);
/* Fill FIFO for test.wait_ms milliseconds. */
data[0] = BIT_FIFO_EN;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 1, data))
return -1;
data[0] = INV_XYZ_GYRO | INV_XYZ_ACCEL;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, data))
return -1;
delay_ms(test.wait_ms);
data[0] = 0;
if (i2c_write(st.hw->addr, st.reg->fifo_en, 1, data))
return -1;
if (i2c_read(st.hw->addr, st.reg->fifo_count_h, 2, data))
return -1;
fifo_count = (data[0] << 8) | data[1];
packet_count = fifo_count / MAX_PACKET_LENGTH;
gyro[0] = gyro[1] = gyro[2] = 0;
accel[0] = accel[1] = accel[2] = 0;
for (ii = 0; ii < packet_count; ii++) {
short accel_cur[3], gyro_cur[3];
if (i2c_read(st.hw->addr, st.reg->fifo_r_w, MAX_PACKET_LENGTH, data))
return -1;
accel_cur[0] = ((short)data[0] << 8) | data[1];
accel_cur[1] = ((short)data[2] << 8) | data[3];
accel_cur[2] = ((short)data[4] << 8) | data[5];
accel[0] += (long)accel_cur[0];
accel[1] += (long)accel_cur[1];
accel[2] += (long)accel_cur[2];
gyro_cur[0] = (((short)data[6] << 8) | data[7]);
gyro_cur[1] = (((short)data[8] << 8) | data[9]);
gyro_cur[2] = (((short)data[10] << 8) | data[11]);
gyro[0] += (long)gyro_cur[0];
gyro[1] += (long)gyro_cur[1];
gyro[2] += (long)gyro_cur[2];
}
#ifdef EMPL_NO_64BIT
gyro[0] = (long)(((float)gyro[0]*65536.f) / test.gyro_sens / packet_count);
gyro[1] = (long)(((float)gyro[1]*65536.f) / test.gyro_sens / packet_count);
gyro[2] = (long)(((float)gyro[2]*65536.f) / test.gyro_sens / packet_count);
if (has_accel) {
accel[0] = (long)(((float)accel[0]*65536.f) / test.accel_sens /
packet_count);
accel[1] = (long)(((float)accel[1]*65536.f) / test.accel_sens /
packet_count);
accel[2] = (long)(((float)accel[2]*65536.f) / test.accel_sens /
packet_count);
/* Don't remove gravity! */
accel[2] -= 65536L;
}
#else
gyro[0] = (long)(((long long)gyro[0]<<16) / test.gyro_sens / packet_count);
gyro[1] = (long)(((long long)gyro[1]<<16) / test.gyro_sens / packet_count);
gyro[2] = (long)(((long long)gyro[2]<<16) / test.gyro_sens / packet_count);
accel[0] = (long)(((long long)accel[0]<<16) / test.accel_sens /
packet_count);
accel[1] = (long)(((long long)accel[1]<<16) / test.accel_sens /
packet_count);
accel[2] = (long)(((long long)accel[2]<<16) / test.accel_sens /
packet_count);
/* Don't remove gravity! */
if (accel[2] > 0L)
accel[2] -= 65536L;
else
accel[2] += 65536L;
#endif
return 0;
}
/**
* @brief Trigger gyro/accel/compass self-test.
* On success/error, the self-test returns a mask representing the sensor(s)
* that failed. For each bit, a one (1) represents a "pass" case; conversely,
* a zero (0) indicates a failure.
*
* \n The mask is defined as follows:
* \n Bit 0: Gyro.
* \n Bit 1: Accel.
* \n Bit 2: Compass.
*
* \n Currently, the hardware self-test is unsupported for MPU6500. However,
* this function can still be used to obtain the accel and gyro biases.
*
* \n This function must be called with the device either face-up or face-down
* (z-axis is parallel to gravity).
* @param[out] gyro Gyro biases in q16 format.
* @param[out] accel Accel biases (if applicable) in q16 format.
* @return Result mask (see above).
