用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1124 lines
35 KiB

5 months ago
/*
* include/haproxy/connection.h
* This file contains connection function prototypes
*
* Copyright (C) 2000-2002 Willy Tarreau - w@1wt.eu
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation, version 2.1
* exclusively.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _HAPROXY_CONNECTION_H
#define _HAPROXY_CONNECTION_H
#include <import/ist.h>
#include <haproxy/api.h>
#include <haproxy/connection-t.h>
#include <haproxy/fd.h>
#include <haproxy/http_ana.h>
#include <haproxy/listener-t.h>
#include <haproxy/obj_type.h>
#include <haproxy/pool.h>
#include <haproxy/session.h>
#include <haproxy/task-t.h>
#include <haproxy/tcpcheck-t.h>
extern struct pool_head *pool_head_connection;
extern struct pool_head *pool_head_connstream;
extern struct pool_head *pool_head_sockaddr;
extern struct pool_head *pool_head_authority;
extern struct xprt_ops *registered_xprt[XPRT_ENTRIES];
extern struct mux_proto_list mux_proto_list;
#define IS_HTX_CONN(conn) ((conn)->mux && ((conn)->mux->flags & MX_FL_HTX))
#define IS_HTX_CS(cs) (IS_HTX_CONN((cs)->conn))
/* receive a PROXY protocol header over a connection */
int conn_recv_proxy(struct connection *conn, int flag);
int make_proxy_line(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm);
int make_proxy_line_v1(char *buf, int buf_len, struct sockaddr_storage *src, struct sockaddr_storage *dst);
int make_proxy_line_v2(char *buf, int buf_len, struct server *srv, struct connection *remote, struct stream *strm);
int conn_subscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es);
int conn_unsubscribe(struct connection *conn, void *xprt_ctx, int event_type, struct wait_event *es);
/* receive a NetScaler Client IP insertion header over a connection */
int conn_recv_netscaler_cip(struct connection *conn, int flag);
/* raw send() directly on the socket */
int conn_ctrl_send(struct connection *conn, const void *buf, int len, int flags);
/* drains any pending bytes from the socket */
int conn_ctrl_drain(struct connection *conn);
/* scoks4 proxy handshake */
int conn_send_socks4_proxy_request(struct connection *conn);
int conn_recv_socks4_proxy_response(struct connection *conn);
/* If we delayed the mux creation because we were waiting for the handshake, do it now */
int conn_create_mux(struct connection *conn);
extern struct idle_conns idle_conns[MAX_THREADS];
/* returns true is the transport layer is ready */
static inline int conn_xprt_ready(const struct connection *conn)
{
return (conn->flags & CO_FL_XPRT_READY);
}
/* returns true is the control layer is ready */
static inline int conn_ctrl_ready(const struct connection *conn)
{
return (conn->flags & CO_FL_CTRL_READY);
}
/* Calls the init() function of the transport layer if any and if not done yet,
* and sets the CO_FL_XPRT_READY flag to indicate it was properly initialized.
* Returns <0 in case of error.
*/
static inline int conn_xprt_init(struct connection *conn)
{
int ret = 0;
if (!conn_xprt_ready(conn) && conn->xprt && conn->xprt->init)
ret = conn->xprt->init(conn, &conn->xprt_ctx);
if (ret >= 0)
conn->flags |= CO_FL_XPRT_READY;
return ret;
}
/* Calls the close() function of the transport layer if any and if not done
* yet, and clears the CO_FL_XPRT_READY flag. However this is not done if the
* CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the
* transport layer very late if needed.
*/
static inline void conn_xprt_close(struct connection *conn)
{
if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_XPRT_TRACKED)) == CO_FL_XPRT_READY) {
if (conn->xprt->close)
conn->xprt->close(conn, conn->xprt_ctx);
conn->xprt_ctx = NULL;
conn->flags &= ~CO_FL_XPRT_READY;
}
}
/* Initializes the connection's control layer which essentially consists in
* registering the connection handle (e.g. file descriptor) for events and
* setting the CO_FL_CTRL_READY flag. The caller is responsible for ensuring
* that the control layer is already assigned to the connection prior to the
* call.
*/
static inline void conn_ctrl_init(struct connection *conn)
{
if (!conn_ctrl_ready(conn)) {
conn->flags |= CO_FL_CTRL_READY;
if (conn->ctrl->ctrl_init)
conn->ctrl->ctrl_init(conn);
}
}
/* Deletes the connection's handle (e.g. FD) if the transport layer is already
* gone, and removes the CO_FL_CTRL_READY flag.
