用于EagleEye3.0 规则集漏报和误报测试的示例项目,项目收集于github和gitee
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

527 lines
17 KiB

5 months ago
/* Copyright (c) 2013, 2017, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License, version 2.0,
as published by the Free Software Foundation.
This program is also distributed with certain software (including
but not limited to OpenSSL) that is licensed under separate terms,
as designated in a particular file or component or in included license
documentation. The authors of MySQL hereby grant you an additional
permission to link the program and your derivative works with the
separately licensed software that they have included with MySQL.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License, version 2.0, for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
// First include (the generated) my_config.h, to get correct platform defines.
#include "my_config.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <memory>
#include "prealloced_array.h"
namespace prealloced_array_unittest {
class PreallocedArrayTest : public ::testing::Test {
public:
PreallocedArrayTest() : int_10(PSI_NOT_INSTRUMENTED) {}
protected:
Prealloced_array<int, 10> int_10;
int some_integer;
};
TEST_F(PreallocedArrayTest, Empty) {
EXPECT_EQ(10U, int_10.capacity());
EXPECT_EQ(sizeof(int), int_10.element_size());
EXPECT_TRUE(int_10.empty());
EXPECT_EQ(0U, int_10.size());
}
#if !defined(DBUG_OFF)
// Google Test recommends DeathTest suffix for classes used in death tests.
typedef PreallocedArrayTest PreallocedArrayDeathTest;
TEST_F(PreallocedArrayDeathTest, OutOfBoundsRead) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
EXPECT_DEATH_IF_SUPPORTED(some_integer = int_10[5],
".*Assertion .*n < size.*");
}
TEST_F(PreallocedArrayDeathTest, OutOfBoundsWrite) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
EXPECT_DEATH_IF_SUPPORTED(int_10[5] = some_integer,
".*Assertion .*n < size.*");
}
TEST_F(PreallocedArrayDeathTest, EmptyBack) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
EXPECT_DEATH_IF_SUPPORTED(int_10.back() = 42, ".*Assertion .*n < size.*");
}
TEST_F(PreallocedArrayDeathTest, EmptyPopBack) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
EXPECT_DEATH_IF_SUPPORTED(int_10.pop_back(), ".*Assertion .*!empty.*");
}
TEST_F(PreallocedArrayDeathTest, EmptyErase) {
::testing::FLAGS_gtest_death_test_style = "threadsafe";
size_t ix = 0;
EXPECT_DEATH_IF_SUPPORTED(int_10.erase(ix), ".*Assertion .*ix < size.*");
}
#endif // DBUG_OFF
TEST_F(PreallocedArrayTest, Insert5) {
for (int ix = 0; ix < 5; ++ix) int_10.push_back(ix);
for (int ix = 0; ix < 5; ++ix) EXPECT_EQ(ix, int_10[ix]);
for (int ix = 0; ix < 5; ++ix) int_10[ix] = ix;
EXPECT_EQ(5U, int_10.size());
EXPECT_EQ(10U, int_10.capacity());
}
TEST_F(PreallocedArrayTest, Insert15) {
for (int ix = 0; ix < 15; ++ix) int_10.push_back(ix);
for (int ix = 0; ix < 15; ++ix) EXPECT_EQ(ix, int_10[ix]);
for (int ix = 0; ix < 15; ++ix) int_10[ix] = ix;
EXPECT_EQ(15U, int_10.size());
EXPECT_LE(15U, int_10.capacity());
}
TEST_F(PreallocedArrayTest, Sort) {
for (int ix = 20; ix >= 0; --ix) int_10.push_back(ix);
std::sort(int_10.begin(), int_10.end());
for (int ix = 0; ix <= 20; ++ix) EXPECT_EQ(ix, int_10[ix]);
}
TEST_F(PreallocedArrayTest, Back) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(15, int_10.back());