*/
int mpu_run_self_test(long *gyro, long *accel)
{
#ifdef MPU6050
const unsigned char tries = 2;
long gyro_st[3], accel_st[3];
unsigned char accel_result, gyro_result;
#ifdef AK89xx_SECONDARY
unsigned char compass_result;
#endif
int ii;
#endif
int result;
unsigned char accel_fsr, fifo_sensors, sensors_on;
unsigned short gyro_fsr, sample_rate, lpf;
unsigned char dmp_was_on;
if (st.chip_cfg.dmp_on) {
mpu_set_dmp_state(0);
dmp_was_on = 1;
} else
dmp_was_on = 0;
/* Get initial settings. */
mpu_get_gyro_fsr(&gyro_fsr);
mpu_get_accel_fsr(&accel_fsr);
mpu_get_lpf(&lpf);
mpu_get_sample_rate(&sample_rate);
sensors_on = st.chip_cfg.sensors;
mpu_get_fifo_config(&fifo_sensors);
/* For older chips, the self-test will be different. */
#if defined MPU6050
for (ii = 0; ii < tries; ii++)
if (!get_st_biases(gyro, accel, 0))
break;
if (ii == tries) {
/* If we reach this point, we most likely encountered an I2C error.
* We'll just report an error for all three sensors.
*/
result = 0;
goto restore;
}
for (ii = 0; ii < tries; ii++)
if (!get_st_biases(gyro_st, accel_st, 1))
break;
if (ii == tries) {
/* Again, probably an I2C error. */
result = 0;
goto restore;
}
accel_result = accel_self_test(accel, accel_st);
gyro_result = gyro_self_test(gyro, gyro_st);
result = 0;
if (!gyro_result)
result |= 0x01;
if (!accel_result)
result |= 0x02;
#ifdef AK89xx_SECONDARY
compass_result = compass_self_test();
if (!compass_result)
result |= 0x04;
#endif
restore:
#elif defined MPU6500
/* For now, this function will return a "pass" result for all three sensors
* for compatibility with current test applications.
*/
get_st_biases(gyro, accel, 0);
result = 0x7;
#endif
/* Set to invalid values to ensure no I2C writes are skipped. */
st.chip_cfg.gyro_fsr = 0xFF;
st.chip_cfg.accel_fsr = 0xFF;
st.chip_cfg.lpf = 0xFF;
st.chip_cfg.sample_rate = 0xFFFF;
st.chip_cfg.sensors = 0xFF;
st.chip_cfg.fifo_enable = 0xFF;
st.chip_cfg.clk_src = INV_CLK_PLL;
mpu_set_gyro_fsr(gyro_fsr);
mpu_set_accel_fsr(accel_fsr);
mpu_set_lpf(lpf);
mpu_set_sample_rate(sample_rate);
mpu_set_sensors(sensors_on);
mpu_configure_fifo(fifo_sensors);
if (dmp_was_on)
mpu_set_dmp_state(1);
return result;
}
/**
* @brief Write to the DMP memory.
* This function prevents I2C writes past the bank boundaries. The DMP memory
* is only accessible when the chip is awake.
* @param[in] mem_addr Memory location (bank << 8 | start address)
* @param[in] length Number of bytes to write.
* @param[in] data Bytes to write to memory.
* @return 0 if successful.
*/
int mpu_write_mem(unsigned short mem_addr, unsigned short length,
unsigned char *data)
{
unsigned char tmp[2];
if (!data)
return -1;
if (!st.chip_cfg.sensors)
return -1;
tmp[0] = (unsigned char)(mem_addr >> 8);
tmp[1] = (unsigned char)(mem_addr & 0xFF);
/* Check bank boundaries. */
if (tmp[1] + length > st.hw->bank_size)
return -1;
if (i2c_write(st.hw->addr, st.reg->bank_sel, 2, tmp))
return -1;
if (i2c_write(st.hw->addr, st.reg->mem_r_w, length, data))
return -1;
return 0;
}
/**
* @brief Read from the DMP memory.
* This function prevents I2C reads past the bank boundaries. The DMP memory
* is only accessible when the chip is awake.
* @param[in] mem_addr Memory location (bank << 8 | start address)
* @param[in] length Number of bytes to read.
* @param[out] data Bytes read from memory.
* @return 0 if successful.
*/
int mpu_read_mem(unsigned short mem_addr, unsigned short length,
unsigned char *data)
{
unsigned char tmp[2];
if (!data)
return -1;
if (!st.chip_cfg.sensors)
return -1;
tmp[0] = (unsigned char)(mem_addr >> 8);
tmp[1] = (unsigned char)(mem_addr & 0xFF);
/* Check bank boundaries. */
if (tmp[1] + length > st.hw->bank_size)
return -1;
if (i2c_write(st.hw->addr, st.reg->bank_sel, 2, tmp))
return -1;
if (i2c_read(st.hw->addr, st.reg->mem_r_w, length, data))
return -1;
return 0;
}
/**
* @brief Load and verify DMP image.
* @param[in] length Length of DMP image.