*/
static inline void conn_ctrl_close(struct connection *conn)
{
if ((conn->flags & (CO_FL_XPRT_READY|CO_FL_CTRL_READY)) == CO_FL_CTRL_READY) {
conn->flags &= ~CO_FL_CTRL_READY;
if (conn->ctrl->ctrl_close)
conn->ctrl->ctrl_close(conn);
}
}
/* If the connection still has a transport layer, then call its close() function
* if any, and delete the file descriptor if a control layer is set. This is
* used to close everything at once and atomically. However this is not done if
* the CO_FL_XPRT_TRACKED flag is set, which allows logs to take data from the
* transport layer very late if needed.
*/
static inline void conn_full_close(struct connection *conn)
{
conn_xprt_close(conn);
conn_ctrl_close(conn);
}
/* stop tracking a connection, allowing conn_full_close() to always
* succeed.
*/
static inline void conn_stop_tracking(struct connection *conn)
{
conn->flags &= ~CO_FL_XPRT_TRACKED;
}
/* read shutdown, called from the rcv_buf/rcv_pipe handlers when
* detecting an end of connection.
*/
static inline void conn_sock_read0(struct connection *c)
{
c->flags |= CO_FL_SOCK_RD_SH;
if (conn_ctrl_ready(c)) {
/* we don't risk keeping ports unusable if we found the
* zero from the other side.
*/
fdtab[c->handle.fd].linger_risk = 0;
}
}
/* write shutdown, indication that the upper layer is not willing to send
* anything anymore and wants to close after pending data are sent. The
* <clean> argument will allow not to perform the socket layer shutdown if
* equal to 0.
*/
static inline void conn_sock_shutw(struct connection *c, int clean)
{
c->flags |= CO_FL_SOCK_WR_SH;
if (conn_ctrl_ready(c)) {
/* don't perform a clean shutdown if we're going to reset or
* if the shutr was already received.
*/
if (!(c->flags & CO_FL_SOCK_RD_SH) && clean)
shutdown(c->handle.fd, SHUT_WR);
}
}
static inline void conn_xprt_shutw(struct connection *c)
{
/* clean data-layer shutdown */
if (c->xprt && c->xprt->shutw)
c->xprt->shutw(c, c->xprt_ctx, 1);
}
static inline void conn_xprt_shutw_hard(struct connection *c)
{
/* unclean data-layer shutdown */
if (c->xprt && c->xprt->shutw)
c->xprt->shutw(c, c->xprt_ctx, 0);
}
/* This is used at the end of the socket IOCB to possibly create the mux if it
* was not done yet, or wake it up if flags changed compared to old_flags or if
* need_wake insists on this. It returns <0 if the connection was destroyed and
* must not be used, >=0 otherwise.
*/
static inline int conn_notify_mux(struct connection *conn, int old_flags, int forced_wake)
{
int ret = 0;
/* If we don't yet have a mux, that means we were waiting for
* information to create one, typically from the ALPN. If we're
* done with the handshake, attempt to create one.
*/
if (unlikely(!conn->mux) && !(conn->flags & CO_FL_WAIT_XPRT)) {
ret = conn_create_mux(conn);
if (ret < 0)
goto done;
}
/* The wake callback is normally used to notify the data layer about
* data layer activity (successful send/recv), connection establishment,
* shutdown and fatal errors. We need to consider the following
* situations to wake up the data layer :
* - change among the CO_FL_NOTIFY_DONE flags :
* SOCK_{RD,WR}_SH, ERROR,
* - absence of any of {L4,L6}_CONN and CONNECTED, indicating the
* end of handshake and transition to CONNECTED
* - raise of CONNECTED with HANDSHAKE down
* - end of HANDSHAKE with CONNECTED set
* - regular data layer activity
*
* Note that the wake callback is allowed to release the connection and
* the fd (and return < 0 in this case).