int_10.back() = 42;
EXPECT_EQ(42, int_10.back());
}
TEST_F(PreallocedArrayTest, PopBack) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
for (int ix = 15; ix >= 0; --ix) {
EXPECT_EQ(ix, int_10.back());
int_10.pop_back();
}
}
TEST_F(PreallocedArrayTest, EraseFirst) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(0, int_10[0]);
EXPECT_EQ(16U, int_10.size());
int_10.erase(int_10.begin());
EXPECT_EQ(15U, int_10.size());
for (int ix = 0; ix < static_cast<int>(int_10.size()); ++ix) {
EXPECT_EQ(ix + 1, int_10[ix]);
}
}
TEST_F(PreallocedArrayTest, EraseLast) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(15, int_10.back());
EXPECT_EQ(15, int_10.at(15));
int_10.erase(15);
EXPECT_EQ(14, int_10.back());
EXPECT_EQ(14, int_10.at(14));
}
TEST_F(PreallocedArrayTest, EraseMiddle) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(6, int_10[6]);
EXPECT_EQ(7, int_10[7]);
EXPECT_EQ(16U, int_10.size());
int_10.erase(7);
EXPECT_EQ(6, int_10[6]);
EXPECT_EQ(8, int_10[7]);
EXPECT_EQ(9, int_10[8]);
EXPECT_EQ(15U, int_10.size());
}
TEST_F(PreallocedArrayTest, ResizeSame) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(16U, int_10.size());
int_10.resize(16U);
EXPECT_EQ(16U, int_10.size());
}
TEST_F(PreallocedArrayTest, ResizeGrow) {
int_10.push_back(1);
int_10.resize(20);
EXPECT_EQ(1, int_10[0]);
EXPECT_EQ(0, int_10[1]);
EXPECT_EQ(20U, int_10.size());
EXPECT_GE(int_10.capacity(), 20U);
}
TEST_F(PreallocedArrayTest, ResizeGrowVal) {
int_10.resize(20, 42);
EXPECT_EQ(42, int_10[0]);
EXPECT_EQ(42, int_10[19]);
EXPECT_EQ(20U, int_10.size());
EXPECT_GE(int_10.capacity(), 20U);
}
TEST_F(PreallocedArrayTest, ResizeShrink) {
for (int ix = 0; ix <= 15; ++ix) int_10.push_back(ix);
EXPECT_EQ(16U, int_10.size());
int_10.resize(10);
EXPECT_EQ(10U, int_10.size());
}
TEST_F(PreallocedArrayTest, InsertUnique) {
for (int ix = 0; ix < 10; ++ix) {
int_10.push_back(ix);
int_10.push_back(ix);
}
std::random_shuffle(int_10.begin(), int_10.end());
Prealloced_array<int, 1> unique_arr(PSI_NOT_INSTRUMENTED);
for (int *pi = int_10.begin(); pi != int_10.end(); ++pi) {
unique_arr.insert_unique(*pi);
EXPECT_EQ(1U, unique_arr.count_unique(*pi));
}
EXPECT_EQ(10U, unique_arr.size());
// Duplicates should have been ignored, and the result should be sorted.
for (int ix = 0; ix < static_cast<int>(unique_arr.size()); ++ix) {
EXPECT_EQ(ix, unique_arr[ix]);
}
}
TEST_F(PreallocedArrayTest, EraseUnique) {
for (int ix = 0; ix < 20; ++ix) int_10.push_back(ix);
// The array should be sorted by default.
for (int ix = 0; ix < 20; ++ix) EXPECT_EQ(ix, int_10[ix]);
// Now remove all even numbers.
for (int ix = 0; ix < 10; ++ix) EXPECT_EQ(1U, int_10.erase_unique(2 * ix));
// 10 numbers should remain.
EXPECT_EQ(10U, int_10.size());
// Removing non-existing numbers should return 0.
for (int ix = 0; ix < 10; ++ix) {
EXPECT_EQ(0U, int_10.count_unique(2 * ix));
EXPECT_EQ(0U, int_10.erase_unique(2 * ix));
}
// 10 numbers should still remain.
EXPECT_EQ(10U, int_10.size());
// The array should still be sorted and contain odd numbers.
for (int ix = 0; ix < 10; ++ix) EXPECT_EQ(2 * ix + 1, int_10[ix]);
}
/*
A simple class for testing that object copying and destruction is done
properly when we have to expand the array a few times,
and has_trivial_destructor == false.