* @param[in] firmware DMP code.
* @param[in] start_addr Starting address of DMP code memory.
* @param[in] sample_rate Fixed sampling rate used when DMP is enabled.
* @return 0 if successful.
*/
int mpu_load_firmware(unsigned short length, const unsigned char *firmware,
unsigned short start_addr, unsigned short sample_rate)
{
unsigned short ii;
unsigned short this_write;
/* Must divide evenly into st.hw->bank_size to avoid bank crossings. */
#define LOAD_CHUNK (16)
unsigned char cur[LOAD_CHUNK], tmp[2];
if (st.chip_cfg.dmp_loaded)
/* DMP should only be loaded once. */
return -1;
if (!firmware)
return -1;
for (ii = 0; ii < length; ii += this_write) {
this_write = min(LOAD_CHUNK, length - ii);
if (mpu_write_mem(ii, this_write, (unsigned char*)&firmware[ii]))
return -1;
if (mpu_read_mem(ii, this_write, cur))
return -1;
if (memcmp(firmware+ii, cur, this_write))
return -2;
}
/* Set program start address. */
tmp[0] = start_addr >> 8;
tmp[1] = start_addr & 0xFF;
if (i2c_write(st.hw->addr, st.reg->prgm_start_h, 2, tmp))
return -1;
st.chip_cfg.dmp_loaded = 1;
st.chip_cfg.dmp_sample_rate = sample_rate;
return 0;
}
/**
* @brief Enable/disable DMP support.
* @param[in] enable 1 to turn on the DMP.
* @return 0 if successful.
*/
int mpu_set_dmp_state(unsigned char enable)
{
unsigned char tmp;
if (st.chip_cfg.dmp_on == enable)
return 0;
if (enable) {
if (!st.chip_cfg.dmp_loaded)
return -1;
/* Disable data ready interrupt. */
set_int_enable(0);
/* Disable bypass mode. */
mpu_set_bypass(0);
/* Keep constant sample rate, FIFO rate controlled by DMP. */
mpu_set_sample_rate(st.chip_cfg.dmp_sample_rate);
/* Remove FIFO elements. */
tmp = 0;
i2c_write(st.hw->addr, 0x23, 1, &tmp);
st.chip_cfg.dmp_on = 1;
/* Enable DMP interrupt. */
set_int_enable(1);
mpu_reset_fifo();
} else {
/* Disable DMP interrupt. */
set_int_enable(0);
/* Restore FIFO settings. */
tmp = st.chip_cfg.fifo_enable;
i2c_write(st.hw->addr, 0x23, 1, &tmp);
st.chip_cfg.dmp_on = 0;
mpu_reset_fifo();
}
return 0;
}
/**
* @brief Get DMP state.
* @param[out] enabled 1 if enabled.
* @return 0 if successful.
*/
int mpu_get_dmp_state(unsigned char *enabled)
{
enabled[0] = st.chip_cfg.dmp_on;
return 0;
}
/* This initialization is similar to the one in ak8975.c. */
int setup_compass(void)
{
#ifdef AK89xx_SECONDARY
unsigned char data[4], akm_addr;
mpu_set_bypass(1);
/* Find compass. Possible addresses range from 0x0C to 0x0F. */
for (akm_addr = 0x0C; akm_addr <= 0x0F; akm_addr++) {
int result;
result = i2c_read(akm_addr, AKM_REG_WHOAMI, 1, data);
if (!result && (data[0] == AKM_WHOAMI))
break;
}
if (akm_addr > 0x0F) {
/* TODO: Handle this case in all compass-related functions. */
log_e("Compass not found.\n");
return -1;
}
st.chip_cfg.compass_addr = akm_addr;
data[0] = AKM_POWER_DOWN;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
return -1;
delay_ms(1);
data[0] = AKM_FUSE_ROM_ACCESS;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
return -1;
delay_ms(1);
/* Get sensitivity adjustment data from fuse ROM. */
if (i2c_read(st.chip_cfg.compass_addr, AKM_REG_ASAX, 3, data))
return -1;
st.chip_cfg.mag_sens_adj[0] = (long)data[0] + 128;
st.chip_cfg.mag_sens_adj[1] = (long)data[1] + 128;
st.chip_cfg.mag_sens_adj[2] = (long)data[2] + 128;