*/
if ((forced_wake ||
((conn->flags ^ old_flags) & CO_FL_NOTIFY_DONE) ||
((old_flags & CO_FL_WAIT_XPRT) && !(conn->flags & CO_FL_WAIT_XPRT))) &&
conn->mux && conn->mux->wake) {
ret = conn->mux->wake(conn);
if (ret < 0)
goto done;
}
done:
return ret;
}
/* shut read */
static inline void cs_shutr(struct conn_stream *cs, enum cs_shr_mode mode)
{
/* clean data-layer shutdown */
if (cs->conn->mux && cs->conn->mux->shutr)
cs->conn->mux->shutr(cs, mode);
cs->flags |= (mode == CS_SHR_DRAIN) ? CS_FL_SHRD : CS_FL_SHRR;
}
/* shut write */
static inline void cs_shutw(struct conn_stream *cs, enum cs_shw_mode mode)
{
/* clean data-layer shutdown */
if (cs->conn->mux && cs->conn->mux->shutw)
cs->conn->mux->shutw(cs, mode);
cs->flags |= (mode == CS_SHW_NORMAL) ? CS_FL_SHWN : CS_FL_SHWS;
}
/* completely close a conn_stream (but do not detach it) */
static inline void cs_close(struct conn_stream *cs)
{
cs_shutw(cs, CS_SHW_SILENT);
cs_shutr(cs, CS_SHR_RESET);
cs->flags = CS_FL_NONE;
}
/* completely close a conn_stream after draining possibly pending data (but do not detach it) */
static inline void cs_drain_and_close(struct conn_stream *cs)
{
cs_shutw(cs, CS_SHW_SILENT);
cs_shutr(cs, CS_SHR_DRAIN);
cs->flags = CS_FL_NONE;
}
/* sets CS_FL_ERROR or CS_FL_ERR_PENDING on the cs */
static inline void cs_set_error(struct conn_stream *cs)
{
if (cs->flags & CS_FL_EOS)
cs->flags |= CS_FL_ERROR;
else
cs->flags |= CS_FL_ERR_PENDING;
}
/* detect sock->data read0 transition */
static inline int conn_xprt_read0_pending(struct connection *c)
{
return (c->flags & CO_FL_SOCK_RD_SH) != 0;
}
/* prepares a connection to work with protocol <proto> and transport <xprt>.
* The transport's is initialized as well, and the mux and its context are
* cleared. The target is not reinitialized and it is recommended that it is
* set prior to calling this function so that the function may make use of it
* in the future to refine the mux choice if needed.
*/
static inline void conn_prepare(struct connection *conn, const struct protocol *proto, const struct xprt_ops *xprt)
{
conn->ctrl = proto;
conn->xprt = xprt;
conn->mux = NULL;
conn->xprt_ctx = NULL;
conn->ctx = NULL;
}
/*
* Initializes all required fields for a new conn_strema.
*/
static inline void cs_init(struct conn_stream *cs, struct connection *conn)
{
cs->obj_type = OBJ_TYPE_CS;
cs->flags = CS_FL_NONE;
cs->conn = conn;
}
/* Initializes all required fields for a new connection. Note that it does the
* minimum acceptable initialization for a connection that already exists and
* is about to be reused. It also leaves the addresses untouched, which makes
* it usable across connection retries to reset a connection to a known state.
*/
static inline void conn_init(struct connection *conn, void *target)
{
conn->obj_type = OBJ_TYPE_CONN;
conn->flags = CO_FL_NONE;
conn->mux = NULL;
conn->ctx = NULL;
conn->owner = NULL;
conn->send_proxy_ofs = 0;
conn->handle.fd = DEAD_FD_MAGIC;
conn->err_code = CO_ER_NONE;
conn->target = target;
conn->destroy_cb = NULL;
conn->proxy_netns = NULL;
MT_LIST_INIT(&conn->list);
LIST_INIT(&conn->session_list);
conn->subs = NULL;
conn->src = NULL;
conn->dst = NULL;
conn->proxy_authority = NULL;
conn->proxy_unique_id = IST_NULL;
}
/* sets <owner> as the connection's owner */
static inline void conn_set_owner(struct connection *conn, void *owner, void (*cb)(struct connection *))
{
conn->owner = owner;
conn->destroy_cb = cb;
}
/* Mark the connection <conn> as private and remove it from the available connection list */
static inline void conn_set_private(struct connection *conn)
{
if (!(conn->flags & CO_FL_PRIVATE)) {
conn->flags |= CO_FL_PRIVATE;
if (obj_type(conn->target) == OBJ_TYPE_SERVER)
srv_del_conn_from_list(__objt_server(conn->target), conn);
}
}
/* Allocates a struct sockaddr from the pool if needed, assigns it to *sap and
* returns it. If <sap> is NULL, the address is always allocated and returned.
* if <sap> is non-null, an address will only be allocated if it points to a
* non-null pointer. In this case the allocated address will be assigned there.
* If <orig> is non-null and <len> positive, the address in <sa> will be copied
* into the allocated address. In both situations the new pointer is returned.
*/
static inline struct sockaddr_storage *
sockaddr_alloc(struct sockaddr_storage **sap, const struct sockaddr_storage *orig, socklen_t len)
{
struct sockaddr_storage *sa;
if (sap && *sap)
return *sap;
sa = pool_alloc(pool_head_sockaddr);
if (sa && orig && len > 0)
memcpy(sa, orig, len);
if (sap)
*sap = sa;
return sa;
}
/* Releases the struct sockaddr potentially pointed to by <sap> to the pool. It
* may be NULL or may point to NULL. If <sap> is not NULL, a NULL is placed
* there.