*/
class IntWrap {
public:
IntWrap() { m_int = new int(0); }
explicit IntWrap(int arg) { m_int = new int(arg); }
IntWrap(const IntWrap &other) { m_int = new int(other.getval()); }
~IntWrap() { delete m_int; }
IntWrap &operator=(const IntWrap &rhs) {
*m_int = rhs.getval();
return *this;
}
int getval() const { return *m_int; }
private:
int *m_int;
};
/*
To verify that there are no leaks, do:
valgrind ./prealloced_array-t --gtest_filter="-*DeathTest*"
*/
TEST_F(PreallocedArrayTest, NoMemLeaksAssignAt) {
Prealloced_array<IntWrap, 10> array(PSI_NOT_INSTRUMENTED, 0);
EXPECT_EQ(0U, array.size());
array.assign_at(3, IntWrap(3));
EXPECT_EQ(4U, array.size());
EXPECT_EQ(3, array[3].getval());
EXPECT_EQ(0, array[0].getval());
array.assign_at(0, IntWrap(42));
EXPECT_EQ(4U, array.size());
EXPECT_EQ(42, array[0].getval());
array.assign_at(4, IntWrap(4));
EXPECT_EQ(5U, array.size());
EXPECT_EQ(4, array[4].getval());
array.assign_at(42, IntWrap(42));
EXPECT_EQ(43U, array.size());
EXPECT_EQ(42, array[42].getval());
array.assign_at(0, IntWrap(0));
EXPECT_EQ(0, array[0].getval());
}
TEST_F(PreallocedArrayTest, NoMemLeaksInitializing) {
const size_t initial_capacity = 10;
Prealloced_array<IntWrap, initial_capacity> array1(PSI_NOT_INSTRUMENTED, 0);
EXPECT_EQ(0U, array1.size());
Prealloced_array<IntWrap, initial_capacity> array2(PSI_NOT_INSTRUMENTED,
initial_capacity / 2);
EXPECT_EQ(5U, array2.size());
Prealloced_array<IntWrap, 10> array3(PSI_NOT_INSTRUMENTED, initial_capacity);
EXPECT_EQ(10U, array3.size());
Prealloced_array<IntWrap, 10> array4(PSI_NOT_INSTRUMENTED,
2 * initial_capacity);
EXPECT_EQ(20U, array4.size());
}
TEST_F(PreallocedArrayTest, NoMemLeaksPushing) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
for (int ix = 0; ix < 42; ++ix) EXPECT_EQ(ix, array[ix].getval());
}
TEST_F(PreallocedArrayTest, NoMemLeaksPopping) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
while (!array.empty()) array.pop_back();
}
TEST_F(PreallocedArrayTest, NoMemLeaksErasing) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
for (int ix = 0; !array.empty(); ++ix) {
EXPECT_EQ(ix, array[0].getval());
array.erase(array.begin());
}
}
TEST_F(PreallocedArrayTest, NoMemLeaksClearing) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
array.clear();
EXPECT_EQ(0U, array.size());
}
TEST_F(PreallocedArrayTest, NoMemLeaksResizing) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
array.resize(0);
EXPECT_EQ(0U, array.size());
}
TEST_F(PreallocedArrayTest, NoMemLeaksAssigning) {
Prealloced_array<IntWrap, 1> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
Prealloced_array<IntWrap, 1> array2(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 10; ++ix) array2.push_back(IntWrap(ix + 100));
array2 = array1;
EXPECT_EQ(array1.size(), array2.size());
for (size_t ix = 0; ix < array1.size(); ++ix)
EXPECT_EQ(array1[ix].getval(), array2[ix].getval());
}
TEST_F(PreallocedArrayTest, NoMemLeaksEraseAll) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
array.erase(array.begin(), array.end());
EXPECT_EQ(0U, array.size());
}
TEST_F(PreallocedArrayTest, NoMemLeaksEraseMiddle) {
Prealloced_array<IntWrap, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(IntWrap(ix));
array.erase(array.begin() + 1, array.end() - 1);
EXPECT_EQ(2U, array.size());
EXPECT_EQ(0, array[0].getval());
EXPECT_EQ(41, array[1].getval());
}
TEST_F(PreallocedArrayTest, NoMemLeaksEraseSwap) {
Prealloced_array<IntWrap, 1> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
Prealloced_array<IntWrap, 1> array2(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 10; ++ix) array2.push_back(IntWrap(ix + 100));
array1.swap(array2);
EXPECT_EQ(10U, array1.size());
EXPECT_EQ(42U, array2.size());
Prealloced_array<IntWrap, 1>(PSI_NOT_INSTRUMENTED).swap(array1);
EXPECT_EQ(0U, array1.size());
}
TEST_F(PreallocedArrayTest, NoMemLeaksMySwap) {
Prealloced_array<IntWrap, 2> array1(PSI_NOT_INSTRUMENTED);
Prealloced_array<IntWrap, 2> array2(PSI_NOT_INSTRUMENTED);
array1.push_back(IntWrap(1));
array2.push_back(IntWrap(2));
array2.push_back(IntWrap(22));
array1.swap(array2);
EXPECT_EQ(2U, array1.size());
EXPECT_EQ(1U, array2.size());
EXPECT_EQ(2, array1[0].getval());
EXPECT_EQ(22, array1[1].getval());
EXPECT_EQ(1, array2[0].getval());
}
TEST_F(PreallocedArrayTest, NoMemLeaksStdSwap) {
Prealloced_array<IntWrap, 1> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
Prealloced_array<IntWrap, 1> array2(PSI_NOT_INSTRUMENTED, array1.begin(),
array1.begin() + 10);
EXPECT_EQ(10U, array2.size());
IntWrap *p1 = array1.begin();
IntWrap *p2 = array2.begin();
array1.swap(array2);
EXPECT_EQ(10U, array1.size());
EXPECT_EQ(42U, array2.size());
// We expect a buffer swap here.