data[0] = AKM_POWER_DOWN;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, data))
return -1;
delay_ms(1);
mpu_set_bypass(0);
/* Set up master mode, master clock, and ES bit. */
data[0] = 0x40;
if (i2c_write(st.hw->addr, st.reg->i2c_mst, 1, data))
return -1;
/* Slave 0 reads from AKM data registers. */
data[0] = BIT_I2C_READ | st.chip_cfg.compass_addr;
if (i2c_write(st.hw->addr, st.reg->s0_addr, 1, data))
return -1;
/* Compass reads start at this register. */
data[0] = AKM_REG_ST1;
if (i2c_write(st.hw->addr, st.reg->s0_reg, 1, data))
return -1;
/* Enable slave 0, 8-byte reads. */
data[0] = BIT_SLAVE_EN | 8;
if (i2c_write(st.hw->addr, st.reg->s0_ctrl, 1, data))
return -1;
/* Slave 1 changes AKM measurement mode. */
data[0] = st.chip_cfg.compass_addr;
if (i2c_write(st.hw->addr, st.reg->s1_addr, 1, data))
return -1;
/* AKM measurement mode register. */
data[0] = AKM_REG_CNTL;
if (i2c_write(st.hw->addr, st.reg->s1_reg, 1, data))
return -1;
/* Enable slave 1, 1-byte writes. */
data[0] = BIT_SLAVE_EN | 1;
if (i2c_write(st.hw->addr, st.reg->s1_ctrl, 1, data))
return -1;
/* Set slave 1 data. */
data[0] = AKM_SINGLE_MEASUREMENT;
if (i2c_write(st.hw->addr, st.reg->s1_do, 1, data))
return -1;
/* Trigger slave 0 and slave 1 actions at each sample. */
data[0] = 0x03;
if (i2c_write(st.hw->addr, st.reg->i2c_delay_ctrl, 1, data))
return -1;
#ifdef MPU9150
/* For the MPU9150, the auxiliary I2C bus needs to be set to VDD. */
data[0] = BIT_I2C_MST_VDDIO;
if (i2c_write(st.hw->addr, st.reg->yg_offs_tc, 1, data))
return -1;
#endif
return 0;
#else
return -1;
#endif
}
/**
* @brief Read raw compass data.
* @param[out] data Raw data in hardware units.
* @param[out] timestamp Timestamp in milliseconds. Null if not needed.
* @return 0 if successful.
*/
int mpu_get_compass_reg(short *data, unsigned long *timestamp)
{
#ifdef AK89xx_SECONDARY
unsigned char tmp[9];
if (!(st.chip_cfg.sensors & INV_XYZ_COMPASS))
return -1;
#ifdef AK89xx_BYPASS
if (i2c_read(st.chip_cfg.compass_addr, AKM_REG_ST1, 8, tmp))
return -1;
tmp[8] = AKM_SINGLE_MEASUREMENT;
if (i2c_write(st.chip_cfg.compass_addr, AKM_REG_CNTL, 1, tmp+8))
return -1;
#else
if (i2c_read(st.hw->addr, st.reg->raw_compass, 8, tmp))
return -1;
#endif
#if defined AK8975_SECONDARY
/* AK8975 doesn't have the overrun error bit. */
if (!(tmp[0] & AKM_DATA_READY))
return -2;
if ((tmp[7] & AKM_OVERFLOW) || (tmp[7] & AKM_DATA_ERROR))
return -3;
#elif defined AK8963_SECONDARY
/* AK8963 doesn't have the data read error bit. */
if (!(tmp[0] & AKM_DATA_READY) || (tmp[0] & AKM_DATA_OVERRUN))
return -2;
if (tmp[7] & AKM_OVERFLOW)
return -3;
#endif
data[0] = (tmp[2] << 8) | tmp[1];
data[1] = (tmp[4] << 8) | tmp[3];
data[2] = (tmp[6] << 8) | tmp[5];
data[0] = ((long)data[0] * st.chip_cfg.mag_sens_adj[0]) >> 8;
data[1] = ((long)data[1] * st.chip_cfg.mag_sens_adj[1]) >> 8;
data[2] = ((long)data[2] * st.chip_cfg.mag_sens_adj[2]) >> 8;
if (timestamp)
get_ms(timestamp);
return 0;
#else
return -1;
#endif
}
/**
* @brief Get the compass full-scale range.
* @param[out] fsr Current full-scale range.
* @return 0 if successful.
*/
int mpu_get_compass_fsr(unsigned short *fsr)
{
#ifdef AK89xx_SECONDARY
fsr[0] = st.hw->compass_fsr;
return 0;
#else
return -1;
#endif
}
/**
* @brief Enters LP accel motion interrupt mode.