*/
static inline void sockaddr_free(struct sockaddr_storage **sap)
{
if (!sap)
return;
pool_free(pool_head_sockaddr, *sap);
*sap = NULL;
}
/* Tries to allocate a new connection and initialized its main fields. The
* connection is returned on success, NULL on failure. The connection must
* be released using pool_free() or conn_free().
*/
static inline struct connection *conn_new(void *target)
{
struct connection *conn;
conn = pool_alloc(pool_head_connection);
if (likely(conn != NULL)) {
conn_init(conn, target);
if (obj_type(target) == OBJ_TYPE_SERVER)
srv_use_conn(__objt_server(target), conn);
}
return conn;
}
/* Releases a conn_stream previously allocated by cs_new(), as well as any
* buffer it would still hold.
*/
static inline void cs_free(struct conn_stream *cs)
{
pool_free(pool_head_connstream, cs);
}
/* Tries to allocate a new conn_stream and initialize its main fields. If
* <conn> is NULL, then a new connection is allocated on the fly, initialized,
* and assigned to cs->conn ; this connection will then have to be released
* using pool_free() or conn_free(). The conn_stream is initialized and added
* to the mux's stream list on success, then returned. On failure, nothing is
* allocated and NULL is returned.
*/
static inline struct conn_stream *cs_new(struct connection *conn, void *target)
{
struct conn_stream *cs;
cs = pool_alloc(pool_head_connstream);
if (unlikely(!cs))
return NULL;
if (!conn) {
conn = conn_new(target);
if (unlikely(!conn)) {
cs_free(cs);
return NULL;
}
}
cs_init(cs, conn);
return cs;
}
/* Retrieves any valid conn_stream from this connection, preferably the first
* valid one. The purpose is to be able to figure one other end of a private
* connection for purposes like source binding or proxy protocol header
* emission. In such cases, any conn_stream is expected to be valid so the
* mux is encouraged to return the first one it finds. If the connection has
* no mux or the mux has no get_first_cs() method or the mux has no valid
* conn_stream, NULL is returned. The output pointer is purposely marked
* const to discourage the caller from modifying anything there.
*/
static inline const struct conn_stream *cs_get_first(const struct connection *conn)
{
if (!conn || !conn->mux || !conn->mux->get_first_cs)
return NULL;
return conn->mux->get_first_cs(conn);
}
static inline void conn_force_unsubscribe(struct connection *conn)
{
if (!conn->subs)
return;
conn->subs->events = 0;
conn->subs = NULL;
}
/* Releases a connection previously allocated by conn_new() */
static inline void conn_free(struct connection *conn)
{
/* If the connection is owned by the session, remove it from its list
*/
if (LIST_ADDED(&conn->session_list)) {
session_unown_conn(conn->owner, conn);
}
else if (!(conn->flags & CO_FL_PRIVATE)) {
if (obj_type(conn->target) == OBJ_TYPE_SERVER)
srv_del_conn_from_list(__objt_server(conn->target), conn);
}
sockaddr_free(&conn->src);
sockaddr_free(&conn->dst);
if (conn->proxy_authority != NULL) {
pool_free(pool_head_authority, conn->proxy_authority);
conn->proxy_authority = NULL;
}
if (isttest(conn->proxy_unique_id)) {
pool_free(pool_head_uniqueid, conn->proxy_unique_id.ptr);
conn->proxy_unique_id = IST_NULL;
}
/* By convention we always place a NULL where the ctx points to if the
* mux is null. It may have been used to store the connection as a
* stream_interface's end point for example.
*/
if (conn->ctx != NULL && conn->mux == NULL)
*(void **)conn->ctx = NULL;
conn_force_unsubscribe(conn);
pool_free(pool_head_connection, conn);
}
/* Release a conn_stream */
static inline void cs_destroy(struct conn_stream *cs)
{
if (cs->conn->mux)
cs->conn->mux->detach(cs);
else {
/* It's too early to have a mux, let's just destroy
* the connection
*/
struct connection *conn = cs->conn;
conn_stop_tracking(conn);
conn_full_close(conn);
if (conn->destroy_cb)
conn->destroy_cb(conn);
conn_free(conn);
}
cs_free(cs);
}
/* Returns the conn from a cs. If cs is NULL, returns NULL */
static inline struct connection *cs_conn(const struct conn_stream *cs)
{
return cs ? cs->conn : NULL;
}
/* Retrieves the connection's original source address. Returns non-zero on
* success or zero on failure. The operation is only performed once and the
* address is stored in the connection for future use.