EXPECT_EQ(p1, array2.begin());
EXPECT_EQ(p2, array1.begin());
}
TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitMalloc) {
Prealloced_array<IntWrap, 1> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
IntWrap *p1 = array1.begin();
array1.shrink_to_fit();
EXPECT_EQ(42U, array1.size());
EXPECT_EQ(42U, array1.capacity());
EXPECT_NE(p1, array1.begin());
}
TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitSameSize) {
Prealloced_array<IntWrap, 10> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
for (int ix = 0; array1.size() != array1.capacity(); ++ix)
array1.push_back(IntWrap(ix));
IntWrap *p1 = array1.begin();
array1.shrink_to_fit();
EXPECT_EQ(p1, array1.begin());
}
TEST_F(PreallocedArrayTest, NoMemLeaksShrinkToFitPrealloc) {
Prealloced_array<IntWrap, 100> array1(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array1.push_back(IntWrap(ix));
IntWrap *p1 = array1.begin();
array1.shrink_to_fit();
EXPECT_EQ(42U, array1.size());
EXPECT_EQ(100U, array1.capacity());
EXPECT_EQ(p1, array1.begin());
}
/*
A simple class to verify that Prealloced_array also works for
classes which have their own operator new/delete.
*/
class TestAlloc {
public:
explicit TestAlloc(int val) : m_int(val) {}
int getval() const { return m_int; }
private:
int m_int;
static void *operator new(size_t) { throw std::bad_alloc(); }
};
/*
There is no THD and no mem-root available for the execution of this test.
This shows that the memory management of Prealloced_array works OK for
classes with custom new/delete.
*/
TEST_F(PreallocedArrayTest, CustomNewDelete) {
Prealloced_array<TestAlloc, 1> array(PSI_NOT_INSTRUMENTED);
for (int ix = 0; ix < 42; ++ix) array.push_back(TestAlloc(ix));
for (int ix = 0; ix < 42; ++ix) EXPECT_EQ(ix, array[ix].getval());
}
/**
A class that wraps an integer. Objects of this class can be moved,
but cannot be copied.
*/
class IntWrapMove {
std::unique_ptr<int> m_i;
public:
explicit IntWrapMove(int i) : m_i(new int(i)) {}
IntWrapMove(const IntWrapMove &) = delete;
IntWrapMove &operator=(const IntWrapMove &) = delete;
IntWrapMove(IntWrapMove &&) = default;
IntWrapMove &operator=(IntWrapMove &&) = default;
int getval() const { return *m_i; }
};
/*
Test that a Prealloced_array can hold objects that cannot be copied.
*/
TEST_F(PreallocedArrayTest, Move) {
using IntArray = Prealloced_array<IntWrapMove, 1>;
IntArray array(PSI_NOT_INSTRUMENTED);
// Test that we can add non-copyable elements to the array.
for (int i = 0; i < 5; ++i) array.push_back(IntWrapMove(i));
for (int i = 5; i < 10; ++i) array.emplace_back(i);
for (int i = 0; i < 10; ++i) EXPECT_EQ(i, array[i].getval());
array.insert(array.begin(), IntWrapMove(100));
array.emplace(array.begin() + 1, IntWrapMove(101));
EXPECT_EQ(12U, array.size());
EXPECT_EQ(100, array[0].getval());
EXPECT_EQ(101, array[1].getval());
EXPECT_EQ(0, array[2].getval());
// Test that we can remove non-copyable elements from the array.
IntArray::iterator it = array.erase(1);
EXPECT_EQ(1, it - array.begin());
EXPECT_EQ(0, it->getval());
it = array.erase(array.cbegin() + 1);
EXPECT_EQ(1, it - array.begin());
EXPECT_EQ(1, it->getval());
it = array.erase(array.cbegin() + 2, array.cend() - 2);
EXPECT_EQ(8, it->getval());
EXPECT_EQ(2, array.end() - it);
EXPECT_EQ(2, it - array.begin());
EXPECT_EQ(4U, array.size());
EXPECT_EQ(100, array[0].getval());
EXPECT_EQ(1, array[1].getval());
EXPECT_EQ(8, array[2].getval());
EXPECT_EQ(9, array[3].getval());
}
TEST_F(PreallocedArrayTest, ShrinkToFit) {
Prealloced_array<int, 1> array(PSI_NOT_INSTRUMENTED);
array.push_back(1);
array.push_back(2);
array.push_back(3);
size_t capacity = array.capacity();
EXPECT_LE(3U, capacity);
// After clear(), array is empty, but the capacity is unchanged.
array.clear();
EXPECT_TRUE(array.empty());
EXPECT_EQ(capacity, array.capacity());
// After shrink_to_fit(), the capacity should shrink to the prealloc size.
array.shrink_to_fit();
EXPECT_EQ(1U, array.capacity());
}
} // namespace prealloced_array_unittest