* The behavior of this feature is very different between the MPU6050 and the
* MPU6500. Each chip's version of this feature is explained below.
*
* \n MPU6050:
* \n When this mode is first enabled, the hardware captures a single accel
* sample, and subsequent samples are compared with this one to determine if
* the device is in motion. Therefore, whenever this "locked" sample needs to
* be changed, this function must be called again.
*
* \n The hardware motion threshold can be between 32mg and 8160mg in 32mg
* increments.
*
* \n Low-power accel mode supports the following frequencies:
* \n 1.25Hz, 5Hz, 20Hz, 40Hz
*
* \n MPU6500:
* \n Unlike the MPU6050 version, the hardware does not "lock in" a reference
* sample. The hardware monitors the accel data and detects any large change
* over a short period of time.
*
* \n The hardware motion threshold can be between 4mg and 1020mg in 4mg
* increments.
*
* \n MPU6500 Low-power accel mode supports the following frequencies:
* \n 1.25Hz, 2.5Hz, 5Hz, 10Hz, 20Hz, 40Hz, 80Hz, 160Hz, 320Hz, 640Hz
*
* \n\n NOTES:
* \n The driver will round down @e thresh to the nearest supported value if
* an unsupported threshold is selected.
* \n To select a fractional wake-up frequency, round down the value passed to
* @e lpa_freq.
* \n The MPU6500 does not support a delay parameter. If this function is used
* for the MPU6500, the value passed to @e time will be ignored.
* \n To disable this mode, set @e lpa_freq to zero. The driver will restore
* the previous configuration.
*
* @param[in] thresh Motion threshold in mg.
* @param[in] time Duration in milliseconds that the accel data must
* exceed @e thresh before motion is reported.
* @param[in] lpa_freq Minimum sampling rate, or zero to disable.
* @return 0 if successful.
*/
int mpu_lp_motion_interrupt(unsigned short thresh, unsigned char time,
unsigned char lpa_freq)
{
unsigned char data[3];
if (lpa_freq) {
unsigned char thresh_hw;
#if defined MPU6050
/* TODO: Make these const/#defines. */
/* 1LSb = 32mg. */
if (thresh > 8160)
thresh_hw = 255;
else if (thresh < 32)
thresh_hw = 1;
else
thresh_hw = thresh >> 5;
#elif defined MPU6500
/* 1LSb = 4mg. */
if (thresh > 1020)
thresh_hw = 255;
else if (thresh < 4)
thresh_hw = 1;
else
thresh_hw = thresh >> 2;
#endif
if (!time)
/* Minimum duration must be 1ms. */
time = 1;
#if defined MPU6050
if (lpa_freq > 40)
#elif defined MPU6500
if (lpa_freq > 640)
#endif
/* At this point, the chip has not been re-configured, so the
* function can safely exit.
*/
return -1;
if (!st.chip_cfg.int_motion_only) {
/* Store current settings for later. */
if (st.chip_cfg.dmp_on) {
mpu_set_dmp_state(0);
st.chip_cfg.cache.dmp_on = 1;
} else
st.chip_cfg.cache.dmp_on = 0;
mpu_get_gyro_fsr(&st.chip_cfg.cache.gyro_fsr);
mpu_get_accel_fsr(&st.chip_cfg.cache.accel_fsr);
mpu_get_lpf(&st.chip_cfg.cache.lpf);
mpu_get_sample_rate(&st.chip_cfg.cache.sample_rate);
st.chip_cfg.cache.sensors_on = st.chip_cfg.sensors;
mpu_get_fifo_config(&st.chip_cfg.cache.fifo_sensors);
}
#ifdef MPU6050
/* Disable hardware interrupts for now. */
set_int_enable(0);
/* Enter full-power accel-only mode. */
mpu_lp_accel_mode(0);
/* Override current LPF (and HPF) settings to obtain a valid accel
* reading.
*/
data[0] = INV_FILTER_256HZ_NOLPF2;
if (i2c_write(st.hw->addr, st.reg->lpf, 1, data))
return -1;
/* NOTE: Digital high pass filter should be configured here. Since this
* driver doesn't modify those bits anywhere, they should already be
* cleared by default.