*/
static inline int conn_get_src(struct connection *conn)
{
if (conn->flags & CO_FL_ADDR_FROM_SET)
return 1;
if (!conn_ctrl_ready(conn) || !conn->ctrl->fam->get_src)
return 0;
if (!sockaddr_alloc(&conn->src, NULL, 0))
return 0;
if (conn->ctrl->fam->get_src(conn->handle.fd, (struct sockaddr *)conn->src,
sizeof(*conn->src),
obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1)
return 0;
conn->flags |= CO_FL_ADDR_FROM_SET;
return 1;
}
/* Retrieves the connection's original destination address. Returns non-zero on
* success or zero on failure. The operation is only performed once and the
* address is stored in the connection for future use.
*/
static inline int conn_get_dst(struct connection *conn)
{
if (conn->flags & CO_FL_ADDR_TO_SET)
return 1;
if (!conn_ctrl_ready(conn) || !conn->ctrl->fam->get_dst)
return 0;
if (!sockaddr_alloc(&conn->dst, NULL, 0))
return 0;
if (conn->ctrl->fam->get_dst(conn->handle.fd, (struct sockaddr *)conn->dst,
sizeof(*conn->dst),
obj_type(conn->target) != OBJ_TYPE_LISTENER) == -1)
return 0;
conn->flags |= CO_FL_ADDR_TO_SET;
return 1;
}
/* Sets the TOS header in IPv4 and the traffic class header in IPv6 packets
* (as per RFC3260 #4 and BCP37 #4.2 and #5.2). The connection is tested and if
* it is null, nothing is done.
*/
static inline void conn_set_tos(const struct connection *conn, int tos)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef IP_TOS
if (conn->src->ss_family == AF_INET)
setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
#endif
#ifdef IPV6_TCLASS
if (conn->src->ss_family == AF_INET6) {
if (IN6_IS_ADDR_V4MAPPED(&((struct sockaddr_in6 *)conn->src)->sin6_addr))
/* v4-mapped addresses need IP_TOS */
setsockopt(conn->handle.fd, IPPROTO_IP, IP_TOS, &tos, sizeof(tos));
else
setsockopt(conn->handle.fd, IPPROTO_IPV6, IPV6_TCLASS, &tos, sizeof(tos));
}
#endif
}
/* Sets the netfilter mark on the connection's socket. The connection is tested
* and if it is null, nothing is done.
*/
static inline void conn_set_mark(const struct connection *conn, int mark)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef SO_MARK
setsockopt(conn->handle.fd, SOL_SOCKET, SO_MARK, &mark, sizeof(mark));
#endif
}
/* Sets adjust the TCP quick-ack feature on the connection's socket. The
* connection is tested and if it is null, nothing is done.
*/
static inline void conn_set_quickack(const struct connection *conn, int value)
{
if (!conn || !conn_ctrl_ready(conn))
return;
#ifdef TCP_QUICKACK
setsockopt(conn->handle.fd, IPPROTO_TCP, TCP_QUICKACK, &value, sizeof(value));
#endif
}
/* Attaches a conn_stream to a data layer and sets the relevant callbacks */
static inline void cs_attach(struct conn_stream *cs, void *data, const struct data_cb *data_cb)
{
cs->data_cb = data_cb;
cs->data = data;
}
static inline struct wait_event *wl_set_waitcb(struct wait_event *wl, struct task *(*cb)(struct task *, void *, unsigned short), void *ctx)
{
if (!wl->tasklet->process) {
wl->tasklet->process = cb;
wl->tasklet->context = ctx;
}
return wl;
}
/* Installs the connection's mux layer for upper context <ctx>.
* Returns < 0 on error.
*/
static inline int conn_install_mux(struct connection *conn, const struct mux_ops *mux,
void *ctx, struct proxy *prx, struct session *sess)
{
int ret;
conn->mux = mux;
conn->ctx = ctx;
ret = mux->init ? mux->init(conn, prx, sess, &BUF_NULL) : 0;
if (ret < 0) {
conn->mux = NULL;
conn->ctx = NULL;
}
return ret;
}
/* returns a human-readable error code for conn->err_code, or NULL if the code
* is unknown.
