2 DeepSeek R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart
Basil Moloney edited this page 2 months ago


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion parameters to build, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to deploy the distilled variations of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses support learning to improve reasoning abilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying function is its support learning (RL) step, which was utilized to improve the design's reactions beyond the basic pre-training and fine-tuning procedure. By incorporating RL, DeepSeek-R1 can adapt more efficiently to user feedback and goals, eventually improving both relevance and clarity. In addition, DeepSeek-R1 uses a chain-of-thought (CoT) method, indicating it's geared up to break down complicated questions and reason through them in a detailed manner. This directed thinking procedure enables the design to produce more accurate, transparent, and detailed responses. This model integrates RL-based fine-tuning with CoT abilities, aiming to produce structured reactions while focusing on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has caught the industry's attention as a versatile text-generation model that can be integrated into numerous workflows such as representatives, rational thinking and data interpretation jobs.

DeepSeek-R1 uses a Mix of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion parameters, enabling efficient reasoning by routing inquiries to the most relevant expert "clusters." This method allows the design to concentrate on different issue domains while maintaining total effectiveness. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for inference. In this post, we will use an ml.p5e.48 xlarge circumstances to deploy the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller sized, more efficient designs to simulate the habits and thinking patterns of the bigger DeepSeek-R1 design, using it as an instructor model.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise releasing this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to introduce safeguards, prevent damaging material, and evaluate designs against crucial safety criteria. At the time of composing this blog site, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop multiple guardrails tailored to different use cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and confirm you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To ask for a limit boost, produce a limit boost request and reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the proper AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For directions, see Establish permissions to use guardrails for material filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, avoid hazardous material, and evaluate designs against crucial safety criteria. You can execute safety steps for the DeepSeek-R1 model using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to assess user inputs and model actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The general circulation involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the model for inference. After getting the design's output, another guardrail check is used. If the output passes this final check, it's returned as the result. However, if either the input or output is intervened by the guardrail, a message is returned showing the nature of the intervention and whether it occurred at the input or output phase. The examples showcased in the following areas demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, select Model catalog under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the model. It doesn't support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 model.

The design detail page supplies necessary details about the design's capabilities, prices structure, and implementation guidelines. You can discover detailed usage directions, consisting of sample API calls and code bits for . The model supports numerous text generation tasks, including material development, code generation, and concern answering, using its reinforcement finding out optimization and CoT reasoning abilities. The page likewise includes implementation choices and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start utilizing DeepSeek-R1, pick Deploy.

You will be prompted to set up the implementation details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, it-viking.ch get in an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, get in a number of instances (in between 1-100). 6. For example type, pick your instance type. For ideal efficiency with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and infrastructure settings, including virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For the majority of use cases, the default settings will work well. However, for production releases, you might want to examine these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is complete, you can check DeepSeek-R1's capabilities straight in the Amazon Bedrock play ground. 8. Choose Open in playground to access an interactive interface where you can explore various triggers and change design parameters like temperature level and optimum length. When using R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For example, material for reasoning.

This is an outstanding way to check out the model's reasoning and text generation abilities before integrating it into your applications. The playground offers immediate feedback, helping you understand how the design reacts to various inputs and letting you fine-tune your prompts for ideal results.

You can quickly check the model in the playground through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the deployed DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can develop a guardrail utilizing the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have actually created the guardrail, utilize the following code to execute guardrails. The script initializes the bedrock_runtime client, configures inference parameters, and sends out a demand to produce text based on a user timely.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML services that you can deploy with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your data, and deploy them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart provides two practical methods: using the intuitive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both methods to help you select the method that best suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following steps to release DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, select Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, choose JumpStart in the navigation pane.

The design browser displays available models, with details like the service provider name and design abilities.

4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card. Each design card shows essential details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), indicating that this model can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the design details page.

    The design details page includes the following details:

    - The design name and company details. Deploy button to deploy the model. About and Notebooks tabs with detailed details

    The About tab includes important details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the design, it's advised to review the model details and license terms to verify compatibility with your use case.

    6. Choose Deploy to continue with implementation.

    7. For Endpoint name, use the automatically produced name or create a customized one.
  1. For example type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, go into the variety of circumstances (default: 1). Selecting proper circumstances types and counts is essential for expense and efficiency optimization. Monitor your deployment to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to release the design.

    The implementation process can take numerous minutes to finish.

    When release is total, your endpoint status will alter to InService. At this point, the design is prepared to accept inference demands through the endpoint. You can keep an eye on the release progress on the SageMaker console Endpoints page, which will show pertinent metrics and status details. When the implementation is complete, you can conjure up the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 utilizing the SageMaker Python SDK

    To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS approvals and environment setup. The following is a detailed code example that demonstrates how to deploy and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is provided in the Github here. You can clone the note pad and run from SageMaker Studio.

    You can run extra demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Clean up

    To prevent undesirable charges, finish the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace release

    If you deployed the model utilizing Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed implementations section, locate the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're erasing the right release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you wish to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get started. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Starting with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies develop innovative services utilizing AWS services and sped up compute. Currently, he is focused on developing strategies for fine-tuning and enhancing the inference performance of big language designs. In his leisure time, Vivek delights in hiking, enjoying movies, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing services that help consumers accelerate their AI journey and unlock service worth.