*/
/* Configure the device to send motion interrupts. */
/* Enable motion interrupt. */
data[0] = BIT_MOT_INT_EN;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, data))
goto lp_int_restore;
/* Set motion interrupt parameters. */
data[0] = thresh_hw;
data[1] = time;
if (i2c_write(st.hw->addr, st.reg->motion_thr, 2, data))
goto lp_int_restore;
/* Force hardware to "lock" current accel sample. */
delay_ms(5);
data[0] = (st.chip_cfg.accel_fsr << 3) | BITS_HPF;
if (i2c_write(st.hw->addr, st.reg->accel_cfg, 1, data))
goto lp_int_restore;
/* Set up LP accel mode. */
data[0] = BIT_LPA_CYCLE;
if (lpa_freq == 1)
data[1] = INV_LPA_1_25HZ;
else if (lpa_freq <= 5)
data[1] = INV_LPA_5HZ;
else if (lpa_freq <= 20)
data[1] = INV_LPA_20HZ;
else
data[1] = INV_LPA_40HZ;
data[1] = (data[1] << 6) | BIT_STBY_XYZG;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 2, data))
goto lp_int_restore;
st.chip_cfg.int_motion_only = 1;
return 0;
#elif defined MPU6500
/* Disable hardware interrupts. */
set_int_enable(0);
/* Enter full-power accel-only mode, no FIFO/DMP. */
data[0] = 0;
data[1] = 0;
data[2] = BIT_STBY_XYZG;
if (i2c_write(st.hw->addr, st.reg->user_ctrl, 3, data))
goto lp_int_restore;
/* Set motion threshold. */
data[0] = thresh_hw;
if (i2c_write(st.hw->addr, st.reg->motion_thr, 1, data))
goto lp_int_restore;
/* Set wake frequency. */
if (lpa_freq == 1)
data[0] = INV_LPA_1_25HZ;
else if (lpa_freq == 2)
data[0] = INV_LPA_2_5HZ;
else if (lpa_freq <= 5)
data[0] = INV_LPA_5HZ;
else if (lpa_freq <= 10)
data[0] = INV_LPA_10HZ;
else if (lpa_freq <= 20)
data[0] = INV_LPA_20HZ;
else if (lpa_freq <= 40)
data[0] = INV_LPA_40HZ;
else if (lpa_freq <= 80)
data[0] = INV_LPA_80HZ;
else if (lpa_freq <= 160)
data[0] = INV_LPA_160HZ;
else if (lpa_freq <= 320)
data[0] = INV_LPA_320HZ;
else
data[0] = INV_LPA_640HZ;
if (i2c_write(st.hw->addr, st.reg->lp_accel_odr, 1, data))
goto lp_int_restore;
/* Enable motion interrupt (MPU6500 version). */
data[0] = BITS_WOM_EN;
if (i2c_write(st.hw->addr, st.reg->accel_intel, 1, data))
goto lp_int_restore;
/* Enable cycle mode. */
data[0] = BIT_LPA_CYCLE;
if (i2c_write(st.hw->addr, st.reg->pwr_mgmt_1, 1, data))
goto lp_int_restore;
/* Enable interrupt. */
data[0] = BIT_MOT_INT_EN;
if (i2c_write(st.hw->addr, st.reg->int_enable, 1, data))
goto lp_int_restore;
st.chip_cfg.int_motion_only = 1;
return 0;
#endif
} else {
/* Don't "restore" the previous state if no state has been saved. */
int ii;
char *cache_ptr = (char*)&st.chip_cfg.cache;
for (ii = 0; ii < sizeof(st.chip_cfg.cache); ii++) {
if (cache_ptr[ii] != 0)
goto lp_int_restore;
}
/* If we reach this point, motion interrupt mode hasn't been used yet. */
return -1;
}
lp_int_restore:
/* Set to invalid values to ensure no I2C writes are skipped. */
st.chip_cfg.gyro_fsr = 0xFF;
st.chip_cfg.accel_fsr = 0xFF;
st.chip_cfg.lpf = 0xFF;
st.chip_cfg.sample_rate = 0xFFFF;
st.chip_cfg.sensors = 0xFF;
st.chip_cfg.fifo_enable = 0xFF;
st.chip_cfg.clk_src = INV_CLK_PLL;
mpu_set_sensors(st.chip_cfg.cache.sensors_on);
mpu_set_gyro_fsr(st.chip_cfg.cache.gyro_fsr);
mpu_set_accel_fsr(st.chip_cfg.cache.accel_fsr);
mpu_set_lpf(st.chip_cfg.cache.lpf);
mpu_set_sample_rate(st.chip_cfg.cache.sample_rate);
mpu_configure_fifo(st.chip_cfg.cache.fifo_sensors);