*/
static inline const char *conn_err_code_str(struct connection *c)
{
switch (c->err_code) {
case CO_ER_NONE: return "Success";
case CO_ER_CONF_FDLIM: return "Reached configured maxconn value";
case CO_ER_PROC_FDLIM: return "Too many sockets on the process";
case CO_ER_SYS_FDLIM: return "Too many sockets on the system";
case CO_ER_SYS_MEMLIM: return "Out of system buffers";
case CO_ER_NOPROTO: return "Protocol or address family not supported";
case CO_ER_SOCK_ERR: return "General socket error";
case CO_ER_PORT_RANGE: return "Source port range exhausted";
case CO_ER_CANT_BIND: return "Can't bind to source address";
case CO_ER_FREE_PORTS: return "Out of local source ports on the system";
case CO_ER_ADDR_INUSE: return "Local source address already in use";
case CO_ER_PRX_EMPTY: return "Connection closed while waiting for PROXY protocol header";
case CO_ER_PRX_ABORT: return "Connection error while waiting for PROXY protocol header";
case CO_ER_PRX_TIMEOUT: return "Timeout while waiting for PROXY protocol header";
case CO_ER_PRX_TRUNCATED: return "Truncated PROXY protocol header received";
case CO_ER_PRX_NOT_HDR: return "Received something which does not look like a PROXY protocol header";
case CO_ER_PRX_BAD_HDR: return "Received an invalid PROXY protocol header";
case CO_ER_PRX_BAD_PROTO: return "Received an unhandled protocol in the PROXY protocol header";
case CO_ER_CIP_EMPTY: return "Connection closed while waiting for NetScaler Client IP header";
case CO_ER_CIP_ABORT: return "Connection error while waiting for NetScaler Client IP header";
case CO_ER_CIP_TRUNCATED: return "Truncated NetScaler Client IP header received";
case CO_ER_CIP_BAD_MAGIC: return "Received an invalid NetScaler Client IP magic number";
case CO_ER_CIP_BAD_PROTO: return "Received an unhandled protocol in the NetScaler Client IP header";
case CO_ER_SSL_EMPTY: return "Connection closed during SSL handshake";
case CO_ER_SSL_ABORT: return "Connection error during SSL handshake";
case CO_ER_SSL_TIMEOUT: return "Timeout during SSL handshake";
case CO_ER_SSL_TOO_MANY: return "Too many SSL connections";
case CO_ER_SSL_NO_MEM: return "Out of memory when initializing an SSL connection";
case CO_ER_SSL_RENEG: return "Rejected a client-initiated SSL renegotiation attempt";
case CO_ER_SSL_CA_FAIL: return "SSL client CA chain cannot be verified";
case CO_ER_SSL_CRT_FAIL: return "SSL client certificate not trusted";
case CO_ER_SSL_MISMATCH: return "Server presented an SSL certificate different from the configured one";
case CO_ER_SSL_MISMATCH_SNI: return "Server presented an SSL certificate different from the expected one";
case CO_ER_SSL_HANDSHAKE: return "SSL handshake failure";
case CO_ER_SSL_HANDSHAKE_HB: return "SSL handshake failure after heartbeat";
case CO_ER_SSL_KILLED_HB: return "Stopped a TLSv1 heartbeat attack (CVE-2014-0160)";
case CO_ER_SSL_NO_TARGET: return "Attempt to use SSL on an unknown target (internal error)";
case CO_ER_SOCKS4_SEND: return "SOCKS4 Proxy write error during handshake";
case CO_ER_SOCKS4_RECV: return "SOCKS4 Proxy read error during handshake";
case CO_ER_SOCKS4_DENY: return "SOCKS4 Proxy deny the request";
case CO_ER_SOCKS4_ABORT: return "SOCKS4 Proxy handshake aborted by server";
}
return NULL;
}
static inline const char *conn_get_ctrl_name(const struct connection *conn)
{
if (!conn || !conn_ctrl_ready(conn))
return "NONE";
return conn->ctrl->name;
}
static inline const char *conn_get_xprt_name(const struct connection *conn)
{
if (!conn || !conn_xprt_ready(conn))
return "NONE";
return conn->xprt->name;
}
static inline const char *conn_get_mux_name(const struct connection *conn)
{
if (!conn || !conn->mux)
return "NONE";
return conn->mux->name;
}
static inline const char *cs_get_data_name(const struct conn_stream *cs)
{
if (!cs || !cs->data_cb)
return "NONE";
return cs->data_cb->name;
}
/* registers pointer to transport layer <id> (XPRT_*) */
static inline void xprt_register(int id, struct xprt_ops *xprt)
{
if (id >= XPRT_ENTRIES)
return;
registered_xprt[id] = xprt;
}
/* returns pointer to transport layer <id> (XPRT_*) or NULL if not registered */
static inline struct xprt_ops *xprt_get(int id)
{
if (id >= XPRT_ENTRIES)
return NULL;
return registered_xprt[id];
}
/* Try to add a handshake pseudo-XPRT. If the connection's first XPRT is
* raw_sock, then just use the new XPRT as the connection XPRT, otherwise
* call the xprt's add_xprt() method.
* Returns 0 on success, or non-zero on failure.
*/
static inline int xprt_add_hs(struct connection *conn)
{
void *xprt_ctx = NULL;
const struct xprt_ops *ops = xprt_get(XPRT_HANDSHAKE);
void *nextxprt_ctx = NULL;
const struct xprt_ops *nextxprt_ops = NULL;
if (conn->flags & CO_FL_ERROR)
return -1;
if (ops->init(conn, &xprt_ctx) < 0)
return -1;
if (conn->xprt == xprt_get(XPRT_RAW)) {
nextxprt_ctx = conn->xprt_ctx;
nextxprt_ops = conn->xprt;
conn->xprt_ctx = xprt_ctx;
conn->xprt = ops;
} else {
if (conn->xprt->add_xprt(conn, conn->xprt_ctx, xprt_ctx, ops,
&nextxprt_ctx, &nextxprt_ops) != 0) {
ops->close(conn, xprt_ctx);
return -1;
}
}
if (ops->add_xprt(conn, xprt_ctx, nextxprt_ctx, nextxprt_ops, NULL, NULL) != 0) {
ops->close(conn, xprt_ctx);
return -1;
}
return 0;
}
static inline int conn_get_alpn(const struct connection *conn, const char **str, int *len)
{
if (!conn_xprt_ready(conn) || !conn->xprt->get_alpn)
return 0;
return conn->xprt->get_alpn(conn, conn->xprt_ctx, str, len);
}
/* registers proto mux list <list>. Modifies the list element! */
static inline void register_mux_proto(struct mux_proto_list *list)
{
LIST_ADDQ(&mux_proto_list.list, &list->list);
}
/* unregisters proto mux list <list> */
static inline void unregister_mux_proto(struct mux_proto_list *list)
{
LIST_DEL(&list->list);
LIST_INIT(&list->list);
}
static inline struct mux_proto_list *get_mux_proto(const struct ist proto)
{
struct mux_proto_list *item;
list_for_each_entry(item, &mux_proto_list.list, list) {
if (isteq(proto, item->token))
return item;
}
return NULL;
}
/* Lists the known proto mux on <out> */
static inline void list_mux_proto(FILE *out)
{
struct mux_proto_list *item;
struct ist proto;
char *mode, *side;
fprintf(out, "Available multiplexer protocols :\n"
"(protocols marked as <default> cannot be specified using 'proto' keyword)\n");
list_for_each_entry(item, &mux_proto_list.list, list) {
proto = item->token;
if (item->mode == PROTO_MODE_ANY)
mode = "TCP|HTTP";
else if (item->mode == PROTO_MODE_TCP)
mode = "TCP";
else if (item->mode == PROTO_MODE_HTTP)
mode = "HTTP";
else
mode = "NONE";
if (item->side == PROTO_SIDE_BOTH)
side = "FE|BE";
else if (item->side == PROTO_SIDE_FE)
side = "FE";
else if (item->side == PROTO_SIDE_BE)
side = "BE";
else
side = "NONE";
fprintf(out, " %15s : mode=%-10s side=%-8s mux=%s\n",
(proto.len ? proto.ptr : "<default>"), mode, side, item->mux->name);
}
}
/* returns the first mux entry in the list matching the exact same <mux_proto>
* and compatible with the <proto_side> (FE or BE) and the <proto_mode> (TCP or
* HTTP). <mux_proto> can be empty. Will fall back to the first compatible mux
* with exactly the same <proto_mode> or with an empty name. May return
* null if the code improperly registered the default mux to use as a fallback.
*/
static inline const struct mux_proto_list *conn_get_best_mux_entry(
const struct ist mux_proto,
int proto_side, int proto_mode)
{
struct mux_proto_list *item;
struct mux_proto_list *fallback = NULL;
list_for_each_entry(item, &mux_proto_list.list, list) {
if (!(item->side & proto_side) || !(item->mode & proto_mode))
continue;
if (istlen(mux_proto) && isteq(mux_proto, item->token))
return item;
else if (!istlen(item->token)) {
if (!fallback || (item->mode == proto_mode && fallback->mode != proto_mode))
fallback = item;
}
}
return fallback;
}
/* returns the first mux in the list matching the exact same <mux_proto> and
* compatible with the <proto_side> (FE or BE) and the <proto_mode> (TCP or
* HTTP). <mux_proto> can be empty. Will fall back to the first compatible mux
* with exactly the same <proto_mode> or with an empty name. May return
* null if the code improperly registered the default mux to use as a fallback.
*/
static inline const struct mux_ops *conn_get_best_mux(struct connection *conn,
const struct ist mux_proto,
int proto_side, int proto_mode)
{
const struct mux_proto_list *item;
item = conn_get_best_mux_entry(mux_proto, proto_side, proto_mode);
return item ? item->mux : NULL;
}
/* returns 0 if the connection is valid and is a frontend connection, otherwise
* returns 1 indicating it's a backend connection. And uninitialized connection
* also returns 1 to better handle the usage in the middle of initialization.