if (st.chip_cfg.cache.dmp_on)
mpu_set_dmp_state(1);
#ifdef MPU6500
/* Disable motion interrupt (MPU6500 version). */
data[0] = 0;
if (i2c_write(st.hw->addr, st.reg->accel_intel, 1, data))
goto lp_int_restore;
#endif
st.chip_cfg.int_motion_only = 0;
return 0;
}
//////////////////////////////////////////////////////////////////////////////////
//<EFBFBD><EFBFBD><EFBFBD>ӵĴ<EFBFBD><EFBFBD>벿<EFBFBD><EFBFBD>
//////////////////////////////////////////////////////////////////////////////////
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֻ<EFBFBD><EFBFBD>ѧϰʹ<EFBFBD>ã<EFBFBD>δ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ɣ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>κ<EFBFBD><EFBFBD><EFBFBD>;
//ALIENTEK<EFBFBD><EFBFBD>ӢSTM32<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>V3
//MPU6050 DMP <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ԭ<EFBFBD><EFBFBD>@ALIENTEK
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>̳:www.openedv.com
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>:2015/1/17
//<EFBFBD><EFBFBD><EFBFBD>V1.0
//<EFBFBD><EFBFBD>Ȩ<EFBFBD><EFBFBD><EFBFBD>У<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ؾ<EFBFBD><EFBFBD><EFBFBD>
//Copyright(C) <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>ӿƼ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>޹<EFBFBD>˾ 2009-2019
//All rights reserved
//////////////////////////////////////////////////////////////////////////////////
//q30<EFBFBD><EFBFBD>ʽ,longתfloatʱ<EFBFBD>ij<EFBFBD><EFBFBD><EFBFBD>.
#define q30 1073741824.0f
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
static signed char gyro_orientation[9] = { 1, 0, 0,
0, 1, 0,
0, 0, 1};
//MPU6050<EFBFBD>Բ<EFBFBD><EFBFBD><EFBFBD>
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ:0,<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
u8 run_self_test(void)
{
int result;
//char test_packet[4] = {0};
long gyro[3], accel[3];
result = mpu_run_self_test(gyro, accel);
if (result == 0x3)
{
/* Test passed. We can trust the gyro data here, so let's push it down
* to the DMP.
*/
float sens;
unsigned short accel_sens;
mpu_get_gyro_sens(&sens);
gyro[0] = (long)(gyro[0] * sens);
gyro[1] = (long)(gyro[1] * sens);
gyro[2] = (long)(gyro[2] * sens);
dmp_set_gyro_bias(gyro);
mpu_get_accel_sens(&accel_sens);
accel[0] *= accel_sens;
accel[1] *= accel_sens;
accel[2] *= accel_sens;
dmp_set_accel_bias(accel);
return 0;
}else return 1;
}
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
unsigned short inv_orientation_matrix_to_scalar(
const signed char *mtx)
{
unsigned short scalar;
/*
XYZ 010_001_000 Identity Matrix
XZY 001_010_000
YXZ 010_000_001
YZX 000_010_001
ZXY 001_000_010
ZYX 000_001_010
*/
scalar = inv_row_2_scale(mtx);
scalar |= inv_row_2_scale(mtx + 3) << 3;
scalar |= inv_row_2_scale(mtx + 6) << 6;
return scalar;
}
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ת<EFBFBD><EFBFBD>
unsigned short inv_row_2_scale(const signed char *row)
{
unsigned short b;
if (row[0] > 0)
b = 0;
else if (row[0] < 0)
b = 4;
else if (row[1] > 0)
b = 1;
else if (row[1] < 0)
b = 5;
else if (row[2] > 0)
b = 2;
else if (row[2] < 0)
b = 6;
else
b = 7; // error
return b;
}
//<EFBFBD>պ<EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD>.