*/
static inline int conn_is_back(const struct connection *conn)
{
return !objt_listener(conn->target);
}
/* returns a pointer to the proxy associated with this connection. For a front
* connection it returns a pointer to the frontend ; for a back connection, it
* returns a pointer to the backend.
*/
static inline struct proxy *conn_get_proxy(const struct connection *conn)
{
struct listener *l;
struct server *s;
/* check if it's a frontend connection */
l = objt_listener(conn->target);
if (l)
return l->bind_conf->frontend;
/* check if it's a backend connection */
s = objt_server(conn->target);
if (s)
return s->proxy;
return objt_proxy(conn->target);
}
/* installs the best mux for incoming connection <conn> using the upper context
* <ctx>. If the mux protocol is forced, we use it to find the best
* mux. Otherwise we use the ALPN name, if any. Returns < 0 on error.
*/
static inline int conn_install_mux_fe(struct connection *conn, void *ctx)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
const struct mux_ops *mux_ops;
if (bind_conf->mux_proto)
mux_ops = bind_conf->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (bind_conf->frontend->mode == PR_MODE_HTTP)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, bind_conf->frontend, conn->owner);
}
/* installs the best mux for outgoing connection <conn> using the upper context
* <ctx>. If the mux protocol is forced, we use it to find the best mux. Returns
* < 0 on error.
*/
static inline int conn_install_mux_be(struct connection *conn, void *ctx, struct session *sess)
{
struct server *srv = objt_server(conn->target);
struct proxy *prx = objt_proxy(conn->target);
const struct mux_ops *mux_ops;
if (srv)
prx = srv->proxy;
if (!prx) // target must be either proxy or server
return -1;
if (srv && srv->mux_proto)
mux_ops = srv->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if (prx->mode == PR_MODE_HTTP)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, prx, sess);
}
/* installs the best mux for outgoing connection <conn> for a check using the
* upper context <ctx>. If the mux protocol is forced by the check, we use it to
* find the best mux. Returns < 0 on error.
*/
static inline int conn_install_mux_chk(struct connection *conn, void *ctx, struct session *sess)
{
struct check *check = objt_check(sess->origin);
struct server *srv = objt_server(conn->target);
struct proxy *prx = objt_proxy(conn->target);
const struct mux_ops *mux_ops;
if (!check) // Check must be defined
return -1;
if (srv)
prx = srv->proxy;
if (!prx) // target must be either proxy or server
return -1;
if (check->mux_proto)
mux_ops = check->mux_proto->mux;
else {
struct ist mux_proto;
const char *alpn_str = NULL;
int alpn_len = 0;
int mode;
if ((check->tcpcheck_rules->flags & TCPCHK_RULES_PROTO_CHK) == TCPCHK_RULES_HTTP_CHK)
mode = PROTO_MODE_HTTP;
else
mode = PROTO_MODE_TCP;
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
mux_ops = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_BE, mode);
if (!mux_ops)
return -1;
}
return conn_install_mux(conn, mux_ops, ctx, prx, sess);
}
/* Change the mux for the connection.
* The caller should make sure he's not subscribed to the underlying XPRT.
*/
static inline int conn_upgrade_mux_fe(struct connection *conn, void *ctx, struct buffer *buf,
struct ist mux_proto, int mode)
{
struct bind_conf *bind_conf = __objt_listener(conn->target)->bind_conf;
const struct mux_ops *old_mux, *new_mux;
void *old_mux_ctx;
const char *alpn_str = NULL;
int alpn_len = 0;
if (!mux_proto.len) {
conn_get_alpn(conn, &alpn_str, &alpn_len);
mux_proto = ist2(alpn_str, alpn_len);
}
new_mux = conn_get_best_mux(conn, mux_proto, PROTO_SIDE_FE, mode);
old_mux = conn->mux;
/* No mux found */
if (!new_mux)
return -1;
/* Same mux, nothing to do */
if (old_mux == new_mux)
return 0;
old_mux_ctx = conn->ctx;
conn->mux = new_mux;
conn->ctx = ctx;
if (new_mux->init(conn, bind_conf->frontend, conn->owner, buf) == -1) {
/* The mux upgrade failed, so restore the old mux */
conn->ctx = old_mux_ctx;
conn->mux = old_mux;
return -1;
}
/* The mux was upgraded, destroy the old one */
*buf = BUF_NULL;
old_mux->destroy(old_mux_ctx);
return 0;
}
#endif /* _HAPROXY_CONNECTION_H */
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/