void mget_ms(unsigned long *time)
{
}
//mpu6050,dmp<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD>
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ:0,<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
u8 mpu_dmp_init(void)
{
u8 res=0;
MPU_IIC_Init(); //<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD>IIC<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if(mpu_init()==0) //<EFBFBD><EFBFBD>ʼ<EFBFBD><EFBFBD>MPU6050
{
res=mpu_set_sensors(INV_XYZ_GYRO|INV_XYZ_ACCEL);//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD>Ĵ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if(res)return 1;
res=mpu_configure_fifo(INV_XYZ_GYRO|INV_XYZ_ACCEL);//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>FIFO
if(res)return 2;
res=mpu_set_sample_rate(DEFAULT_MPU_HZ); //<EFBFBD><EFBFBD><EFBFBD>ò<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
if(res)return 3;
res=dmp_load_motion_driver_firmware(); //<EFBFBD><EFBFBD><EFBFBD><EFBFBD>dmp<EFBFBD>̼<EFBFBD>
if(res)return 4;
res=dmp_set_orientation(inv_orientation_matrix_to_scalar(gyro_orientation));//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ƿ<EFBFBD><EFBFBD><EFBFBD>
if(res)return 5;
res=dmp_enable_feature(DMP_FEATURE_6X_LP_QUAT|DMP_FEATURE_TAP| //<EFBFBD><EFBFBD><EFBFBD><EFBFBD>dmp<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
DMP_FEATURE_ANDROID_ORIENT|DMP_FEATURE_SEND_RAW_ACCEL|DMP_FEATURE_SEND_CAL_GYRO|
DMP_FEATURE_GYRO_CAL);
if(res)return 6;
res=dmp_set_fifo_rate(DEFAULT_MPU_HZ); //<EFBFBD><EFBFBD><EFBFBD><EFBFBD>DMP<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>(<EFBFBD><EFBFBD><EFBFBD>󲻳<EFBFBD><EFBFBD><EFBFBD>200Hz)
if(res)return 7;
// res=run_self_test(); //<EFBFBD>Լ<EFBFBD>
if(res)return 8;
res=mpu_set_dmp_state(1); //ʹ<EFBFBD><EFBFBD>DMP
if(res)return 9;
}else return 10;
return 0;
}
//<EFBFBD>õ<EFBFBD>dmp<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>,<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>Ҫ<EFBFBD>Ƚ϶<EFBFBD><EFBFBD><EFBFBD>ջ,<EFBFBD>ֲ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>е<EFBFBD><EFBFBD><EFBFBD>)
//pitch:<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <EFBFBD><EFBFBD><EFBFBD><EFBFBD>:0.1<EFBFBD><EFBFBD> <EFBFBD><EFBFBD>Χ:-90.0<EFBFBD><EFBFBD> <---> +90.0<EFBFBD><EFBFBD>
//roll:<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <EFBFBD><EFBFBD><EFBFBD><EFBFBD>:0.1<EFBFBD><EFBFBD> <EFBFBD><EFBFBD>Χ:-180.0<EFBFBD><EFBFBD><---> +180.0<EFBFBD><EFBFBD>
//yaw:<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD> <EFBFBD><EFBFBD><EFBFBD><EFBFBD>:0.1<EFBFBD><EFBFBD> <EFBFBD><EFBFBD>Χ:-180.0<EFBFBD><EFBFBD><---> +180.0<EFBFBD><EFBFBD>
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD>ֵ:0,<EFBFBD><EFBFBD><EFBFBD><EFBFBD>
// <EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
u8 mpu_dmp_get_data(float *pitch,float *roll,float *yaw)
{
float q0=1.0f,q1=0.0f,q2=0.0f,q3=0.0f;
unsigned long sensor_timestamp;
short gyro[3], accel[3], sensors;
unsigned char more;
long quat[4];
if(dmp_read_fifo(gyro, accel, quat, &sensor_timestamp, &sensors,&more))return 1;
/* Gyro and accel data are written to the FIFO by the DMP in chip frame and hardware units.
* This behavior is convenient because it keeps the gyro and accel outputs of dmp_read_fifo and mpu_read_fifo consistent.
**/
/*if (sensors & INV_XYZ_GYRO )
send_packet(PACKET_TYPE_GYRO, gyro);
if (sensors & INV_XYZ_ACCEL)
send_packet(PACKET_TYPE_ACCEL, accel); */
/* Unlike gyro and accel, quaternions are written to the FIFO in the body frame, q30.
* The orientation is set by the scalar passed to dmp_set_orientation during initialization.
**/
if(sensors&INV_WXYZ_QUAT)
{
q0 = quat[0] / q30; //q30<EFBFBD><EFBFBD>ʽת<EFBFBD><EFBFBD>Ϊ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
q1 = quat[1] / q30;
q2 = quat[2] / q30;
q3 = quat[3] / q30;
//<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>õ<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>/<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
*pitch = asin(-2 * q1 * q3 + 2 * q0* q2)* 57.3; // pitch
*roll = atan2(2 * q2 * q3 + 2 * q0 * q1, -2 * q1 * q1 - 2 * q2* q2 + 1)* 57.3; // roll
*yaw = atan2(2*(q1*q2 + q0*q3),q0*q0+q1*q1-q2*q2-q3*q3) * 57.3; //yaw
}else return 2;
return 0;
}